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The thermodynamics of the electromagnetic radiation from heated nuclei is developed on basis of the 
Landau theory of a Fermi liquid. I The case of nonspherical nuclei is considered, in which the 
quasiparticle energy spectrum is not distorted by the residual interactions that affect appreciably the 
thermodynamic behavior of the system. The number of quanta per cascade and mean-square 
fluctuation are calculated; the ")'-quantum spectrum of the whole cascade is also obtained. The 
formulas can be used to determine the entropy and temperature of the initial nucleus by various 
methods. The effective nucleon (quasiparticle) mass in nuclear matter is determined by comparison 
with the experimental data. The region of validity of the theory and some possibilities of its 
extension on the basis of new experiments are discussed. 

1. INTRODUCTION 

Radiati ve transitions between the lowest levels of 
nuclei exhibit a great diversity in their intensities and 
multi polarities . In addition to the usually intense 
transitions between the "collective" (rotational and 
vibrational) levels, there are encountered also isomeric 
y transitions, the high degree of hindrance of which may 
be due to the large change in the nuclear spin and also 
to other causes. Even a schematic tentative classifica­
tion and a very cursory discussion of the particular 
interest that may attach to any particular modification 
of the radiative transitions between any two concrete 
energy levels of the nucleus would greatly exceed the 
scope of the present article. In nuclei that are not too 
light, howev,er, the number of levels that lend them­
selves to transitions with y-quantum emission increases 
sharply, with increasing excitation energy, and the indi­
vidual features then become gradually equalized. A well 
known example may be the observed spectra of ")' rays 
of radiative capture of thermal neutrons[1]. It is clear 
that for a sufficiently heavy nucleus, the overall picture 
of such a phenomenon characterizes not the individual 
levels, but more readily a certain region of the energy 
spectrum of the nucleus as a whole. It is natural to 
assume that rather general laws of phenomenomic 
character come to the forefront here. Unification of the 
dominant mechanism of the process becomes manifest, 
e.g., in the fact that these electromagnetic - radiation 
spectra [2] of many different nuclei exhibit great simi­
larities among themselves. 

Incidently, at the ~8 MeV excitation energy I re­
ferred to in this case, certain striking qualitative dif­
ferences still remain. Since they are due to phenomena 
that are of very great importance in nuclear physics, it 
behooves us to dwell on the examples that illustrate this 
fact in somewhat greater detail. We consider the situa­
tions on both sides of osmium (Z = 76), where the 
spectra of the capture y quanta[2] have been investi­
gated experimentally in sufficient detail. Many nuclei of 
the chemical elements preceding osmium have spectra 
of rather standard form, namely the energy distribution 
of the quanta has a maximum at € ;:, 2 MeV, after which 
it drops off rapidly towards the limiting value € = E 
(the excitation energy of the nucleus in the initial state). 
However, this "temperature" maximum becomes con­
siderably smoothed out even for the first element fol­
lowing osmium, namely iridium (Z = 77), and the 
transitions in the hard part of the y spectrum are 
simultaneously smoothed out. In addition this charac­
teristic deformation of the spectrum of the captured 
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quanta is further developed, in the case of 7SPt, namely, 
roughly speaking, the areas under both maxima become 
comparable. The emission spectra of ",Au reveals in 
practice only one maximum adjacent to the hard edge 
€ = € (€n is the neutron detachment energy). In the 
elements that follow, soRg and s1Tl, the relative area 
under the hard part of the spectrum continues to in­
crease. It is curious to note that this feature becomes 
much more sharply pronounced in the case of the 
doubly magic nucleus s2Pbigt When the preceding iso­
tope Pb 207 captures a thermal neutron, practically 100% 
of all the radiative transitions go directly to the ground 
state; in other words, the spectrum of the cascade de­
generates into a single line € = €n. 

The picture outlined above is probably brought by 
about a unique phenomenon that becomes manifest not 
only in the spectra of the y-quantum cascades; the 
equilibrium shape of the nucleus also changes in the 
immediate vicinity of osmium. The properties of the 
energy spectrum of spherical nuclei located in the 
region adjacent to the doubly-magic nucleus are 
strongly influenced by the residual interaction between 
the quasiparticles 1). To the contrary, on the other side 
of the phase transition point[4J, such an influence ap­
parently ceases to be decisive in any manner. The non­
spherical shape of the nuclei in this region is quite 
natural, for when there is no interaction whatever be­
tween the particles the instability of the spherical con­
figuration is proved by direct calculation. 

We consider below the properties of electromagnetic 
radiation of all the nuclei pertaining to this nonspheri­
cal "normal" phase (see[41). 

2. THERMODYNAMICS OF ELECTROMAGNETIC 
RADIATION OF STRONGLY EXCITED NUCLEI 

According to Fermi-liquid theory[1,6], the behavior 
of this liquid is determined by quasi particles that obey 
the Pauli principle and are sufficiently close to the 
Fermi boundary. In the state of thermal equilibrium, 
the usual Fermi distribution holds 2) 

n{e') = (e"iT + 1)-', (1) 

where €' is the energy of the quaSiparticle reckoned 
from the chemical potential, and T is the temperature. 
We now explain the predominant mechanism of the 
process. In accordance with the accepted concepts, the 
quasiparticles move freely inside the nuclear matter. 
However, when they strike the transition region on the 
nuclear surface, they are reflected from the latter, 
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Le., they are accelerated. This makes the emission of 
electromagnetic quanta possible3). 

On the average, we ascribe radiation to an individual 
quasiparticle in accordance with the law f(E)dE, where 
E is the energy of the y quantum (the form of the func­
tion f( E) will be established below). To go over to the 
true probability distribution w( E) dE, we must take into 
account the entire aggregate (1) of the quasiparticles, 
and also allow for the Pauli principle. Actually this 
reduces to additional multiplication by the product 
n( E')[l - n(E' - E)], integrated over the fermion ener­
gies. Simple integration yields 

jn(e')[1-n(e'-e)lde'~e'{T~1 ' 

/(e) edt; 
w(e)de = e,;T -1 . (2) 

We now consider the question from a somewhat differ­
ent point of view. The radiation wavelength is long rela­
tive to the dimensions of the nucleus and is principally 
of the electric-dipole type. The average level denSity 
of the system changes significantly only over energy 
intervals of the order of the temperature. In other 
words, when the excitation energy changes by an amount 
E « T, the energy characteristics of the spectrum of 
the nucleus as a whole, averaged over many quantum 
states, remain practically constant. Therefore in the 
limit as E - 0 there remains only the cubic dependence 
w( E) ex: E3 of the probability of the process on the transi­
tion energy, a dependence characteristic of dipole emis­
sion. Taking (2) into account we therefore have 4 ) 

/(3) = const'e'~ (3 ) 

For our purposes there is no need to calculate the 
absolute value of the probability ry/fi of the radiation 
per unit time (r y is the radiative width). We can de­
duce even from (2) and (3), however, how this quantity 
depends on the temperature of the nucleus (or on the 
excitation energy; see (15)). Since the constant factor 
in the right-hand side of (3) depends neither on E nor 
on T, the integration of the second formula of (2) 
yields 

r,oo T'. (4) 

The y-quantum energy distribution w( E)dE will now 
be renormalized to a unit total probability of its radia­
tion 

Here 

w(e)de= 1 
. 24~(5)T' 

e'de 
ee(T ~ l' 

S w(e)de = 1. 
o 

1 - x'-'dx - 1 
~(z)=-S-=~-

r(z) e'-i· ""'-n' 
o R<=1 

is the Riemann I; function. We need also the average 
energy ~(T) of the quantum emitted by the nucleus 
whose temperature is T 

(5 ) 

- n' T 
e=Sew(e)de=---""491T (6) 

o 189 ~(5) . . 

As the nucleus radiates, it becomes cooler; the run­
ning values of the excitation energy and of the tempera­
ture will be denoted by E' and T', respectively. For 
the average number v of the quanta in the cascade we 
obtain 

(7) 
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where E is the energy of the initial state of the nucleus 
and S is its entropy. Relation (7) makes it possible to 
determine the latter from experiment. 

How are the probability distributions (5) of different 
quanta of the cascade interrelated? Since the function 
w( E, T) depends on T as a parameter, its form is de­
termined by the prior history and by the total energy of 
the entire preceding radiation that caused the nucleus 
to cool down to the temperature in question. However, 
reasoning somewhat formally, such a relation between 
the y quanta of the cascade is due to the fact that each 
of them is characterized by an energy E. We now 
change over to another variable s, which is the entropy 
carried away by the quantum from the nucleus. Obvi­
ously, s = E/T, and the distribution (5) can be rewritten 
in the form 

1 sOds w(s)ds=--__ ~_. 
24~(5) e'-1 

(8) 

Thus, in terms of s the y quanta are statistically inde­
pendent. This simplifies very greatly the calculation of 
the fluctuations of the number of quanta in the cascade. 
We write down the corresponding mean values 

s = S- sw(s)ds = _n_'_ "" 4.91, 
o 189~ (5) 

-;. = -S s'w(s)ds = 30 ~(7) "" 29 2 
o ~ (5) • , 

(9 ) 

(L'1s) , = S' - s' "" 5.11 

(the first of these formulas, in fact, is a restatement of 
(6) in terms of other units). 

We consider next a portion of the cascade consisting 
of v' successively emitted quanta. For the rms fluc­
tuation of the entropy S' pertaining to this section we 
have the expressions 

(L'18') , = v~ "" 5,11v', ( 8')' _ S.H 
t\7 -~. (10) 

The last of the formulas (10) determines the fluctuation 
of the entropy S'/v' per y quantum. The same quantity 
admits also of another definition: the considered sec­
tion can be determined by specifying the constant S', 
and the number of quanta needed to produce this entropy 
drop can be regarded as fluctuating. Therefore 

8' • 8'2 __ 
(L'17) =T-(M)2. (11) 

Combining (11) with (10) and taking (7) into account, we 
extend the final formula to include the entire cascade: 

(L'1V)2={ 30 ~g: -L89~'(5) n ;: ""0.04338. (12) 

Here we have one other method of measuring the en­
tropy of the initial nuc leus, but this time from fluctua­
tions of the number of the y quanta per cascade '(cf. 
(7)). Eliminating S from (7) and (12), we obtain the 
relation 

«L'1V)2)''' "" 0,461iV', (13 ) 

which may turn out to be useful to verify the mechanism 
of the process. 

The energy spectrum W( E)dE for the y quanta of the 
entire cascade is made up of distributions of the type 
(5) for each of them. Taking also (6) into account, we 
have 

E dE' 63 T C(T')dT' 
W(e)de = deS w(e, T')-- = dee' -. S (14) 

o dT') 8n" 0 T"(e,{T' -1) 
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where C(T) = dE/dT is the specific heat of the nucleus. 
Its dependence on the temperature is determined by the 
formulas 

E ~ 'haT', C ~S ~aT ~-y2aE, (15 ) 

which follows from the Fermi-liquid theory[1,6) (see 
also[8), where rather weighty arguments were first ad­
vanced favoring such an equation of state of the nucleus). 
Substituting (15) in (14) and introducing the integration 
variable x = E/T', we obtain ultimately 

63 • x'dx • 
W(e)de~de-a s--, S W(e)de~v (16) 

8l't' .IT eX - 1 , 

(in practice it frequently turns out to be convenient to 
express the coefficient a in terms of the thermodynamic 
quantities of the initial state of the nucleus in accord­
ance with (15». The integral in this formula 

co x3dx n fo y3 
l(y)~ S--~---D(y) 

eX -1 15 3 , 
(17) 

can be easily investigated. It is expressed in terms of 
the Debye function D( y), which determines the well­
known interpolation for the specific heat of a solid (see, 
e.g.,[6). 

In addition to the number of quanta W(E) per unit 
change of the variable E, we introduce also the distribu­
tion of the energy O(E)dE = EW(E)dE and the spectrum 
of the y quanta of the cascade: 

(5(e)de~de~ael(~), S·o(e)de~E. (18) 
8n' T , 

Taking (16), (7), and (15) into account, we obviously 
have 

S o(e)de , 
n' E n' T 

----~---- "" 2.45T 
189~ (5) S 189~ (5) 2 

e~----. 
S W(e)de 
o 

(19 ) 

for the quantum energy € averaged over the spectrum 
(cf. (6». The function (5(E) has a maximumS). To de­
termine its position, we equate the derivative do/dE 
to zero. The transcendental equation 

S• x'dx y' 
e"-1 ~ e'-1 , 

is easy to solve: y"" 2.89. Thus, 

em~ "" 2,89T. 

(20) 

(21) 

This is possibly one of the most convenient methods of 
determining the temperature of a nucleus. 

In view of the importance of the question, we present 
also a convenient formula that expresses the initial 
spectrum W(E) directly in terms of Emax: 

W(e) "" 0.137--' I - , , E ( e) 
(em • x ), T 1(22 ) 

The limits of applicability of the theory are deter­
mined by the requirement 

E(T') <E'. (23) 

In this sense, the nature of the violations near the hard 
edge E = E of the spectrum is quite clear. The energy 
conservation law forbids the emission of quanta with 
E > E, and the theoretical expressions (16) and (18) 
lead us to nonzero intensities, although they do prove 
to be exponentially small. However, in the softest 
regions of the spectrum, the theory also ceases to be 
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valid. Indeed, according to (6) the characteristic en­
ergy 'E(T/) for the y quantum is proportional to the 
temperature of the radiating nucleus, since its excita­
tion energy E' depends on the temperature quadratically 
(see (15 », i.e., it decreases more rapidly. 

To make the criterion more precise, it is simplest 
to take into account the fact that, according to (6) and 
(7), we have the proportion 

E(T')IT'~S/v, (24) 

Replacing the numerator of the left-hand side by the 
running excitation energy E', we transform the resultant 
relation in accordance with (15): 

E' 1 - 1 -V Sz - S -VE' -~-'12aE'=- -'1E'=- -
T' 2 2 E :; E' 

We now equate the result to the right-hand side of (24): 

~ -V ;' = ~, E' = 4 !, . 
We have obtained here the excitation energy at which 

E ~ E/; it determines the lower limit (with respect to 
the energy of the emitted quantum) of the applicability 
of the theory. Therefore the sought criterion takes the 
furm ' 

4E/v'<e<E. (25) 

Consequently, the region of thermal emission of the 
nucleus exists under the condition 

v'>4. (26) 

3. COMPARISON WITH EXPERIMENT. 
EFFECTIVE MASS OF THE NUCLEON 
(QUASIPARTICLE) 

The region of heavy nonspherical nuclei, in which 
sufficiently systematic experimental investigations of 
the y-cascade spectra were made, extends from 
samarium-gadolinium to osmium 6). A comparison of 
the data of[2) with the theory developed in the preceding 
section was made for the spectra of radiative capture 
of thermal neutrons by ten different nuclei. According 
to formula (21) (see also the texts pertaining thereto) 
we determined the temperature of the initial compound 
nucleus. Since its excitation energy E = En is also 
known, relations (15) enable us to calculate the entropy 
and the specific heat. All these results are listed in 
the table. 

The condition (26) may not be well satisfied in the 
case of capture of thermal neutrons. From this point of 
view, an advantageous method of monitoring the ob­
tained temperatures is a comparison of the theoretical 
spectra of the y quanta with the experimental ones~ The 
figure shows the measured spectra I2] (in units of 
quanta/megavolt) with those calculated by formula (22). 
There is apparently a definite correlation with the total 
number II, calculated in accordance with (7), of the 
"evaporation" quanta in the cascade (i.e., due to the 
considered thermal mechanism). To the extent that the 
area under the theoretical spectrum W(E) approaches 
2, the agreement, generally speaking, becomes much 
worse. To the contrary, even at II "" 4 satisfactory 
agreement is observed in a certain spectral region that 
does not contradict the criterion (25)7). On the whole, 
qualitative considerations suggest that, owing to the 
excessively small number of the quanta in the cascade, 
the method considered here may overestimate some­
what the nuclear temperature. 
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!If E) 
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Re188 
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.. =},Z 
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The experimental spectra of the 1'-quantum cascades are shown by 
solid lines, and the theoretical ones by dashed ones. The peaks in the soft 
parts of the spectra are not of thermal origin; some of them could not be 
drawn at all in the chosen scale. 

The meaning and accuracy of the "radiative" tem­
perature, i.e., the one calculated from the position of 
the maximum in the spectrum 8( E); see formula (21) 
and the table), will be easier to analyze if account is 
taken of certain features of the thermodynamics of such 
a cooled body as a concrete nucleus. Owing to the ab­
sence of fluctuations of its total energy E, the equili­
brium temperature of such a system becomes to a cer­
tain degree an approximate concept. The scale of the 
related temperature uncertainty is riven by the well 
known thermodynamic formula (see 6J) 

for its rms fluctuation. The calculated values of tlT 
are given in next to the last column of the table. 

(27 ) 

The statements made above pertain to a definite 
nucleus with fixed composition. One cannot exclude, e.g., 
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6SEr\OOl68 7,77 1.00 15.6 0.25 0_56 
72Hfloat78 7.62 0.83 18.4 0.19 0.75 
73TalOg18Z 6.06 0.66 18.4 0.15 0.92 
nW1ui87 5.46 0.83 13.2 0.23 0.51 
7sReu,st88 5.73 0,73 15.7 0.18 0,68 

the possibility that such limitations may become less 
stringent when an attempt is made to ascribe a common 
temperature to an entire aggregate of relatively close 
nuclei. It is therefore of interest to verify whether an 
appreciable averaging of the radiative temperature 
takes place over the entire atomic-weight interval 
150 s As 188 where the comparison was made. USing 
(15), we reduce all the temperatures to a Single excita­
tion energy, say E = 8 MeV. We can then see that the 
swing of the fluctuations is in fair agreement with the 
thermodynamic estimates of the variance tl T. Thus, 
the characteristic period of the fluctuations along the 
A axis is apparently small in comparison with the sec­
tion under consideration, so that the averaging referred 
to above indeed has time to occur8). We are neverthe­
less left with the question of the systematic overesti­
mate of the temperature of the nucleus when the values 
of II are too small (see above). 

To highlight the distinction between the random 
(fluctuation) and systematic errors more lUCid, it is 
desirable to determine from experiment a quantity that 
characterizes directly, if possible, the nuclear Fermi 
liquid as such. Satisfying these requirements is the 
effective mass m"'; its value is also of definite interest 
in itself. The effective mass determines the specific 
heat and the entropy of the Fermi liquid[1,6]. The com­
binatorial expression for the entropy reduces to an in­
tegral that can be calculated without difficulty (the 
well-known problem of the specific heat of a degenerate 
Fermi gas reduces to a similar procedure; see, e.g}6]). 
Summing the contributions from the neutron and proton 
quasiparticles, we have 

4n R' .( N+ Z)T S=9h'm PI PI . (28 ) 

Just as in many other problems of nuclear physics, 
an important role is played by the dimensionless 
product 

(29) 

where kf is the limiting momentum of the quasiparti­
cles of the corresponding type and R is the radius of 
the nucleus (more accurately, of equivalent volume). 
When (28) is compared with (15), it is convenient to 
express the coefficient a in the temperature depend­
ence of the specific heat in terms of the energy and the 
temperature. We then obtain for the effective milss 

m' 9/n Ii' E (30) 

where mn is the mass of the free nucleon. The question 
of the connection between the "limiting momentum" 
Pf (see (29)) and the number of true partic les in the 
nucleus was considered earlier[9]. The corresponding 
formula is 

N,Z= :n p/-sp/+qpI' (31) 

Since the relative accuracy of such an approximate 
expansion becomes worse with increasing number of 
nucleons, it is most natural to use data concerning the 
magic numbers 82 and 126. This yields s = 1.1 and 
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q = 6.8 for the values of the parameters that enter in 
(31)9). 

We assume 

R = 1.2· 10-"A'" cm. , 

The effective-mass values determined from (30) and 

(32) 

(31) are given in the last column of the table. The 
arithmetic mean is m* /mn = 0.72 (the point pertaining 
to the nucleus Th 233 is also taken into consideration 
here; see footnote 7). This result, however, was in­
fluenced by a systematic error, which lowers the ef-
fecti ve mass of the quasiparticle. Indeed, there is a 
striking correlation between the ratio m*/mn calculated 
by this method and the numbe,r of quanta IJ (see the 
table and the figure). Consequently, a certain overesti­
mate of the temperatures at extremely small IJ, referred 
to above, indeed took place. In this case this source of 
error seems even somewhat exaggerated, since the 
right-hand side of (30) contains the square of the tem­
perature. On the other hand, in the region IJ = 3.5-4.1, 
the criterion (26) already seems to be fulfilled satis­
factorily, as is confirmed also by the good agreement 
over the spectra (see the figure). The best value is 
therefore probably the one calculated for the six perti­
nent nuclei 

m' / mn = 0.87 ± 0.04 (33 ) 

(we cite here the purely statistical mean-squared vari­
ance). 

4. CONCLUSIONS 

1. The known treatment of the spectra of the evapor­
ation neutrons by the detail-balancing principle (see, 
e.g.yO]) makes it possible to carry out relatively rough 
estimates of the nuclear temperature. The thermody­
namics of electromagnetic radiation of nuclei, which 
was developed in the present paper, is apparently more 
quantitative in character. Therefore, given the corre­
sponding experimental data, it will be possible to meas­
ure more systematically and quantitatively the temper­
ature of other thermodynamic quantities at different 
excitation energies. 

2. At the present time, however, such a program 
could be realized only in part for one of the regions of 
the nonspherical nuclei (see the preceding section). 
Another interesting region begins with radium. Since 
many of the actinides in this region are fissile, a study 
of the captured quanta should be carried out under con­
ditions of anticoincidences with fission fragments. 

An even more noticeable shortcoming of the expe.ri­
mental data is due to their limitation with respect to the 
excitation energy. At E ~ 8 MeV (the energy of attach­
ment of a thermal neutron), the conditions for the ap­
plicability of the theory are frequently not very favor­
able, owing to the excessively low number of y quanta 
in the cascade (see the preceding section, and also (26) 
and footnote 5). Observation of electromagnetic radia­
tion of much more strongly excited nuclei is hindered 
by the evaporation neutrons. Therefore, for all their 
complexity, the performance of corresponding experi­
ments for anticoincidence with neutrons is extremely 
desirable. They make it possible to overcome finally 
those difficulties in the reduction of the experimental 
data, which we attempted to analyze in the preceding 
section10). One can even hope that further development 
of the theory (see, in particular, the next item), such 
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experiments will cast light on the interesting question 
of the phase transition that takes place when a spherical 
nucleus is sufficiently excited. 

3. Spherical nuclei owe their very existence to the 
residual interaction between the quasiparticles. In [3] 

there were established only the most general, macro­
scopic features of its structure. It may turn out, how­
ever, that the form of the thermodynamic relations at 
low temperatures follows from it in a sufficiently 
unique manner. After establishing the dependence of 
the specific heat on the temperature (it is apparently 
not described by formula (15) in the given case), one 
can attempt to develop also the theory of radiation of 
such nuclei. 

Qualitative considerations give grounds for assuming 
that spherical nuclei are characteristics by relatively 
high temperatures, and accordingly, by low entropies. 
Therefore, in particular, the region most easily acces­
sible to practice, E = 6-8 MeV, calls for a critical 
review. If it turns out that at such excitation energies 
the fluctuations are still large, then the thermodynamic 
relations will probably be suitable here only for rough 
estimates. 

We are grateful to A. I. Baz', V. V. Vladimirskii, 
I. I. Gurevich, M. V. Kazarnovskil, A. A. Ogloblin, I. M. 
Pavlichenkov, V. P. Smilga, and K. A. Ter-Martirosyan 
for a discussion of the results. 

l)This residual interaction has a macroscopic structure that influences the 
behavior of the nucleus as a whole, It was analyzed in [3]. 

2)We call attention to the connection between the condition T ~ €n (-€n 
is the chemical potential) for the applicability of the theory, on the one 
hand, and the very possible existence of a compound nucleus, on the 
other. In the opposite case, the neutrons having a binding energy €n 
would be emitted from the nucleus "instantaneously," bypassing the 
stage of establishment of thermal equilibrium, 

3)We mention also another possibility: radiation could be produced also 
when quasi particles collide with one another. However, the number of 
such collisions is proportional to the cube of the temperature, whereas 
the effect calculated by us is linear in the temperature (see formula (2) 
beloW). Therefore the mechanism of collisions of individual quasiparti­
des with the "wall" of the nucleus should be regarded as predominant; 
see also footnote 2. 

4)1 t is well known that owing to recoil of the nucleus as a whole, which 
has a charge Ze, the neutron component is also capable of electric dipole 
emission (see, e.g., [7]). In fact therefore, both proton and neutron 
quasiparticles take part in the process in question. However, it is clear 
from the character of the presented results that the form of the re­
quired expressions is determined only by the temperature of the nu­
cleus and explicit allowance for the two-component character of the 
nuclear matter would not influence them. We therefore start for the 
time being from a simplified picture of quasiparticles of one type, the 
statistical distribution of which is given by formula (I). 

S)To the contrary, the theoretical expression for Wee), determined by 
formula (16), is a monotonic function. When its maximum is observed 
in experiment (see the Introduction above), this is due the fact that the 
theory is not applicable to the softest part of the spectrum, With respect 
to the presently available experimental data, the main shortcoming of 
the proposed theory is the narrowness of the region of its applicability. 
The corresponding criterion will be obtained below, see formulas (25) 
and (26). The pertinent questions will be analyzed in greater detail in 
the concluding sections of the article. 

6)1t is difficult to identify more specifically the chemical element per­
taining to its lower limit, since the phase state of the nucleus is more 
sensitive here to the number of neutrons N. To the contrary, for the 
spherical nuclei in the vicinity of lead, the position of the phase-trans­
formation point depends to a greater degree on the number of protons. 
Insofar as can be judged from the experimental data, osmium (Z = 76) 
is located precisely at the point of transition of the nonspherical nuclei 
to spherical ones, or, at any rate, is very close to it; see also the Intro­
duction. 

V. G. Nosoy and A. M. Kamchatnoy 10 



7)We mention in this connection the compound actinide nucleus Th233 • 

The following results were obtained for it: T = 0.72 MeV, E = 4.96 
MeV, v = 2.8; the agreement over the spectrum turned out to be poor. 

The case of the even-even nucleus Sm [50 is curious in the following 
respect: it is well known that in accordance with the spectroscopic 
data it is spherical in the ground state, but the Curie point lies very 
close to its position in the periodic table. In this case, the character­
istics of the 'Y-quantum cascade (see the table and the figure) do not 
deviate in any striking manner from the general picture, and conse­
quently, at E = 8 Me V we already have a nonspherical phase (see also 
the introduction). It is still difficult to indicate more accurately the 
excitation energy at which the phase transition takes place. To avoid 
misunderstandings, we note that there is apparently no phase transi­
tion whatever when non spherical nuclei are excited; see [4,5]. 

8)This can also be confirmed qualitatively by means of theoretical esti­
mates. The variance LlT of the temperature is closely related with the 
thermodynamic fluctuation LlS of the entropy of the closed system 
(see [6] ). On the other hand, in the particular case of an energy spec­
trum of the Fermi-liquid type, the entropy, in order of magnitude, 
can be interpreted as the number of quasiparticles that fall in the zone 
of the temperature smearing of the Fermi distribution. By connecting 
the addition of not too large a number of nucleons to the nucleus, on 
the one hand, with the possible change of the entropy of the quasi­
particle, on the other, we estimate the characteristic period of the 
fluctuations. It turns out that about two such periods are subtended 
by the investigated interval 150';;;; A ,;;;; 188. We do not present details 
of these estimates, which are more readily qualitative. 

9lNotice should be taken of the following: the expansion (31), and in­
cidentally the very concept of the radius R of the nucleus, is of macro­
scopic accuracy. Therefore the contributions of the lowest power of 
Pf to the number of particles (e.g., terms of order Pf ~ I) are disre­
garded here. We obtained initially the magic values Pf (see [9], formu­
la (19)), >0 that sand g were determined on the basis of data pertain­
ing to spherical nuclei. It is easy to see, however, that relation (31), 
with the same values of the parameters, remains valid also for the case 
of nonspherical nuclei. Indeed, the first term in the right-hand side is 
the quasiclassicallimit for the number of cells in phase space; it de­
pends only on the volume of the system. The second (surface) term, 
on the other hand, can generally speaking be influenced by the defor­
mation. For equilibrium deformations of nonspherical nuclei, how­
ever, we have ex ~ Pr', and consequently the relative change in the area 
of the surface of the nucleus is only a quantity on the order of ex2 ~ 
pi· This would yield, in final analysis, a correction of the order of 
unity to the number of nucleons in the nucleus. Thus, the actually 
realized equilibrium deformations exert no microscopic influence on 
the form of the function N(Pf), and the possible corrections would lie 
beyond the limits of the accuracy of (31). 
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[0) At large E, the region where the criterion (25) is satisfied becomes 
much wider. This makes it possible, in particular, to verify and refine 
the result (33) for the effective mass of the nucleon (quasiparticle). 
We call attention to a possible more profound shortcoming of the 
proposed method of measuring the effective mass, namely, the right­
hand side of (30) is inversely proportional to the square of the nuclear 
radius R. It is clear to a transition to higher excitation energies does 
not change the situation in this respect. The value (32) assumed above 
seems to agree fairly well with the data on the scattering of electrons 
and on the internal structure of the nuclei. However, the isotropic 
Fermi liquid is an object that is relatively exotic and is not frequently 
encountered in nature, so that the value of the effective mass in a nu­
clear Fermi liquid can be of certain fundamental interest. From this 
point of view, the question of the choice of the best value of R can 
still not be regarded as completely solved. 
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