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Small perturbations of the von Karman vortex street are considered. The dependence 
of the frequency of the oscillations on the wavelength of the perturbation is found and 
also the shape of the normal oscillations. Four types of normal oscillations corre
spond toeach wavelength. For long waves, these are longitudinal and transverse oscil
lations of the street, propagating along it either forward or backward, with definite 
velocities. 

The von Karman street is a system of rectilinear 
parallel vortices of unit intensity in an ideal fluid. The 
vortices with positive circulation form a linear chain, 
with a constant distance between neighboring vortices; 
this distance is the unit of length. Vortices with negative 
circulation form a similar chain, located at a distance 
k from the previous one, and the vortices of one chain 
lie opposite the center of the segment connecting two 
neighboring vortices of the other chain. It has been 
shown[I,2] that such a street is stable at a certain k. 

It is convenient for our purposes to introduce the 
complex coordinate z on the plane perpendicular to the 
vortices, and correspondingly the complex velocity v. 
We can then assume that the coordinates of the positive 
vortices will be Zm = m, and the coordinates of the nega
tive ones zfn = m + i,{ -ik. For the velocity field v(z) of a 
positive vortex at a point zm, we have (the bar denotes 
the complex conjugate) 

*) ~-i/ (z-z.). 

For the velocity field of the entire street we then have 

--- I:~ 1 1: 1 . 
u(z)~ -i --+ i ---, ~ -inctgnz - intgn(z + ik)+COll8t. 

Z - ZIII Z - Zm 

The value of the constant determines the velocity of mo
tion of the fluid far from the street, and the velocity of 
the street itself will be v = 11' tanh 'II'k + const. We set 
const = -11' tanh 'II'k. Then the street will be at rest and the 
velocity field will not depend on the time. For k=0.2805 
(cosh2 'II'k = 2), for which the street is stable, 11' tanh 'II'k 
= 2.221. ... 

If we now displace the vortices by small distances 
Em and Em from their respective stationary positions, 
then they are set into motion. The effect of the vortex 
zm on the vortex Zo can be described in the form 

1 1 em - eo 
~o~-i +i--""-i--,-. 

80 - Zm - Em 0 - Zm Zm 

Summing the contributions of all the vortices, we find 
.: .~em-eo .~em'-Eo .~~m-Eo .I: Em'-eo 
eO~-!k.I---+!kd---~-! ---+! 

zm' Z '2 m' (m+'/ 2 -ik\' 
_.0 •• 0' (1) 

and similarly for the vortex z~ 
, , , 

._ , . \" Em - Eo . > em - eo 

fo ~!L...J--m-'---!.o.d (m-1/2'~ik)" (2) 
1JI-i-O 

It would not be difficult to determine the velocities 
of the remaining vortices. The solution of the equation of 
motion is sought in the form of a superposition of 
periodic waves of the form Em = y(t)eimep. But, inasmuch 
as complex conjugation enters in (1) and (2), we set 
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Upon substitution of (3) in (1) and (2), the following se
ries arise, the values of which are known[I,2] (the for
mulas are correct for 0$ ep$ 211'): 

~ 1 n' 
k.J (n + 'I, - ik)2 ~ ch';;k' 

,,=FoO 

Introducing the notation Bep = ~(2'11'- ep)ep _11'2/ cosh2'11'k, 
we can write down the result of substitution of (3) in 
(1) and (2) in the form 

-;;0 ~ iB.y+ + iD.1+' + iB.y_ - iD2n -.y_', 
~O' = -iB'l'i+'ei'P/2 + iD2n_fP"f+eifJJ/2 - iBq>"(_'e- ifP/ 2 - iD<p'Y_e - ifP/ 2• 

The general formulas are as follows: 

Substituting (3) in (4), we find the equations for y 
(if ep;t.'II'): 

..:.... ...:...., 

y+ ~ iB.y_ - iD2n _.y_', Y+I = -iB.y_' - iD.y_; 

y_ ~ iB.y+ + iD.y+', y_' ~ -iB.1+' + iD2n _.y+. 

To find the characteristic frequencies w, we elim
inate the complex conjugate, substituting (6) in (5): 

1+ ~ (B,,' - D2:-.)y+ + B.(D. + D2n-.) y+" 

It is now not difficult to write out the equation for w
the determinant of the set (7): 

Its solution is 

w ~ '/2 {± (D. + D 2,-.) ± jI-(D. - D2n-.)' - 4B.'}. 

(4) 

(5) 

(6) 

(7) 

All the frequencies will be real only if Bn = 0, since the 
first term under the square root equals zero for ep = 11'. 

This also means that cosh2 'II'k = 2 or k= 0.2805 (see the 
definition of BqJ). We limit ourselves below to this value 
of k. The integrand will then be non-negative for all ep. 
To each 0 < ep < 11' there correspond four frequencies, 
the positive pair of which we denote by WI and W2 
(WI >W2): 

inasmuch as Dep + D2'11'-<p $ 0 for all ep. As ep - 0, the 
dependence of W on ep becomes linear: Wj =Vjep, where 
VI = 5.376 and V2 = 1.836. 

We now consider how the normal oscillations of the 
street appear. We limit ourselves here to the interval 

Copyright © 1974 The American Institute of Physics 1148 



TABLE. 

Oscillation 
type y+ y- "l'+' • y-

~ei(dlt _Cll~e-i(.t)lt al~eiWtt _~e-iWLt 

T)ei"ht _a2~e-iwit O'zlle1w11 _~e-1Ulst 

~e-i(lllt al~eiwlt al~e-iwlt ~eiWll 

8e- i (a).t ct;8e'iw t l Ilz8e-iw2t tle 1W•t 

0< cp < 7T. For example, we set y+ = ~eiw it and find the 
remaining y. It follows from (7) that 

B~2 - D 2:_.'P + <01 2 

B.(D. + D,~_.) 1+ ~ (X,1+, 

where 

(X .. 2 ~ {-D. + D,.-o ± Y (D. - D,n-.j' - 4B.'} /2B •. 

We note that 0!10!2 = 1. From (6), we get y_ I =-y+ and 
0!2Y_ =--Y+. The remaining three solutions are found in 
similar fashion with 

(see the table). 

To determine the shape of the normal oscillations, it 
is enough to use Eq. (3). For oscillations of type 1, we 
then obtain 

Em = ~ei(1Jl~+OlIt) _ al~e-i(mqJ+Ollt) , 

em' = alsei[(m+'{')q>hl)jtl _ ~e-i[(m+,.',)q;+(IIll]. 

When cp varies from 0 to 7T, the coefficient O! falls 
from 1 to 0; therefore, the vortices describe ellipses 
elongated perpendicular to the street, and the direction 
of the motion along the ellipse is identical with the di
rection of the circulation of the vortex. For small cp, 
these will be mainly transverse oscillations of the 
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street, propagating along the street in a direction 
counterparallel to its proper motion, with velocity 
wJCP -vi=5.376 as cp -0. In both chains, the vortices 
across the street move in the same phase- a bending 
of the street is obtained, in which its width remains al
most unchanged. 

Similar oscillations correspond to type 2, but· the di
rection of motion of the vortices along the ellipse is 
counter to the circulation and the limiting velocity is 
V2 = 1.836. 

In oscillations of types 3 and 4, the vortices move 
along ellipses elongated along the street. In type 3, the 
motion of the vortex along the ellipse is counter to the 
direction of its circulation, in type 4, the two directions 
are the same. For small cp, the oscillations have the 
character of longitudinal waves, propagating along the 
street in the forward direction with velocities Vi for 
type 3 and V2 for type 4. 

An arbitrary solution of the system (5) and (6) can 
be represented as the sum of oscillations of the four 
described types with certain complex ~,1),!;, e, and 
the arbitrary small perturbation of the street can be 
represented by the corresponding integral with respect 
to cp. 

The author is grateful to A. F. Andreev for discussion 
of the research. 
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