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The magnetic properties of layered superconductors with Josephson inteJ;"action between 
the layers is considered. Differential-difference equations for the Ginzburg-Landau 
parameter in a magnetic field are obtained near the critical temperature. The vortex 
state in fields parallel to the layers is investigated on basis of the equations. The super
conducting state is not destroyed in the center of the vortex filament at temperatures 
not too close to T c, but at the filament periphery the conditions are very similar to 
those in a vortex filament of ordinary strongly-anisotropic type-II superconductors. 
Hc1 (II) is calculated and the structure of the vortex scale is considered. It is shown 
that at temperatures not too close to Tc the magnitude of Hc2 is determined by the para
magnetic effect and orbital motion of electrons within the layers in a field HI' Thus in 
pure layered superconductors in parallel fields and at low temperatures an inhomo
geneous state should exist and the field of transition to this state from the normal state 
at zero temperature equals v'2Hp(O)' 

It was proposed in [1-3] that a Josephson interaction of 
the layers can be realized in layered superconductors. 
We shall assume that the Single-electron energy E in the 
normal state of such compounds can be described by the 
relation 

B (p, q) = p' 12m + 2b cos q, 0",:; q ",:; 2:rc, (1) 

where p is the quasimomentum along the layers , m is 
the effective mass, q is the quasimomentum for the 
motion of the electrons between the layers along the z 
axis (in (1) and below we describe the motion of the 
electron between layers by uSing the Wannier represen
tation with the function wn (z), where n is the number of 
the layer). The Josephson interaction of the layers or, 
in other words, the weak superconductivity between the 
layers, is realized if 

(2) 

It is possible that condition (2) is realized in layered 
compounds of dichalcogenides of the type TaS 2 or in 
their intercalated compounds [4]. If this is not so, then it 
seems that if the molecules are suitably intercalated 
then condition (2) can be realized. 

In layered superconductors with weak conductivity 
between the layers (we shall henceforth take layered 
superconductors to mean only superconductors of this 
type), at b« ~(T), Le., at temperatures 

(3) 

there will be observed effects that are qualitatively 
similar to those taking place in Josephson junctions. 
Thus, at a constant potential difference V applied per
pendicular to the layer, one can observe an alternating 
Josephson current at a frequency w = 2eV /11./1'; where JV 
is the number of layers between which the voltage is 
applied. In layered superconductors one can also ob
serve natural oscillations corresponding to Josephson 
plasma oscillation [2]. The features of the magnetic prop
erties of layered superconductors are determined by 
the fact that in magnetic fie Ids H II parallel to the layers, 
when condition (3) is satisfied, the superconductivity 
cannot be destroyed by the orbital motion of the elec
trons (owing to the smallness of the Josephson currents 
between the layers). Therefore the usual picture of the 
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vortical state of type-II superconductors does not apply 
to layered superconductors in the temperature region 
(3) (the presence of a normal state at the center of the 
vortex is not favored energywise). In strong fields HII, 
for the same reason, the destruction of the supercon
ductivity can occur only as a result of the paramagnetic 
effect. 

GINZBURG-LANDAU DIFFERENTIAL
DIFFERENCE EQUATIONS FOR LAYERED 
SUPERCONDUCTORS 

In the derivation of the equations for the Ginzburg
Landau order parameter in the region T« 1, we employ 
the customary procedure, using the integral equation 

~(r)=K(-iV-~:A)~(r) (4) 

(A is the vector potential) and add to it terms of third 
order in ~ (see Chap. 5 of[S]). The transition from the 
representation r = (x, y, z) to the Wannier representa
tion (x, y, n) with respect to the coordinate z, and the 
subsequent transition to the momentum representation 
(p, q), yields for the kernel K the following expressions: 

K(p, q) ~K(p, 0) -K(O, 0) +K(O, q) -K(O, 0) + [(,(0,0), (5) 

where Kt(O, 0) is the kernel K with cutoff with respect 
to the frequencies, and 

K(p,0)=2AN(U):rcT"\'1 Im+S~d\l g,,(p,n) 
"-.i ~ilwl+~l ' 

(6) 

a-'=Slw,,(z)I'dz, N(0l=n/2rra 

A is the interaction constant and N(O) is the density of 
states. For "clean" (c) and "dirty" (d) superconductors 
(the respective mean free path til in the layer is 
III » ~o and III « ~o) the functions g are determined by 

-the expressions 
(0) ( Q)_{ [rr'1!'(p'v/--Sl')] "', IQkpv,. 

Ii" p, - ,( ) 
0, 1\2I>pv,. 7 

(d'( Q) _ 1 DIIP' 
gil p, - rr/z DII'p' + Q' ' (8) 
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where vF is the Fermi velocity of the electron and DII 
is the diffusion coefficient of the electron inside the 
layer in the dirty superconductor. 

In the case when the electron motion between the 
layers is of the band type (b), i.e., II is large in com
parison with the distance between the layers d, and the 
description (1) is valid, the expression for gll(q, Q) is 
obtained from (7) by replacing pVF by 4b sin(q/2). 

For the hopping mechanism of electron motion be
tween layers (h), the expression for g(h)(q, Q) is ob
tained by replacing DIIP2 with 2D l (1- ~os q)/d 2 , where 
D 1 is the coefficient of diffusion of the electron between 
layers. In this case, the weak-superconductivity con
dition between layers is given by 

(9) 

since D l/d2 is the reciprocal time of the hopping of the 
electron between layers. 

From (4)-(8), accurate to terms of second order in 
b/Tc inclusive, we obtain for the Ginzburg-Landau 
parameter I/!n(x, y) = I I/!n (x, y)lexp[i<Pn(x, y)]' and for the 
current density the differential-difference equations 

[ ~(-iV _~A)'+~(_,+2al1jlnl')] 1jln 
2m he 11 Nd 

+ v [21jl" - Ijl,,+, exp (- iX,,) -1jl,,-, exp(ix,,) ] = 0, 

2eDd • 
j,(n, n + 1) = -h -[ 1jl,:1jl" + , exp(- iXn) -1jln1jln+' exp(iXn)], 

~ ~ n~ 
j(n)= --(1jl;V1jl" -1jln V1jl,,')--A(n) 11jl"I', 

m me 

2ed 
X" =/iZA,(n), A =(AxoAy), 

where N is the electron density, jz (n, n + 1) is the 
current density between the layers n and (n + 1), and 
j(n) is the current denSity in the layer n. The coef
ficients band 1/ in (10) are determined by the ex-
pressions 

7~ (3) BF 

'I'''=-S- (nT,.)" 
n mD Il 

ll("=;;hT:' 
(11) 

In the derivation of (10) we used the condition T « 1, 
the condition (2) or (9), and assumed that Az(n) varies 
slowly with the coordinate n (this condition is satisfied 
at H « ~cld2). Equations (10) contain a nonlinear de
pendence of jz on the magnetic field, which is character
istic of the Josephson term. In the very narrow tem
perature interval T « b2 IT~ it is possible to change 
over from these finite-difference equations to ordinary 
Ginzburg-Landau equations, which were indeed used 
in [1 ,2) to describe the magnetic properties of layered 
superconductors. In this case, however, the conduction 
between jz and Az is linear, and apart from the strong 
anisotropy the layered systems reveal no differences 
whatever from ordinary type-II superconductors. 

VORTEX FILAMENTS IN PARALLEL FIELDS 

In the temperature region T » b2 /T~ and in not too 
strong fields H II, the influence of the field on the value 
of I I/!n I can be neglected, and we can regard II/!nl as a 
constant. We then get from (10) and from Maxwell's 
equations for the field 
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all = __ l_(~.?.'£._A) 1.'- me' 
az AL' 2e ox x, L -4ne'N, (T) , 

aH 4n" 2ed ( he a'll ) , N,(T) 
a;=-e-J,SIllhr: z;-a;--A" J,=eod~. 

(12a) 

(12b) 

We note that for the band motion of the electron along 
the z axis (ll» d), Eqs. (12) are valid in the entire 
temperature region T » b2 IT~, since the equation for 
the current in the right-hand side of (12b) can be ob
tained in second-order perturbation theory from the 
Hamiltonian of the electron motion between layers (the 
tunnel Hamiltonian), inasmuch as the condition (2) is 
satisfied. Calculations analogous to those given in [6] for 
the Josephson junctions yield 

j, = 4eb'T 1: F, + (p, w)F,(p, - w) = ~ meb2 N,(T) 
W,P n Ji3N' 

(13) 
N.(T) 
-;v- = nT/).'(T) 1: [w' + L\'(T) ]-'1" 

where F 1 and F 2 are the Gor'kov functions for the 
neighboring layers; the condition that I An I be constant 
is used. Apparently, Eqs. (12) are valid in the entire 
range of temperatures also for the hopping mechanism 
of an electron motion between layers; it is only neces
sary to replace in them b by beff(T). 

Eliminating from (12) the phase <P and the vector 
potential A, we obtain an equation for the magnetic field 
H(x, z) in the vortex filament. The boundary condition 
for this equation requires that the total magnetic-field 
flux through the xz plane be equal to the flux quantum ~o 
(it follows from the condition of the uniqueness of the 
phase on going over a closed contour around the vortex 
filament). In terms of the dimensionless variables u, 
v, and h given by 

u = x / A;, v = z / AL, h = H / Ho, 

Ho = cI>o / 2ndA;, A;' = ecI>o / Sn'dj" 

the equation and boundary conditions are 

a'h a'h [ ( ah )'] -'I, h=-+- 1- - , 
av' au' au 

S hdudv = 2n~. 
AL 

The solution of (15) can be easily found by using the 
small parameter diAL' In the region p = lu2 + v2 

» diAL we have lilh/ilul « 1, and the solution takes 
the form 

(14) 

(15) 

h = (d /AL)Ko(p),' (16) 

where Ko(P) is a Bessel function of zero order of imag
inary argument. In the region p S diAL « 1 (in the 
region of the "core" of the vortex element), it is neces
sary to solve the nonlinear equation (15) for h. It 
follows from (15) that h, ilh/ilu, ilh/ilv ~ 1 inside the 
"core," therefore, just as in the case of an ordinary 
vortex filament, the "core" makes a small contribu
tion to the total magnetic flux and to the vortex energy. 
From (16) we obtain for the energy ,r of the vortex 
filament and the field Hc 1 (II) 

Ho'Ac'A' ah' ah )' \Do' AL 
gr""·-'Sdudv [(-) + (- +h']=--(ln-+e), 

Sn au av (4n) 'ALAi d 

(17) 
Illo ( AL ) H,,(II)=-- In-+e , 

4nALA, d 

where the quantity E ~ 1 is determined by the energy of 
the "core" of the filament. It is seen from (16) that in 
the region outside the "core" the vortex filament in a 
layered superconductor is similar to the ordinary fila
ment of a strongly anisotropic type-II superconductor 
(see, e.g., Chap. 3 of[5]). The difference lies in the fact 
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that in the layered compounds the super conducting state 
is not destroyed also in the region of the filament 
"core" (just as in the case of a vortex filament in 
Josephson junctions (61). 

It follows from (16) and (17) that to determine the 
vortex structure of layered superconductors in fields 
H « <lloXL/d2Xj and at temperatures (3) one can use the 
entire theory of the vortical state of type-II supercon
ductors, by multiplying in the corresponding expressions 
the scales along the coordinate x by the factor X/AL, 
and replacing ~ by d. In particular, the lowest energy 
is possessed by a triangular lattice, and for the moment 
M the dependence of the quantity -41TM - Hcl (II) on 
HII - Hcl(ll) can be obtained from the calculations of(7), 
by reducing the scales of both quantities by a factor 
Aj!-I'L' In fields H ~ <lloAL/d2Aj, the nonlinear "cores" 

of the filaments overlap and the approximation em
ployed above no longer holds. At temperatures 
T « b2 /T~, the vortex filament does not differ in any 
way, apart from the strong anisotropy, from the or
dinary filament, and the filament "core" is in the 
normal state in this temperature region [2]. 

UPPER CRITICAL FIELD HCl AND 
INHOMOGENEOUS STATE OF LAYERED 
SUPERCONDUCTORS 

, ,-

Near Tc , the field Hc2 can be obtained with the aid 
of an equation of the Ginzburg- Landau type. We take 
the vector potential in the form A = (Hy sine, 0, - Hy 
cose), so that HII = H cose and H1 = H sine. We can 
then assume that the order parameter depends only on 
y and, adding to (10) a term that takes into account the 
paramagnetic effect, we obtain equations for the de
termination of Hc2 (II): 

(18) 

{ n' d' 2e'H' sin' e 0 ~ ( 2e dH cos e) } 
-2m-~.ii7;+ me' y-+2b 1-cos en y -8 1jl~O,(19) 

where C in (18) is the smallest eigenvalue of Eq. (19). 
Let us consider the case of a purely parallel field. Then 
(19) goes over into a Mathieu equation. At T « b2 /T~, 
the field Hc2 (0) is small, and in the quasiclassical 
approximation we obtain for (19) 

g ~ edII (2"6/ me') '/'. (20) 

In this temperature region the paramagnetic effect can 
be neglected, and Hc 2(0) coincides with the usual ex
pression of the Ginzburg-Landau theory of the aniso
tropic~superconductor [1,2]. But at T » b2 /T~ we have 
If S 2b, rye« T, and the field Hc2(0) is determined by 
the paramagnetic effect: 

(21) 

Thus, at T » b2 /T~ the field Hc2 is determined only by 
the orbital motion of the electrons inside the layers in 
the field H1 and by the paramagnetic effect. In the 
region 1 » T» b2/T~ we obtain the field Hc2(a) from 
(18) with If' = eHfJ. sina/mc. 

At lower temperatures, in the case of layered 
"dirty" superconductors, we can determine Hc2(e) by 
using the ordinary theory of "dirty" superconductors 
(it is only necessary to replace H in all the expressions 
that take into account the orbital effects by H sine). In 
particular, at low temperatures T < 0.55Tc , the in-
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homogeneous Larkin-Ovchinnikov-Fulde--Ferrell 
state [8,91 in "dirty" superconductors is apparently not 
realized [101, and the transition from the normal state to 
the BCS state becomes a first-order transition. 

For Hc2(1I) at T = 0 we obtain Hp = ~(O)/r-l2, where 
~(O) is the value of the gap at T = O. We note that the 
the spin-orbit interaction, according to [UI, suppresses 
the paramagnetic effect and consequently increases Hc 2. 
This effect becomes most noticeably pronounced in a 
parallel field. 

In pure layered superconductors at T < 0.55Tc , there 
can exist an inhomogeneous state. In layered super
conductors, the conditions for its realization are more 
favorable than in isotropic superconductors, inasmuch 
as the orbital motion of the electrons can be neglected 
at small e. Moreover, the region of existence of this 
state in layered superconductors is broader than in 
isotropic superconductors since, owing to the quasi
two-dimensional character of the system, the field of 
the transition from the normal state into the inhomo
geneous state at T = 0 turns out to be -12 times larger 
than Hp (in the three-dimensional isotropic case it is 
equal to 1.07Hp without allowance for the orbital motion 
of the electrons). 

The field of the transition from the normal state into 
the inhomogeneous state at e = 0 is determined by the 
largest value of H at which a solution exists for the 
equation 

K, (p, II, T) ~1. (22) 

The kernel Kt(p, H, T) is obtained from (6) by replacing 
w with w - iyH: 

+P1."p 

. " S IOlldQ K(p,H, 1)~4'}.N(O)T ..:... --==---- -. (23) 
" -1"" Vp'v/-Q'[4Ol'+(21 H 1-[1)2] 

At T = 0 we can use (22) and (23) to determine the de
pendence of h = yH on P = pVF/2 by means of the ex
pression 

h'+ ih'-I"1 +V(h'+ ih'_P21)'-P'~~2(O). (24) 

From (24) we see that the maximum value of h is 
reached at P = ~(O), and is equal to ~(O), so that at 
T = 0 we obtain Hc 2(11) = -I2Hp. 

The author thanks the participants of V. L. Ginzburg's 
seminar, especially A. I. Rusinov, for a useful dis
cussion of the work. 

Note added in proof (20 April 1972). A recent paper (R. C. Morris 
and R. V. Coleman, Phys. Rev. B7, 991,1973) reports measurement of 
the anisotropy of the field HC2 in TaS2(Py)" at T = 2.84°K (Tc = 3.25°K). 
The results of these measurements are well described by formula (18) 
with & = HrsinO /HC2 (1). For the ratio HE2(O)/H~2 (1), the experimentally 
obtained values were 335 and 530 at angles 3° and 2°, whereas the calcu
lations yielded 315 and 560. From data on the resistance across the layers 
in TaS2(Py)Y, (A. H. Thompson, F. R. Gamble, and R. F. Koehler, Jr., 
Phys. Rev. BS, 2811, 1972), condition (9) is satisfied for this compound, 
since hD1/d 2 < 0.2°K, and TaS2(Py)Y, is indeed a superconductor with 
Josephson interaction of the layers. 
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