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An electron spectrum model with band overlapping in the vicinity of Brillouin-zone L 
points in the cubic phase is proposed for semiconductors of the A4Bs group with band 
inversion. Allowance for interband transitions and Coulomb and electron-phonon inter­
action leads to a first-order phase transition to the semiconductor state. Bose con­
densation of optical phonons occurs in this case and it leads to a displacement of the 
sublattices; interaction between the electrons and the acoustic modes, on the other hand, 
leads to rhombohedral distortion of the high-temperature cubic structure. The order 
parameter, the phase of which determines the direction of the sublattice displacement 
is rigidly related to the phase of the interband-transition matrix element. In accord­
ance with the model, a correlation between the structural and superconducting transi­
tion temperatures is observed for the given class of doped semiconductors and their 
alloys. 

1. INTRODUCTION 

Keldysh and one of the authors [1] have considered the 
possibility of a phase transition into the dielectric state 
as a result of electron-hole pairing in the model of a 
semimetal with isotropic strongly-overlapping bands, 
the extrema of which are located at one point of the 
Brillouin zone. In the· case of non-coinciding extrema, a 
similar problem was investi~ated by Kozlov and 
Maksimov and by Cloizeaux[2 . It turned out that the 
energy of the electron-hole pairing decreases sharply 
if the symmetries of the electron and hole bands are 
different. For this reason, typical semimetals of the 
group V undergo no transition to the dielectric state 
when the temperature is lowered. In the case of a strong 
magnetic field, when the character of the electron and 
hole motion becomes one-dimensional and the Fermi 
surfaces contract to points, [3] electron-hole pairing turns 
out to be possible, as was indeed observed in Bi and Sb 
alloys in a magnetic field of ~ 35 kOe [4]. 

Owing to the electron phonon interaction, the phonon 
system in isotropic semimetals is also subject to in­
stability [5]. When the extrema coincide, the instability 
sets in for phonons with zero momentum (appearance of 
soft modes); If the extrema do not coincide, the phonons 
that become unstable are those with a momentum flqo 
characterizing the appearance of a new period in the 
system. 

The Hamiltonian used in [1] did not include a term 
corresponding to interband transitions. In the present 
paper we investigate a model of the type considered in [11, 
but with allowance for inter band transitions, in order to 
explain the electronic and structural transformations 
in compounds of the A4Bs type. 

2. ELECTRON SPECTRUM AND STRUCTURE 
OF A4B6 SEMICONDUCTORS 

Semiconductors of the A4Bs type are compounds of 
elements from groups IV and VI of the periodic system. 
The unit cell of the crystal lattice of such a compound 
contains one of each of the components A and B. Thus, 
there are 10 valence electrons per unit cell, just as in 
semimetals of group V. By now it can be regarded as 
established [s] that the extrema of the conduction band in 
the valence band of an A4Bs semiconductor (and its 
alloys), which has a lattice of the NaCI type, are located 
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at L points of the Brillouin zone with symmetry group 
D3d' Moreover, there exist numerous experimental facts 
evidencing that the symmetry of the electronic states in 
the extremal points in the empty and filled bands that 
are closest to each other are described by one-dimen­
sional (without account of the spin) spinor representa­
tions L: and L~ of the group D3d, and these states are 
genetically connected with single one-dimensional rep­
resentations L:(A:) and L;(A~) of the same group [S]. 

Depending on the particular chemical composition of 
the compound, the state L~ can correspond either to the 
bottom of the conduction band or to the valence band. 
Thus, e.g., in PbTe the bottom of the conduction band 
belongs to the representation L~ and the top of the 
valence band to the representation L:, whereas in the 
case of the cubic phase of SnTe the symmetry L~ corre­
sponds to states at the top of the valence band, and the 
bottom of the conduction band has symmetry L: (it is 
assumed here and throughout that the unit cell and the 
Brillouin zone are centered about the cation-the atom 
of the group-IV). 

In the series of Pb1_xSnxTe solid solutions, a grad­
ual decrease of the width of the forbidden band is first 
observed, at x ~ 0.35, this width is equal to zero, and 
at x> 0.35 there appears again a dielectric gap, which 
now increases with increasing x. As a result, the alloy 
always remains a semiconductor. Dimock et al. [7] 

attribute this behavior of the width of the forbidden band 
to band inversion connected with relativistic effects. It 
is noted in the same paper that since the states L: and 
L~ are spin-degenerate, their crossing as a result of 
inversion does not cause a transition to the metallic 
state. It is precisely in systems with inverted band 
structure (such as SnTe) that conductivity anomalies 
are observed when the temperature is lowered[8], as 
well as a transition from the cubic to the rhombohedral 
phase [9]. The latter relates even closer the A4Bs com­
pounds with the elements of group V, which crystallize 
just in the rhombohedral phase. 

It will be shown below that a rearrangement of the 
crystal structure and of the electron spectrum should 
occur when the effective gap due to the Coulomb [1] or 
electron-phonon(5) interaction turns out to be of the 
order of or larger than the gap due to the interband 
transitions. The interband interaction then alters the 
character of the phase transition, making it a transition 
wi th a rigidly prescribed phase of the order parameter. 
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3. THE HAM/ L TON/AN 

We divide the Hamiltonian H_ of lJle syste_m inves-
2gated by us into three parts, He, HP, and Hint' where 
He is the Hamiltonian of the ele8troJ>s that do not inter-
° act with one another and are in the periodic field of the 

l:...attice, HP is the Hamiltonian of the free phonons, and 
Hint is th~ Hamiltonian describing the electron-elec­
tron and electron phonon interactions. Before we pro­
ceed to a concrete determination of the form of these 
operators, we make one Simplifying assumption that 
does not affect qualitatively the results described below. 

It was noted in the preceding section that the states 
of the conduction and valence bands near a point are 
classified in accord with spinor representations of the 
group D3d' This calls for retention of the spinor index 
in all the calculations, which inevitably complicates the 
calculations. To avoid the use of the spinor indices, 
we shall henceforth assume that the spin-orbit inter­
action is negligibly small. Then in accordance with the 
premise advanced in Sec. 2, that the states of type L; 
and L: stem predominantly from states corresponding 
to symmetries of one-dimensional single representa­
tions of the group D3d' it must be assumed that the 
states of the bottom of the conduction band and of the 
top of the valence band belong in the inverted structure 
to the representations L; and L;, respectively. 

Now, leaving out_the spin indices, we obtain the form 
of the Hamiltonian He in the representation of Luttinger 
and Kohn[lO]. As willobe shown subsequently, this repre­
sentation is convenient in that, on the one hand, it has an 
explicitly separated interband-transition term that is 
bilinear in the electron creation and annihilation 
operators, and on the other hand the interaction Hamil­
tonian can be written in simplest form. The complete 
and orthonormal.system of basis functions of this rep­
resentation is 

1jJ"q =1jJ"qe'q·"" u"q(r) exp {-i(q-ko)r}, (1) 

where 

1jJnk" = u"k,,(r) eik". 

is the exact solution of the Schrodinger equation in a 
specified periodic potential of the lattice, known for a 
fixed value of the wave index ko in all the bands. Here 

(2) 

n is the number of the band, and q is an arbitrary vector 
of the Brillouin zone, reckoned from the end of the 
vector ko. Wave functions of the type (1) correspond to 
creation and annihilation operators a~q and anq . In the 
basis (1), the Schrodinger equation in a given periodic 
potential corresponds to the Hamiltonian 

\, {n" } + ~ Ii + ~ -q + Bn(ko) anqa"q + ~ -Pnn'qa"'qa,,q, 
qll 2nto I qnn' mo 

(3) 

where mo is the mass of the free electron, En (qo) is the 
energy of a state with wave function (2), and the vector 
Pn'n is defined by the equation 

Pn'n = - in S d'r1jJn'k,,(r) V .1jJ"k,,(r). 

Bearing in mind the concrete band structure of the 
semiconductors of the A4Bs group, it is convenient to 
choose as the vector ko a vector corresponding to the 
point L of the Brillouin zone. The symmetry of the 
states at this point is such that the diagonal matrix 
elements of the momentum operator (4) are equal to 
zero in it[ll]. To describe the band structure of A4Bs 
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semiconductors with inverted bands, we shall start with 
a model that takes into account the strong interaction 
(of the P . q type) of only two bands (conduction and 
valence), for in accord with the conclusions of Dimmock 
et al [7] it is the terms of just these bands that cross upon 
inversion. Then the influence of the remaining bands on 
the spectrum near the pOint L reduces only to a re­
normalization of the effective masses of the electrons in 
the states L; and L;. We assume the renormalized mass 
m for both bands to be the same in absolute value and 
isotropic. The last assumption is not essential for the 
derivations that follow and is used only to simplify the 
formulas. 

The mass-renormalization procedure is described 
in the book of Bir and Pikus [12] (Sec. 22) and makes it 
possible to obtain from (3) the Hamiltonian He which • 0 _ 

takes into account the interaction of the L1 and L2 states 
and is the same for each prong of the star of the vector 
ko: 

. ~[+ + n + ] Ho'= ~ B(q)alqalQ-e(q)a2qa,q+-;:-(Pq)alqa,q+c.c. ; (5 ) 
Q 

Here E(q) = h2q2/2m - EF and P = P 12 (see (4)). The 
energy is reckoned from the midpoint between the band 
extrema, and the subscripts 1 and 2 pertain to the states 
L; and L;, respectively. 

We can now specify concretely the form of the matrix 
element of the interband interaction (P . q) in (5). Since 
the representations L;(A~) and L;(A;) are one-dimen­
sional, and the symmetry D3d contains an inversion, the 
factors unk (r) in formula (2) for these representations 

° can be chosen in the form of real functions. Then the 
vector P = P 12 (4) is pure imaginary. Further, accord­
ing to the selection rules for the matrix elements of the 
polar vector between the states A; and A~[ll], only the 
z component of this vector differs from zero (the z axis 
is directed along ko)' Thus, the matrix element of the 
interband interaction can be written in our model in the 
form of Pqx, where x is the cosine of the angle between 
the vectors ko and q, while P and q are the lengths of 
the corresponding vectors, with the length of the vector 
P is pure imaginary. 

The spectra of the Hamiltonian (5) are shown in the 
figure. The dashed line denotes the spectra without 
allowance for the interband transitions, and the solid 
line shows the point spectra. In case a the spectrum at 
the point L is represented prior to inversion (EF < 0), 
in case b at the point of inversion (EF = 0), and in case 
c the spectrum is far beyond the inversion point 
(hIPqFI/mo < EF)' Here qF is the Fermi wave number. 

Although it seems that in the real structures SnSe, 
SnTe, and GeTe the characteristic parameters of the 
interband, Coulomb, and electron-phonon interactions 
are of the order of unity, we consider the case of strong 
band over lap (case c in the figure), when there is a 
small parameter in the problem. One might assume 
that the qualitative conclusions of the theory remain 
unchanged also if a more realistic choice of this para-
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meter is made. The relations between the different in­
teraction constants are assumed arbitrary, and there­
fore all the interactions will be taken into account 
simultaneously. Since only the interband electron­
electron and electron-phonon interactions give rise to a 
logarithmic singularity in the vertex part and in the 
polarization operator at P = 0[1,5), we express the inter­
action Hamiltonian in the basis (1) for each of the rays 
of the star of the vector ko in the form 

(6) 

+ L [g(p, q)a"pa',PH (b. + b~.) + c.c.J, 
P,' 

where b~ and bq are the phonon creation and annihilation 
operators, V (q) is the screened Coulomb interaction, 
and g(p, q) is the electron-phonon coupling constant cor­
responding to the interband transitions. To simplify the 
notation we have retained in (6) the interaction with only 
one of the phonon modes, since these interactions differ 
from one another only in the form of the function g(p, q). 

It must be noted that it is precisely the use of the 
Luttinger and Kohn basis which makes it possible to re­
gard the matrix elements for the allowed transitions in 
(6) only as functions of the momentum transfer flq for 
momenta smaller than the reciprocal. lattice period. 
The reason is that in the basis (1) the Bloch factor 
unq(r) does not depend on q(unq(r) == Unq (r)). We, how­
ever retain the dependence of the couplirl'g constant 
g(p, q) on p because, first, we shall need later on to take 
into account transitions that are forbidden at the point 
L, and second, this dependence reflects the fact that, 
unlike the exact form (3), the two-band model (5) is 
valid only in the viCinity of the point L. 

It is quite difficult to determine the form of the con­
stants g(p, q) for the interaction between the electrons 
and an arbitrary phonon mode. However, inasmuch as 
the extrema of the electron and hole bands in our mode 
are at the same point L of the Brilloin zone, it suffices 
for us to know only the selection rules for the longitud­
inal optical and acoustic modes in the limit as q - O. 
In this limit, the symmetry of the indicated modes is 
cubic (both modes are triply degenerate in the displace­
ment directions), and therefore the symmetry and the 
selection rules for the electron-phonon interaction are 
determined only by the symmetry of the electronic 
states, which in turn is characterized by the directions 
of the vector P in the prong of the vector ko' It is easy 
to verify that at the points L the transitions between 
states L: and L: with participation of optical phonons 
are allowed, and the corresponding coupling constant is 
proportional to the projection of the vector P on the 
direction of the sublattice displacement. Transitions in 
which extremely-Iong-wave acoustic phonons take part 
are strictly forbidden at the point L, since the states 
L; and L; have different symmetries with respect to 
inversion. However, with increasing distance from the 
point L these transitions become allowed, and their 
amplitude is proportional to q . liP (where liP is the 
change of the vector P following acoustic deformation), 
as can be easily verified with the aid of expressions (4) 
and (5)). 

We have thus determined the forms of the Hamil­
~onians if;, and Hint. As to the phonon Hamiltonian H~, 
1t has a standard form for each of the phonon modes: 

1105 Sov. Phys.·JETP, Vol. 37, No.6, December 1973 

(7) 

where w(q) is the frequency of the corresponding phonon 
mode with wave number q. 

4. SYSTEM OF FUNDAMENTAL EQUATIONS. 
EQUATIONS FOR THE ENERGY GAP 

We consider a situation that arises when a system 
described by a Hamiltonian H is unstable against pair­
ing of electrons and holes and against Bose condensa­
tion of optical phonons. We neglect for the time being 
interactions with acoustic phonons. We assume also 
that the indicated instability is connected with only one 
of the four prongs of the star of the vector ko' i.e., we 
do not take into account the interaction of electrons 
located at different points L of the Brillouin zone via 
the phonon system. The latter is essential only for the 
determination of the true form of the lattice deforma­
tion, but does not affect the general properties of the 
phase transition. 

To describe the stable state of the system in this 
case it is necessary to introduce, in addition to the 
normal Green's function for the electrons 

GII(p, t) ~ -i<Ta,(p, t)a,+(p, 0» 

also the anomalous function 

G2I (p, t) ~-i<Ta,(p, t)a,+(p, 0» 

(8) 

(9) 

and the nonzero anomalous mean value (bo + b~> for the 
optical phonons which determines the sublattice displace­
ment. The equation of motion for this average phonon 
field is 

(-~ a: _ Wo )i(bo + bo+)= 4 1m L g(p, O)G 21 (p, + 0), (10) 
Wo at, P 

where Wo is the energy of the optical phonons with zero 
momentum. 

The equations for the electronic Green's functions 
(8) and (9) can also be readily obtained: 

[i :t -e(p) ]GII(p,t)-[ ~o P'p+Ll,(p) 

+ g (p, 0) < bo + bo +) 1 G21 (p, t) = 6 (t) , 

[i~ + e (p)] G21 (p, t) -l~pp + Ll; (p) 
at mo 

+ g(p, 0) <bo + bo+) ] G" (p, t) = o. 

(11) 

With the aid of (10) we can find an expression for the 
average static lattice deformation 1n terms of G21 and 
substitute it in (11). In the energy representation, the 
system of equations for the electronic Green's functions 
takes the form 

. Ii 
[w - e (p) lG" (p, w) - [-;;;;;-P'P + t>, (p) + Ll~(p) ] G2I (p, w) = 1, 

[w + e (p)]G2I (p, w)-[ ~o Pp + t>:(p)+ Ll,,(P)] GII (p, w) ~ 0 

with the self-consistency conditions (g(p, 0) == g(p)) 

Ll,(p) = (2~)' S dw d'qV(p - q) G2I (q. w). 

- 4 S [ g(q) ] t>ph(P)--(211)g(P) d'qdwlm -;;-G2I(q,w) . 

(12) 

(13) 

By solving Eqs. (12) we determine the function G2l' 
which must be substituted in (13) to obtain a closed sys-
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tem of equations for the order parameters Lle and Llph: 

d,(p) = 2(2~)3 S d3q V(q - p) [~, P'q + d,(q) + dph (q) ] 

X [ e' (q) + / ~, P'q + d, (q) + t.ph (q) I'l-'(' 
2 S g(q) 

dph(p)= (2,,)3 g(p) d3q --;;;:-[Re t.,(q)+ 1'1 ph (q)] 
(14) 

- Ii " -'I. 
X [e'(q}+ / m,P'q+d,(q)+dph(q)'/] , 

We have used here the fact that, inasmuch as the sub­
lattice displacement <bo + b~> is a real number, the elec­
tron-phonon coupling constant g(p) is also a real num­
ber under our choice of the phases of the electronic 
wave functions in (5). 

It is impossible to obtain a solution of Eqs. (14) in 
general form. We therefore investigate first the limiting 
case of a short-range potential. 

5. SOLUTION OF EQUATIONS FOR THE GAP 
IN THE CASE OF A SHORT·RANGE POTENTIAL 

Assume that g(p) in (14) is equal to zero, and that the 
potential V(q - p) can be replaced by an effective mo­
mentum-independent coupling constant A, which vanishes, 
however, at momentum transfers nq > nqF' where nqF 
is the Fermi momentum. The last condition ensures 
convergence of the integral in (14). We can now inte­
grate in (14) with respect to the angle variables, and the 
result of the integration depends on whether we are cal­
culating the real or imaginary part of the electron gap, 
Ll' = Re~ or Ll" = ImLle' We have 

1'1' M' S m,q A 
= 2(2,,)' dq hlPI Ins' , 

(15) 

~\" = -).. -, J dq!!!!-~(A - B + I ~IPlq - 1'1" 1-/ ~IPlq + 1'1,,'/) ; 
2(2,,), hlPI m, m, 

(16) 

here 
'Ii .. Ii 2 '4 

A=I m,IPlq+d"I+[(m,IPlq+d") +d"+e'(q)] , 

"'Ii Ii ' 'I 

B = I m, IPlq - d" 1+ [( m, IPlq - d") + 1'1" + e'(q)] '. 

Both (15) and (16) admit of the trivial solution Lle = O. 
Nontrivial solutions can be obtained only approximately, 
with logarithmic accuracy. To this end, separating the 
singularity near the Fermi energy *'F, we obtain in the 
usual manner from (15) and (16), respectively, 

where 

and the effective coupling constant X is equal to 

J: = )..q.' / 4 (2,,) 'e., 

(17) 

(18) 

(19) 

The general solution of the system of (17) and (18) 
for the parameter ~ can be represented in the form 

( (
Ii ,'I. 

d. = 1'1," - m,lPI qF)) at 1m 1'1, = 0, (20a) 
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1'1. = i (1'1," - ~, IPlq.) at Re 1'1. = 0, 11'1,"1> ~, IPlqF, (20b) 

where 

t.o'=4eFexp{-1!2X+1}, 1'1," =4eFexp{-1IZ}.-'/,}, (21) 

Thus, Eq. (14) admits of solutions for the gap with 
arbitrary phase, but it follows from (20) and (21) that at 
a given coupling constant the largest gap corresponds 
to zero phase. In other words, the maximal gap is pro­
duced when its phase differs from the phase of the 
amplitude of the inter band transition by 1T /2, Calculating 
the ground-state energy correction necessitated by the 
appearance of the gap, it is easy to find that it is pro­
portional to the square of the modulus of the gap, with 
minus sign. Consequently, the maximum modulus of the 
gap at a given coupling constant corresponds also to the 
minimum energy. Thus, the solution for the order para­
meter ~ turns out to be invariant to a gauge trans­
formation of the first kind (the ground state is not de­
generate in phase). 

The phase of the solution is determined, accurate to 
1T, by the phase of the interband-transition term (4). This 
leads to violation of the conditions for the validity of the 
Goldstone theorem concerning the existence of a spec­
trum of collective excitations filling the entire gap Lle, 
and consequently our system does not have the super­
fluidity properties connected with the presence of the 
gap ~. Indeed, any collective motion with momentum 
np is connected with the appearance in the expression 
for the order parameter of a phase factor of the type 
e (ip . r). We have seen, however, that the energy of the 
ground state depends on the phase and consequently, 
even in the limit of long waves (p - 0) the "elasticity" 
of the system remains finite, thus ensuring a finite fre­
quency (energy) to the collective motions in the long­
wave limit. 

Thus, the most convenient solution for the electron 
gap, from the thermodynamic point of view, is given by 

t.,=±Re[ t.o"-C,IPlqF),]", ' (22) 

and the correction BE to the ground-state energy is then 

6EDO[ (~IPlq, r -1'10"] e( 1,"- (~IPlqF)')' (23) 

where 

( )= {1 if x>O 
ex 0 if x<o' 

It is seen from (23) that at the instant when the phase 
transition takes place, the correction to the energy of 
the ground state is small, but is determined by the dif­
ference of two finite quantities, each of which depends 
on the parameters of the real crystal. This in turn 
causes the first derivatives of this quantity (and of the 
pressure) with respect to the crystal parameters (say 
the volume) to be finite, in spite of the smallness of liE 
(and consequently the smallness of the pressure in the 
system). Therefore the crystal is unstable to finite 
changes of its parameters, once a nontrivial solution of 
Lle is obtained. The system therefore becomes re­
structured jumpwise in such a way that it again becomes 
stable. A first- order phase transition takes place. In 
our problem, the described situation arises as a result 
of the presence in the initial Hamiltonian of a term 
causing inter band transitions. 

It can thus be concluded that the interband transitions 
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described by the expression flP . qa~a 1m (5) lead 
directly to two effects in the presen~e2 of ~nstability in 
the system relative to electron-hole pairing. With in­
creasing interband-interaction term, the second-order 
phase transition becomes a first-order transition and 
the lower-symmetry system restructured as a result of 
the phase transition has no collective-excitation 
branches with zero frequency in the long-range limit. 

In concluding this section it must be noted that the 
possibility, considered by Guseihov and Keldysh [15], of 
a first-order phase transition resulting from an inter­
action of the type Va;a;a2a2 is analogous to that in­
dicated above, since the interband transitions contained 
in the Hamiltonian (5) generate similar terms from 
expression (7). 

6. SELF-CONSISTENT SOLUTION FOR A FIRST· 
ORDER PHASE TRANSITION 

We now obtain a self-consistent solution for a first­
order phase transition, taking into account the inter­
action of the electrons with one another as well as their 
interaction with optical and acoustic phonons. As shown 
by an investigation carried out in the preceding section, 
the electron-hole interaction gives rise to the appear­
ance of a dielectric gap, the phase shift of which in the 
ground state coincides with the phase of the phonon gap 
~b' This follows directly from expressions (22) and 
(14). Therefore a simultaneous allowance for the elec­
tron-hole interaction and of the interaction of the elec­
trons with the optical phonons causes no difficulties and 
leads Simply to an effective increase of the electron­
phonon coupling in the equation for the phonon gap ~ph 
(see formula (14)) as a result of the electron-hole 
interaction. The solution of this equation coincides 
exactly with the solution of the equation for the real part 
of the electron gap (22), (21), which was obtained in Sec. 
5, and differs from it only in the value of the coupling 
constant. 

It is also shown in Sec. 5 that in fact a solution of the 
type (22) is unstable near the phase-transition point be­
cause at this point it is not extremal with respect to all 
degrees of freedom of the crystal. Let us assume (al­
though this assumption is not necessarily fulfilled), that 
the main parameter, with respect to which the require­
ment that the energy be extremal at the phase-transi­
tion point be extremal is violated, is the interband­
interaction parameter (4) itself. As shown in Sec. 3, 

the relative deformation used as the quasimean value 
of the field of the acoustic phonons, since this deforma­
tion is finite on both sides of the phase-transition point. 
In addition, it is assumed that the deformation takes 
place along the principal symmetry axis of one of the 
nonequivalent points L. This allows us to confine our­
selves to only one component of the strain tensor Eij 
when writing down the matrix element of the electron­
phonon interaction in the form ClfijP jqi' One can expect 
to obtain Cl ~ 1 from dimensionality considerations. 

Integrating in (24), we obtain 
1 h' _I} 

e=-:2'y(e-l)ln{16ep ' (I m/qp(1-e) 1 +~p~) , 
1=-1-'-1-I..!!:.pQ'I'£, 

3n' cp' m, eF 

(25) 

where r is the effective constant of the coupling with the 
acoustic deformation. In (25) and in the following we 
assume ct = 1. 

Equation (25) must be solved Simultaneously with the 
equation for the dielectric gap ~h connected with the 
interaction of the electrons with one another and with the 
optical phonons. This equation is obtained by a simple 
generalization of (15). It is of the form 

(26) 

where in accord with the foregoing the constant .\ takes 
into account the interaction of the electrons with the 
optical phonons and with one another. 

We can now note the following. Let the system (25) 
and (20) admit of a nontrivial solution for ~ph (there 
exists no trivial solution for f). Then at ~ph 10 and 
A < r the longitudinal deformation E = El is given by 

el=,,(/(,,(-i..), (27) 

and at ~ph == 0 we get a value E = Eo < 0 that does not 
depend on .\ (25). From (27) it follows that El > 0 (at 
y> .\) and increases with increasing .\, thus evidencing 
that the crystal expands along the chosen prong of the 
vector ko' 

From the requirement ~ph ::!: 0 follows a condition 
for the existence of a nontrIvial solution (of its point of 
absolute instability): 

4eFe-lIk ;;;.lhPq,./m,I(1-e,), (28) 

and a condition for the appearance of a nontrivial solu­
tion (a point of absolute instability of the trivial solution): 

(29) 

the change of this parameter can be due to longitudinal 
deformation of the crystal and can be described in terms 
of the interaction of the electrons with the acoustic 
phonons. The problem of the phase transition then 
reduces to a joint solution of a system of equations of It is obvious that in the general case the limiting 
the type (14), the only difference being that instead of an values of the coupling constants, determined from the 
equation for the electronic part of the gap we have an inequalities (28) and (29), do not coincide, and this is 
equation for the gap that occurs following longitudinal also evidence of a first-order phase transition. 
deformation f, describing the interaction of the elec- To assess which of the solutions, the trivial one 
trons with the acoustic phonons, the wave vector of (E~, ~ph = 0) or the nontrivial one (El' ~ph f 0), is 
which tends to zero, and the equation for ~ph contains thermodynamically more favored near this value of the 
a new coupling constant. The self-consistency equation coupling constant at which the trivial solution appears, 
for E is given by it is necessary to determine which of the solutions cor-

2a,P' J h [I h I'] -';. responds to the absolute minimum of the energies. From 
E= c'p(2 n )'IPI d'q moPq(a,e-1) e'(q)+ moPq(1-a,e) +Llph ., " an analysis of the preceding section (and on the basis 

(24) of the result obtained in this section for not too large 
where c is the velocity of the longitudinal sound in the values of .\) we can state, however, that solutions with 
crystal and p is the density of the material. Equation small order parameters ~h are unstable, and this leads 
(24), unlike Eq. (14) for the gap ~h' was written with to first-order phase tranSItions, and consequently to a 
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finite frequency of the "soft" optical mode at the transi­
tion pOint. This is easiest to verify by calculating the 
corresponding polarization operator 

"' r-{SdOl' n(k,Ol)=-lg (k) -,-Gll(p+k,w,+w)G,,(p,w,) 
2n 

S dOl, } + 2,;-G,,(p+k,W,+Ol)G,,(p,Ol,) " 

(30) 

We see that at a finite value of D-ph we have at the phase­
transition point w(q = 0) f O. In final analysis, the 
reason why D-ph is finite is that the interband term 
hP . qa~a2/mO is finite. 

7. DISCUSSION OF RESULTS 

It was shown in the preceding sections that, owing to 
the instability of the electron-phonon system relative 
to pairing of the electrons and holes from different bands 
and owing to Bose condensation of the optical phonons, 
a first-order phase transition is produced and becomes 
closer to a second-order transition to a degree that 
depends on the inter band interaction of the type 
11P . qa:a2/mO' The transition is accompanied by a de­
formation (dilatation) of the lattice along the direction 
singled out by the vector P. These results were obtained 
for a one-ellipsoid model. In real A4Ba structures there 
are four equivalent directions. One can expect, however, 
that since these directions cannot be mutually orthogonal, 
and the coupling constant with the optical phonons is 
maximal, from symmetry considerations (Sec. 3), for 
sublattice displacements in the directions of equivalent 
axes, the phase transition will occur only in one group 
of electronic extrema. The point is that, owing to the 
nonorthogonality of the axes, the deformation and the 
sublattice shift affect the electronic states that oriented 
along the three other axes, and the sublattice shift is 
energywise most favored in one of the directions of the 
vector Ito of the star, because the size of the gap de­
pends exponentially on the constant for the coupling with 
the optical phonons, a coupling that is anisotropic with 
respect to the polarization of the oscillations. Owing 
to the presence of a rhombohedral distortion, the points 
Land T of the Brillouin zone become nonequivalent, 
and the shift of the extrema, due to this distortion, is 
different for different bands. It may turn out that the 
maximum of the valence band at the point T will lie 
lower than the minimum of the conduction band at the 
point L, i.e., a semimetal is produced. There are in­
dications that the spectrum has a semimetallic character 
in the rhombohedral phase of SnTe(la). 

Timerov and one of us (17) have shown, for a model 
with interband transitions similar to the one considered 
here, that the electron-hole pairing at unequal electron 
and hole densities can lead to an increase in the super­
conducting transition temperature. It is known that it is 
precisely in A4Ba semiconductors with inverted bands 
that superconductivity appears after doping. In accord­
ance with the considered model, a correlation between 
the temperatures of the superconducting and structural 
transitions has been experimentally established (la). 
Thus, these semiconductors behave, from the point of 
view of superconductivity, like compounds of transition 
metals with (3-W structure, in which there is a low-
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temperature tetragonal restructuring of the lattice, as 
against the rhombohedral one in the A4Ba semicon­
ductors. 

The reasons for the rather high superconducting 
transition temperatures in A4Ba compounds may be, 
besides the usually considered softening of the optical 
phonon mode, also the restructuring of the electronic 
spectrum (13 ,17) and the smallness of the interband Coul­
omb interaction of the electrons at large (~11qF) 
momentum transfers. The latter is due to the strong 
non-orthomality of the factors uk(r) at different k in 
the exact Bloch wave functions, owing to the interband 
transition term 11P . qa:a/mo' whi£h alters strongly the 
eigenfunctions of the Hamiltonian H;. 

The authors are grateful to L. P. Gor'kov and L. V. 
Keldysh for useful discussions. 
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