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A theory of a high frequency discharge in gases is developed and takes into account both' 
attachment and recombination of electrons diffusing from the discharge. It is fo!}nd that 
even in gases with a very low probability for negative ion formation the ions play an 
important role, since electron-ion recombination by itself cannot ensure a sufficiently 
rapid decrease of the electron concentration outside the discharge. The analytical 
formulas obtained in the paper can be employed, in particular, to cletermine the kinetic 
coefficients on basis of the experimental gas discharge characteristics. 

1. INTRODUCTION 

One of us [l] has previously investigated diffusion in a 
high-frequency high-pressure gas discharge, when the 
principal role among the various recombination pro­
cesses is played by the attachment of electrons to 
neutral atoms to form negative ions. 

In the present paper we study diffusion in a stationary 
high-frequency discharge in gases in which the prob­
ability of production of negative ions is small (e .g., in 
helium), so that it is necessary to take into account 
direct electron-ion recombination processes. 

The distribution of the electron density in the transi­
tion layer on the boundary of the discharge depends 
essentially on the probability of production of the neg­
ative ions. Indeed, at a low degree of gas ionization, the 
probability of production of negative ions is propor­
tional to the first power of the electron density. On the 
other hand, the probability of direct electron-ion re­
combination is proportional both to the concentration of 
the electrons and to the concentration of the ions. When 
account is taken of quasineutrality, this probability is 
proportional to at least to the second power of the 
electron density. Outside the discharge, the electron­
ion recombination decreases, therefore more rapidly 
with decreasing electron concentration than the prob­
ability of production of negative ions. If the probability 
of production of a negative ion is low, then the electron 
density decreases with increasing distance outside the 
discharge, and then the direct electron-ion recombina­
tion ultimately gives way to attachment of electrons to 
neutral atoms. The electron-ion recombination itself 
does not ensure a sufficiently rapid decrease of the 
density of the diffusing electrons outside the discharge, 
so that the heat release does not decrease outside the 
discharge. Therefore, in the absence of electron attach­
ment to neutral atoms, it is difficult to realize a 
stationary discharge with a boundary detached from the 
walls of a cooled vessel (or resonator)'). The attach­
ment of the electrons to the neutral atoms leads, as 
shown in [1], to an expoIi.ential decrease of the electron 
density outside the discharge, ensuring by the same 
token a rapid decrease of the heat release and the pos­
sibility of a stationary state. 

Thus, the process of production of negative ions, even 
if its probability is low, is very important and must be 
taken into account when a theory is developed for a 
stationary high-frequency discharge in a gas. 
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2. INITIAL EQUATIONS 

We take into account the electron-ion recombination 
in a high-frequency gas discharge under the same as­
sumptions as in[l]. In the particle-balance equation 
(Eq. (2.3) of[l]) we include, besides terms describing 
the production and decay of the negative ions, also terms 
that describe electron-ion recombination and the cor­
responding inverse ionization process. Among the dif­
ferent free combination processes we consider only those 
whose probability decreases most slowly with decreasing 
electron density Ne , in proportion to N~. Recognizing 
that the deviation from local thermodynamic equilibrium 
is due only to diffUSion, we can write the equation for 
the ionization-recombination balance for the stationary 
state in the form 2 ) 

d dN, 2 

dxDdx~ ~rec(No'-N, eq (T))+ ~cap(N,-N, eq (T)). (2.1) 

Here D is the coefficient of ambipolar diffusion of the 
electrons, f3rec is the coefficient of electron-ion re­
combination, flcap is the coefficient of capture (attach­
ment) of an electron and an atom with production of a 
negative ion, Ne eq(T) is the equilibrium concentration 
of the electrons and is determined by the system of 
Saha equations ([14], Sec. 106). The coefficients in (2.1) 
are functions of the temperature T, which satisfies the 
equation [1 ,5] 

d" '1 d dT 64n'w'<J dT 
---%-----%-=0 
dx' <J dx dx c' dx (2.2) 

(K is the thermal conductivity and w is the frequency of 
the electromagnetic field). We confine ourselves to a 
temperature region in which the collisions of the elec­
trons with neutral atoms play the most important role. 
The electric conductivity of the gas a is then propor­
tional to the electron denSity 

<J ~ e'N,/ mVeff (2.3) 

(veff is the effective number of collisions, and e and m 
are the charge and mass of the electron). 

In the presence of electron-ion recombination and 
electron capture by neutral ator.1s, there are two char­
acteristic diffusion lengths: the recombination diffusion 
length drec = (D/f3recNe eq(Tm))112, over which the 
electrons diffusing from the discharge recombine, and 
the capture diffusion length dcap = (D/flcap)1/2, over 
which the electrons diffusing from the discharge are 
captured by the neutral atoms (Tm is the maximum tem­
perature of the plasma in the discharge). 
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Assuming that the kinetic coefficients change little 
over the capture diffusion length dcap, and changing 
over to the dimensionless variables l;, e, and n: 

x =i(lm -T) N, N,eq'(T) =e-"(2 4) 
~=6::,' e 2T m" n=N,eq(Tm )' N,eq(Tm ) • 

(here om = C/(81TWcr(Tm ))1/2 is the depth of penetration 

of the field into the plasma with temperature Tm ), we 
reduce Eqs. (2.1) and (2.2) to the form 

d2n . 
d~2 = Yr'(n' - c'·) + ye' (n - e-e), 

d' 1 d'S de 
-----n-=O. 
d~' n dt' d~ 

Here 

(2.5) 

(2.6) 

(2.7) 

Just as in (1], the condition for the applicability of Eqs. 
(2.5) and (2.6), which calls for smallness of the change 
of the kinetic coefficients over the capture diffusion 
length is 

Ye» T", / I, (2.8) 

I is the gas ionization potential (I» Tm)' 

In the present paper we investigate the effect of 
electron-ion recombination, on the discharge, assuming 
the probability of electron capture by the atom to be 
small. In accordance with this, we assume that 

1 » Ye» Tm / I, (2.9) 

and Yr can be arbitrary. The ease of small probability 
of electron-ion recombination 1 ~ Yc» Yr was con­
sidered in (1]. 

Outside the plasma, as l; - - 00, the electron con­
centration Ne tends to zero, and the heat flux 
S = - KdT/dx tends to a specified value So, equal to the 
flux of the electromagnetic energy entering the dis­
charge. In terms of the dimensionless variables (2.4), 
these conditions become 

n -+- 0, t ---'>- -00 (2.10) 
(2.11) 

Inside the plasma, as l; _ - 00, the temperature ap­
proaches exponentially its maximal value, and the elec­
tron denSity tends to equilibrium. In terms of the 
dimensionless variables, thif? means that 

(2.12) 

(2.13) 

Equations (2.5) and (2.6) with boundary conditions (2.10), 
(2.12), and (2.13) describe a stationary high-frequency 
discharge at high gas pressure, with allowance for the 
processes of fusion, recombination, and formation of 
negative ions. Since I: does not enter explicitly in (2.5) 
and (2.6), the solutions of these equations, satisfying the 
boundary conditions (2.10), (2.12), and (2.13), are func­
tions of l; - 1:0 (1: o is an arbitrary constant) and depend 
on i'c and Yr as parameters. In particular, as I: - - "" 
(outSide the discharge), the dimensionless heat flux 
de/d t does not depend on I: and is a function of two 
parameters: 

(2.14) 

Comparing formulas (2.11) and (2.14), we find the 
electromagnetic-energy flux density So necessary to 
heat the plasma in the discharge to the temperature T m: 
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S,(T m ) = 2F(Ye' i,)x",T",' / Iii",. (2.15) 

The form of the function F(yc, Yr) and also of n(l:) and 
e(t) can be obtained only by solving Eqs. (2.5) and (2.6). 
The latter are a system of complicated nonlinear equa­
tions, so that it is impossible to obtain their analytic 
solution in the entire region of variation of the para­
meters. However, analytic solutions can be obtained in 
the most important limiting cases of strong and weak 
diffusion. 

We shall show first that if only electron-ion recomb­
ination is taken into account and the attachment of the 
electrons to the neutral atoms is neglected, this does 
not ensure the existence of a stationary state of a dis­
charge with a finite region from which general heat is 
released. Neglecting the processes of ionization and 
formation of negative ions outside the discharge, we 
rewrite (2.5) in the form 

d'n / d~' = y,'n'. ~ _._00. (2.16) 

Its solution, which tends to zero as t _ - 00, decreases 
in inverse proportion to the square of the distance 

n=(j/y,2(~_~O)" (2.17) 

~ is a certain constant. Consequently, the conductivity 
of the gas (2.3) also decreases in inverse proportion 
to the square of the distance. On the other hand, under 
conditions of strong skin effect, at distances from the 
discharge much shorter than the wavelength, the field 
is a linear function of the coordinate if the conduction 
current is not taken into accoune). The heat release, 
on the other hand, is proportional to crl E 12 , does not de­
crease outside the discharge. Thus, the stationary state 
of a discharge with a transition layer that is much 
thicker than the wavelength of the high-frequency field 
does not take place in the absence of formation of 
negative ions. 

If, however, in the equation of the ionization-re­
combination balance (2.5), we retain in the region out­
side the discharge the term describing the attachment 
of the electrons to the neutral atoms: 

d'n / d~' = 'i, 'n' + ie'n, ~ ~ --00 (2.18) 

then we obtain for the electron concentration the ex­
preSSion 

(2.19) 

which coincides with (2.17) if It - E:l «111' (so long 
as the recombination exceeds the attachment), and which 
tends exponentially to zero as t - - 00. The electric 
conductivity of the gas and the heat release also de­
crease exponentially in this case with increasing dis­
tance outside the discharge. The possibility of produc­
tion of negative ions thus ensures the existence of a 
stationary state of a discharge whose boundary has 
dimensions on the order of the diffusion capture length 
dcap « Ao' 

3. STRONG DIFFUSION 

We consider the limiting case of strong diffusion, 
when both the capture diffusion length and the recom­
bination diffusion length are large in comparison with 
the depth of penetration of the field into the plasma at 
the maximum temperature, i.e., we assume in addition 
to (2.9) that 
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(3.1) 

The ratio 

(3.2) 

of the recombination diffusion length to the capture dif­
fusion length can be arbitrary. The conditions (2.9) and 
(3.1) make it possible to assume that temperature e 
is in the region n a slowly varying function in compar­
ison with the electron density n. 

It is convenient to seek the solution of (2.5) separately 
in two regions: in the external region 

_00 < \; - \;, ~ 11 Ye (3.3) 

and in the internal region 

-1 1 Ye~ \; -- \;, <'00, (3.4) 

which overlap at It - tol « 11Y c' In the region (3.3) 
outside the discharge, the terms e-2e and e-e in (2.5) 
can be neglected, after which its solution can be con­
veniently represented in the form 

by separating from the arbitrary constant to, which is 
common to all t, a certain phase t1 for the region (3.3). 
In the internal region (3.4), we can put e-e = e-2e = 1, 
and the solution of (2.5) takes the form 

n(\; - \;,) ~ 1_2( 1 +!::..) ch-' (2y,' + YeT i
,(\; - \;, +- \;,) , 

2 2 2 (3.6) 
1 

-_~ \;-\;,< 00. 

Ye 
Here t2 is the phase in the region (3.4). 

In the intermediate region It - tol ~ 1, the right-hand 
side of (2.5) can in general be neglected, from which it 
follows that expressions (3.5) and (3.6) should coincide 
at It - tol ~ 1 with accuracy up to terms of order y2. 
From (3.5) we have 

Putting 

x~cth~ 
2 ' 

and comparing (3.7) and (3.8), we obtain a system of 
equations that determine the still unknown phases t 1 

and t2: 

(3.9) 

'I,A'(x' -1) ~ 1-3(1 +1.'/2) (J -y'), 

dx' - 1) ~ (1 + 2 /)})'/,y (l - y'). 
(3.10) 

Solving the system (3.10) relative to x and y, we obtain 

31.'+2 31.'+4 
x= 3AY1+Az Y=31'()}+1)(A2 +2)' (3.11) 

From (3.9) and (3.11) we obtain the phases t1 and i:2 
which enter in (3.5) and (3.6): 

2 31.' +2 
1;;, ~-Arcth---== 

Ye 3AYl +1.,' 

21. 31.'+4 
\;' ~ Arth ~=;:;=:::=:=:;:c:::;:;;=;=::;=;;:c 

YeY'" + 2 3Y (1 + A') (2 + A') 
(3.12) 

The solution of Eq. (2.6) with slowly varying elec­
tron concentration n was obtained in (1] in the form 

1068 Sov. Phys.-JETP. Vol. 37. No.6. December 1973 

w c' 

e(\;-\;o)~A S d\;'exp{- S (n(\;"))'/'d\;"}, n;:}>yc'- (3.13) 
~-~o _00 

To calculate the constants A, we integrate Eq. (2.5) 
from- oO to +oo. Noting that n'(-oo) =n'(+oo) =O,we 
obtain the relation 

+w 

S {(n' - e-'O) + A' (n - e-O)} d\; = O. (3.14) 

USing the explicit forms (3.5) and (3.6) of the function 
n(t - to)' we can transform (3.14) into 

c. w 

S (e- 2• + A'e-O)d\; ~ S (1- e-'O + 1.'(1- e-on d\;. (3.15) 
-~ ~ 

The main contribution to the integrals in (3.15) is made 
by the region It - tol ~ 1 « 1/yc' Substituting (3.5) 
in (3.13) we obtain in this region the following ex­
pression for the dimensionless temperature e: 

8~Ay2 sh(Ye\;.l2) (th~)'6iYP exp{_y3 A(\;-\;o)} 
3 A 4 2 sh(Ye\;,/2) . (3.16) 

1\;-\;01-1. 

Substituting (3.16) in (3.15), using relation (3.12), and 
performing a number of transformations analogous to 
those described in (1], we obtain 

( 31.'+4) 'I, {Y6 31.'+2 } 
A ~ --- 2-1/('W'exp -C+-Arch (317) 

6(1+1.') y, 3AY1+,}" 

Here C = 0.577 ... is Euler's constant. 

To find the function F(yc, i'r) (2.14) it is necessary 
to find the solution of (2.6) in the region n ;;, y~, in which 
the quasiclassical approximation employed above is not 
valid. A detailed analysis shows that the exact solution 
differs from the quasiclassical solution only by a pre­
exponential factor. The quasiclassical approximation 
no longer holds in the region 

Yel\;-\;o-\;" 12-1n(1Iyr');:}> 1, 

in which the electron concentration (3.5) differs little 
from exponential. The solution of the corresponding 
equation does not differ from the solution of Eq. (3.19) 
in11]. As the result we obtain 

F(~ ~ )~O.72;:;'2,,"(J+"'( 31.'+4 )'h. 
>c'If 6(1+1.') (3.18) 

{ YG 3A'+2} xexp -C+-Arch . ~e~l, ~,~1, 
1, 3" (1 + f.'r"" I 

f. - 1. 

If the recombination is less effective than the capture 
of the electrons by the neutral atoms, i.e., Yc» Yr, 
then Yr drops out, and (3.18) goes over into formula 
(3.23) of U]: 

f (,el .= 0.725 '~~ -Vi/ye, 
V 2 e (3.19) 

A;:}> 1, Ye ~ 1. 

In the opposite limiting case of strong recombination 
A« 1,we obtain from (3.18) 

L'( ..... - e-C ( 4rr )"Ys/Yr _ 
l' Yc",)=,O./2J~ -.- ,1.<-.(,1, Ye<"1. (3.20) 

V 6 . '-"e , -

Expression (3.20) depends significantly, as before, on 
Yc even if i'c « Yr' This circumstance is brought about 
by the fact that the dimension of the heat-release region 
is of the order of the diffusion capture length. 

4. STRONG RECOMBINATION 

If the probability of formation of negative ions in the 
gas is low, and the gas pressure is sufficiently high, a 
situation arises wherein the recombination diffusion 
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length drec is much ~maller than the depth of penetra­
tion Om of the field into the plasma, which in turn is 
much smaller than the capture diffusion length dcap : 

dree <€:. 6m <€:. dcap , ~e<€:.1, i,» 1. (4.1) 

We assume that the last of the conditions (4.1) is so 
strong, that even 1n Yr can be regarded as large: 

In 1, » 1. (4.2) 

Under conditicns (4.2), it follows from (2.5) that the 
electron density n differs little from the equilibrium 
value e-e in the region It - tal ~ 1. However, with in­
creasing distance outside the discharge, when II: - tal 
becomes of the order of 1n Yc, the electron density n 
deviates noticeably from the equilibrium value, owing 
to the diffusion. The slow decrease of the concentration 
of electrons that diffuse over large distances leads (in 
the case of strong recombination and weak attachment) 

. to the existence, besides the heat-release maximum in 
the transition layer It - tal ~ 1, of one more gently­
sloping maximum of the heat release at large distances 
II: - 1:01 ~ 1/yc, on the order of the diffusion capture 
length. 

We integrate Eq. (2.6) from + 00 to values of I: - to 
such that 

Inir»~,-\,»1, (4.3) 

and obtain 
d' 1 d'e ' de +00 de 00 

-.--. ~Sn-d\'''''Sc-''-d\'~Se-·de~1 (4.4) 
d\,' n d\,' f.. d1;, ..• d\, 0 ' 

since the difference between the electron density and the 
equilibrium value is negligible in the region (4.3). 
Integrating (4.4) from - ., to a value of t that satisfies 
(4.3), we get 

1 d'e 1 
-;;-d'f~2\,2+Cl\'+C" (4.5) 

where c1 and c 2 are constants on the order of unity and 
do not depend on Yc' In the region to - t « 1, the ex­
ponentials in (2.5) can be neglected and we can repre­
sent the electron concentration in the form (3.5). Leav­
ing only the higher-order terms in the parameter l/yc' 
we get from (4.5) 

("J'(\,-\,o)~co+ S (~ \"+cl\,+c2)n(\'-\'o)d~.' (4.6) ,. 
Choosing t* in such a way that In Yr » to - 1:* » 1 
and noting that the solution does not differ from the 
equilibrium value in this region, we obtain Co = -1.57. 
(We have used he re the fact that e '(_ QO) = - 1. 57, see 
formula (4.16) of[S]). Substituting (3.5) in (4.6), we obtain 

• - (3 SO x'dx )1' Ie (-oo)l~b7+- --~1.57+-----
ir'ie_~sh'x i,'ie 

and thus 
F(ic>Yi)~1.57+n2/ir'lc' "I r »1, "Ie<€:. 1. (4.7) 

Thus, at a low probability of electron attachment to 
neutral atoms, the limiting transition to the formulas 
for the equilibrium plasma occurs no~ Simply in the case 
of strong recombination Yr » 1, and not even at 
In Yr» 1, but generally speaking under the stronger 
condition YrY~» 1, which means that the contribution 
of the second maximum to the total heat release is 
negligible. 

5. WEAK ATTACHMENT 
In the case of low probability of production of neg­

ative ions Y c « 1, the dependence of the discharge 

1069 Sov. Phys.·JETP, Vol. 37, No.6, December 1973 

parameters on Yc for any Yr can be obtained analytic­
ally. At y c « 1 and Yr ~ 1, the maximum of the heat 
release occurs at the larger distance, on the orjer of 
the diffusion capture length. In the region II: - tol 
« l/yc' the processes connected with the negative 
ions are negligible and Y c should not enter in the 
formulas. For electron concentration in the region 
1, « II: - f;,1 « l/yc, expression (2.7) is valid, where 
to is a suitable constant. The solution of (2.6) in this 
region is 

(5.1) 

where 

(5.2) 

and Ao(Yr) is a function of Yr only. On the other hand, 
in the region of the maximum heat release 1 « II: - tal 
~ 1/yc ' the electron density takes the form (2.19). 
Substituting (2.19) in (2.6) and putting x == Yc(1: - fo)/2 
and cP (x) == de(x)/dt, we get 

d' • d'l' 36 • 
-sh-x---sh--x'l'~O Ixl »1", (5.3) 
dx:! dx "friO I 

Equation (5.3) is linear, homogeneous, and does not 
contain the parameter Y c. Therefore in the entire 
region Ixl » Yc the parameter Yc enters in the ex­
pression for de/dl: only in the constant factor, just as 
when Ixl « 1. At Ixl « 1 we get from (5.1) 

dAI d\, ~ .1' (Ie' i,) Ixl""rl, Ixl <€:. 1. (5.4) 

By virtue of the linearity and homogeneity of Eq. (5.3), 
its solution, which is given by (5.4) at Ixl« 1, is 

dAld\, ~A'(lc, i r)<D(I" x), Ixl- L (5.5) 

In particular, de/dt should not depend on t at I xl » 1, 
and we obtain 

(5.6) 

where 4>(Yr ) = 4>(Yr, - 00). Comparing (5.4) and (5.1), 
we have 

Thus 

The functions <l> (Yr , x) and B (Yr ) can be determined 
only by numerical integration. In the limiting cases we 
obtain from (3.20) and (4.7) 

B(Yr) = f 0,725. 6-'",,-c (4/eyr )VGIY" Yr~l, 
l n'/yr', Yr ~ 1. 

The function a (Yr) is given by formula (5.2). Ultimately 
we have 

(5.8) 

We emphasize once more that Yc does not drop out 
of the expressions for the discharge parameters, no 
matter how small it may be (of course, within the frame­
work of the condition (2.8». Namely, attachment of 
electrons to atoms with formation of negative ions de­
termines the dimension of the heat-release region. 

When the general formulas obtained above are used 
to calculate the parameters of a particula.r discharge, 
it is necessary to know the temperature dependence of 
the recombination coefficient. From among the gases 
that lend themselves best to experiment, the lowest 
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probability of formation of negative ions is possessed 
by helium. We, however, found no reliable published 
data on the recombination coefficient from helium at 
temperatures on the order of one electron volt. The 
published theoretical calculations, which refine the work 
by Be lyaev and Budker (6) or Pitaevskir and Gurevich [7) 
have a range of applicability that is strictly limited in 
temperature. For this reason, the formulas obtained 
by us are best used at present stage to solve the inverse 
problem, namely determine the recombination coef­
ficient and the attachment coefficients from the experi­
mentally measured parameters of the gas discharge. 

We note that since the probability of electron attach­
ment to helium atoms is very low, the role of impur­
ities of other gases, which are prone to form negative 
ions, becomes obviously important. In particular, the 
introduction of a small hydrogen impurity into helium 
decreases the diffusion capture length and the dimen­
sions of the heat-release region, thus favoring the 
establishment of a stationary state of a discharge de­
tached from the cold walls at a lower power. It is 
possible that the pinching of the discharge in helium 
following addition of a small hydrogen impurity(S) is also 
due to processes of negative-ion formation. 

The authors thank Acade mician P. L. Kapitza, 
Academician I. M. Lifshitz, and Prof. L. P. Pitaevskir 
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J)The enhanced contraction of arc discharges following introduction of 
electronegative impurities was pointed out in [2,3]. 
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2)Just as in [I], we neglect the difference between the temperature of 
the electrons and the temperatures of the ions and neutral atoms, as is 
generally the case at sufficiently high pressure. 

3)In fact, when the conduction current is taken into account, the electric 
field outside the discharge increases even more rapidly, owing to the 
slow decrease of the electron density (see below). 
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