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Non-electrostatic instabilities are induced by a current flowing perpendicular to an ex­
ternal magnetic field in a finite-pressure plasma (41TnoT ~ H~) with hot ions and cold 
electrons are investigated. Expressions are obtained for the frequencies and growth 
rates of the unstable oscillations. The level of turbulent electric field fluctuations in 
the saturation regime is estimated. Estimates are obtained for the turbulent friction 
force and the rate of increase of the temperature of the ions scattered by turbulent 
electric field noise. 

1. INTRODUCTION 

The interest in the investigation of high-frequency 
short-wavelength instabilities induced by a current per­
pendicular to an external magnetic field has recently 
grown considerably. This is caused by the understanding 
of the important role of analogous instabilities for the 
explanation of rapid turbulent heating, anomalous conduc­
tivity of plasma, anomalous diffUSion, and plasma radia­
tion in a large number of experiments, viz., theta­
pinches, plasmoids entering an inhomogeneous magnetic 
field, excitation of large-amplitude ion-cyclotron and 
fast magneto sonic waves, rotating plasmas in a radial 
electric and axial magnetic field, etc. By now the theory 
of the excitation of longitudinal oscillations of a plasma 
with a perpendicular current is well developed (see, 
e.g., [1-6J ). However, it appears that in a plasma with 
sufficiently high kinetic pressure [[3 == 41Tno(T e + Ti)/H~ 
~ 1] and a perpendicular current there are excited in 
the main non-electrostatic oscillations which have re­
ceived little study up to now. 

In the present paper we investigate non-electrostatic 
instabilities excited by a perpendicular current in a 
high-pressure plasma ([3 ~ 1) with hot ions and cold 
electrons (Ti »Te). It is shown that two branches of 
oscillations are excited at a current velocity u consider­
ably larger than the drift velocity un but smaller than 
the thermal velOCity vTi of the ions. To order of magni­
tude, the frequency wand the wave vector k are deter­
mined by the relation 

whereas the relation for the growth rate is 

Here, one of the branches corresponds to waves that 
propagate nearly perpendicular to the external magnetic 
field with an angle £i, where cos e ~ (u/vTi)(me/mi)I/2. 
In a low-pressure plasma ([3 « 1) this branch coincides 
with the well-investigated electron-acoustic instabil­
ity[2, 7J. The second branch refers to waves which 
propagate strictly perpendicular to the magnetic field. 
In a low-pressure plasma it coincides with the usual 
drift oscillations and the growth rate is small compared 
to that of the electron-acoustic instability. 

It should be noted that for the considered instabilities 
in a plasma with [3 ~ 1 an essential role is played by the 
magnetic drift of particles, which is caused by the in­
homogeneity of the external magnetic field, whereas the 
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Larmor drift associated with the inhomogeneity of the 
density turns out to be inessential. 

An estimate was made of the noise level at saturation 
caused by the strong nonlinearity of the equations of mo­
tion for the electrons. In this case the amplitudes of the 
turbulent fluctuations of the electromagnetic fields E 
and H are of the form 

lEI - ..!!...If., IHI _....::.. (::::..) 'f, Ifo• 
e UTi mi 

We find the turbulent friction force F acting on ions in 
the quasi-linear approximation to be of the order of 

IFI = miuv.1! - (m.mi)'" Ol"i~U, 
lJTi 

and a determination of the heating rate of the ions scat­
tered by the turbulent field fluctuations yields 

~- (::::")''',"''i~miu'' 
dt mi V r • 

The possibility of stochastic heating of the plasma is 
also discussed. 

2. LINEAR APPROXIMATION 

We investigate first the excitation of oscillations in a 
plasma with cold electrons (Te = 0) in the linear ap­
proximation. We assume that the external magnetic field 
Ho, which is directed along z, and the plasma density no 
depend only on y and do not change appreciably over the 
length of a Larmor radius: 

Ix",lvri 1 
----~ , 

U)j" 

1 aHo 
XH==~-­

If. iJy , 

The ion temperature Ti = mivTi is constant along yand 
the plasma current is directed along x. We choose the 
equilibrium distribution functions fOe of the electrons 
and fOi of the ions of the following form: 

fo. ~ no(y)ll(v - u.), 

f _ n.(y). [(V-Ui)']( vx.u .. n ) 
0i-(2:rt)'I'v,exp - 2v' 1--v ." 

, T, T, " 

where un == KnvT/wHi and ue, i are the directed elec­
tron and ion velocities in the external electromagnetic 
fields. In the following we assume that un < u == 1Uj, - uel 
< v Ti and for SimpliCity of the calculations we put 
ue = O. 

We look for unstable oscillations in the frequency and 
wave-vector regions 

WlIi <t: CD ¢: WIf,.! ~ <t: k, 
v 1'i . 

k' 
cos'e",-' ~ 1 

k' 
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For the description of the motion of the electrons in the 
electric and magnetic fields E(r, t) and H(r, t) of the Wl­
stable oscillations we employ the equations of magneto­
hydrodynamics 

fJv e (1 ) -+(vV)v=--- E+-[v,H,+H] , fJt m. c (2.2)* 

fJn at+ V(nv)=O. (2.3) 

Linearizing these equations with respect to small per­
turbations of the velocity v and the density nt = n - nO, 
and employing the usual Fourier transformation, we ob­
tain 

- iwv= -~{E+~[v,H,]}, (2.4) 
m, c 

, fJ~ fJ~ 
-iwn +i(kv)n,+n,-+u.-=o. (2.5) 

fJy fJy 

In (2.4) and (2.5) we take into account a slow dependence 
of the Fourier-component of the density and velocity on 
the coordinate y. Using, according to Eq. (2.1), the 
smallness of the parameter w/WHe' we can then easily 
find the expressions for V and nt: 

c c w 
V-,-=-, [EH,]+i--E, 

Ho Ho (i)He 

C WHe 
vz=-iH·-E" 

, w 

and for the electron current denSity Je = -enov. 

(2.6) 

The motion of the ions in the electromagnetic field of 
the oscillations is fOWld by linearizing the Vlasov equa­
tion with respect to the small field amplitude. The condi­
tions y, W »wHi' and kvTi » wHi allow us here to re­
gard the motion of the ions as unmagnetized. The Four­
ier component of the oscillating ion distribution function 
is then 

i e{, [V ]}fJ/" /,=---- E+ -H -. 
w -kv m, c ()v 

(2.7) 

From this expression one then easily calculates the ion 
contribution to the charge density Pi = e J fi dv and the 
current density Ji = e JVfidv. 

Substituting the thus found expressions in the Maxwell 
equations, One obtains the dispersion equations for the 
unstable oscillations (see Appendix I): 

(1+1j){1+q+~[1+iV ~_w-ku+k'Un] 
~ 2 kU n 

k,u ( Un )} WH,' --q 1-- --.-cos'6=O, 
w up w' (2.8) 

where q == w~e /k2c2 and w~e »wHe' 

In the derivation of (2.8) we have used the condition 
w-ku U 

z,""-=----<1 
1'2 kuT , UTi 

and the equality KH = 41TenoU/cHo, which follows from the 
Maxwell equation curlxHo = 41Tc-1enou. We notice that at 
q « 1 and u »un Eq. (2.8) transforms into the well­
known[2J dispersion equation for electrostatic eleclron­
acoustic oscillations, and at q » 1 it coincides with the 
dispersion equation for helicon waves[sJ. If cos e = 0, 
q « 1, u ~ un and {3 « 1, Eq. (2.8) coincides with the 
dispersion equation for drift waves excited by a perpen­
dicular current [6J • 
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From (2.8) one easily obtains the expressions for the 
frequency and the growth rate: 

1 ( q ) -'{ ( Un ) w=2 1+q+~ qk,u 1-~ 

±[q2kx'u'(1- :~)'+4(1+q+-}) WH;~~'6r} (2.9) 

I = Of' (~)'I' ~ W -ku+k,un w' [q'kx'u' (1-~)' 
2 ~ ku,., u~ 

+4(1+ +..i.) wH.'COS'fl.] -'I. 
q ~ 1+q' (2.10) 

We now find the maximum growth rate. To do so we first 
have to put ~ = O. Noticing that usually Kn/KH < 0 and, 
therefore, 1- un /u{3 > 0, it is easy to verify that the 
branch with the upper sign in (2.9) is Wlstable at u > 0 
and the branch with the lower sign at u < 0, so that these 
branches transform into one another when u is replaced 
by -u and vice versa. 

In the following we shall consider the oscillation 
branch that is Wlstable at u > O. It is easily seen that 
when cos2 e varies in the interval from zero to unity the 
growth rate (2.10) decreases monotonically if the condi­
tion 

q [ 7p - 2 - :n (7 - 2M ] > 2~ ( 1 _ :n) . (2.11) 

is satisfied. In this case the growth rate is the largest 
(but not extremal) for cos2 e = 0 and equals 

= ,=(2n)'{' ~ WH,WH' u.(u-un-2u.) 
"( "( kUT; [~+q(~+1)]' (2.12) 

where 
u q(~ - unlu) 

U. = ---"--''---:~''''';'''' 
2 ~+q(p+1) 

If, on the other hand, the inequality 

q [ 7~ - 2 - :n (7 _ 2p) ] < 2~ ( t _ ~n_ ) , (2.13) 

is satisfied, then the growth rate has one maximum in 
the interval 0 ~ cos2 e :s 1 at 

cos'6= m .. ~ (1+q)[p+q(p+1)] (a'- u.~) (2.14) 
m l UTi'}, q u w 

and equals 

ll~ u qku (u. )'( Un U. ) 1=1''''' v--- -+a 1-----a r~+q(~+1)]-', 
8 UTi ex u u u 

1 '{ Un U. [( Un Un) ( Un U. )] 'f,} a=4 1-~-~+ 1-~--;,- 1--;,-- 9-;,- . 
(2.15) 

We notice that the growth rate (2.12) also exists if 
the inequality (2.13) is satisfied, so that it is useful to 
compare it with the growth rate (2.15). By varying k we 
therefore find the maximum value of yo. 

( 2n ) 'h( u - Un) , !W'o (x,' + 1- 2[.1) 'f 

max,,(,= ~ ~ (Xo'+t)' (WH'W H,) '; 

1 up - Un 
Xu' = '1,[ -1 + 5[.1 + (4 -16[.1 + 25[.1') 'I,], [.I = ----;-:----:--:':---:---"-----,-

2 (1+~)(u-Un) 

(2.16) 
We next find the maximum value of y l' After a straight­
forward but tedious calculation we obtain 

( n )'h(U-Un)'X,(3X"-1) , 
max I' =1 8(p + 1) ~ (5x,' _ 1)' (WH. WH') I"~ 

x,'='I,[4+5[.1+ (4+ 28 [.1+25 [.I')''']. (2.17) 

For u » luni and {3 :s; Illul/u it turns out that u ~ un/u 
« 1, so that the growth rate (2.16) is smaller by a factor 
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1/1l than the growth rate (2.17). However, if {3 » IUnl/u 
then Il = (3/2(1 + (3) and the growth rates yo and y 1 trans­
form to yo'" Ypfo({3) and Yl = Yp f 1({3), where Yp is the 
maximum growth rate of electrostatic oscillations 
({3 « 1) and is determined by the expression[2J 

(2.18) 

The functions fo, l( (3) are shown in the figure. It fol­
lows that at {3 < 0.1 there are excited primarily electro­
static waves with cos2 e ~ me/mi' for which the in­
homogeneity of the plasma and the magnetic field are 
inessential. However, if {3 > 0.25 the waves become 
essentially non-electrostatic (q ~ 1) and the waves that 
propagate strictly perpendicular to the magnetic field 
now grow faster. It should be stressed that for these os­
cillations the inhomogeneity of the magnetic field plays 
an important role, whereas at the same time the inhomo­
geneity of the plasma density can be neglected at u »un. 
As {3 - 00, the growth rates of both branches decrease 
monotonically. 

We notice that in the region of small {3 ({3 « IUnl/u) 
the growth rate (2.16) coincides with the maximum growth 
growth rate of the drift waves investigated in [6J. Under 
these circumstances, however, drift waves apparently 
do not play an essential role because the growth rate 
(2.17) is u/un times larger than the growth rate (2.16).2) 

3. ESTIMATE OF THE LEVEL OF TURBULENCE 

The exponentially growing amplitude of the oscilla­
tions of the electromagnetic field becomes so large that 
it becomes necessary to take into account the nonlinear 
terms in the dispersion equation for unstable waves. 
Because the unstable oscillations investigated in the 
present work are similar to the unstable electron-acous­
tic oscillations, one can expect the nonlinearity in the 
present problem to have the same character as the non­
linearity investigated in[e-5J. 

We neglect the contribution of the ions to the nonlinear 
part of the dispersion equation. Retaining the nonlinear 
terms in Eq. (2.2) and recognizing that W « wHe and 
Ho » IHI, we obtain 

V,,"Vo+V" Iv,j ¢: Ivol, 

where the perpendicular component of v equals 

1 {[ . fJVO] e} vCL=-11 HO-fJ +[Ho, (voV)vol+--[Ho[voH)] , 
OWIle t mLc 

and v zO is determined from the equation 

(3.1) 

(3.2) 

ouzo e e (3 3) -+(voV)v" = ---E,·--[vJ.oHL. • at m p m,,'c 

Substituting now the obtained values of v in the continuity 
equation (2.3) we find that the oscillatory part of the 
electron density n' (In/l « no) is determined by the equa­
tion 

an' I %ncno no 811z . iJvzo 
-+(vJ.oV)n +--E<----+nodlVV.l.1+nO--=O, (3.4) 
fJt Ho Ho at Dz 

In the derivation of this equation we have neglected terms 
that are small compared to ani I at. It should be stressed 
that the quantities v 1.0 and v 1.1 give comparable contri­
butions to Eq. (3.4) even though the condition Iv 1.0 1 

» Iv 1.11 is satisfied. At the same time the perpendicular 
part of the electron current density is practically deter-
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f 

0,5 

o 2 J 

mined only by the quantity v l.O' It equals 

(3.5) 

For the estimate of the contribution of the nonlinear 
terms to the dispersion equation it would be necessary 
to expand the quantities n', vzO' and vll in the small 
field amplitude and to assume the nonlinearity of Eqs. 
(3.2)-(3.4) to be weak. To the thus-obtained nonlinear 
dispersion equation one should apply the method of aver­
aging over an ensemble of random phases, employed in 
the theory of weak turbulence, to find next the nonlinear 
part of the growth rate. Comparing now the nonlinear 
part of the growth rate with the linear part, one can 
estimate the level of noise at which saturation occurs. 
However, the calculation carried out in[4J shows that for 
the given type of instabilities the nonlinearity in the 
growth rate becomes essential when the nonlinear terms 
in the equations of motion of the electrons become com­
parable with the linear ones, so that no weak nonlinearity 
can be assumed in this case. As shown in [4J, this fact 
is the result of the absence of resonant electrons and of 
corresponding terms in the linear dispersion equation. 
From this one can expect that the investigated instability 
may be stabilized at a noise level such that the nonlinear 
terms in the (3.2)-(3.4) are comparable in order of 
magnitude with the linear terms. In that case the quan­
tity u' , e.g., becomes a strongly nonlinear function of the 
oscillation amplitude, although for its estimate one may 
still use the formulas of the linear theory. The compon­
ents too, t02, t03 of the dielectric tensor also become 
strongly nonlinear functions of the oscillation amplitude, 
but they retain their previous order of magnitude. Form­
ally analogous changes occur in all the components tij 
except t2o, which does not change because of the rela­
tion (3.5). 

Thus, the given instability can saturate only in the 
strongly turbulent regime, when the charge and current 
densities of the electrons become strongly nonlinear 
functions of the oscillation amplitude. In that case one 
easily obtains the following estimates for the turbulence 
level: 

Ivol~ n, I I UVTi(m.m,) 'I, 
~, ,''''''' -----, 

e 

( m,),;, U 
IHI ~ -- -Ho, 

n~l Vn 

• ill (m, )'1' U In I~no--~no - -. 
(l)Ift' mi VTi (3.6) 

4. HEATING OF THE IONS 

The strong-turbulence regime of the electrons and 
electromagnetic waves remains a weakly nonlinear proc­
ess in the equations of motion of the ions. Since the con­
tribution of the ions to the nonlinear interaction of the 
waves can be neglected, only the slow scattering of ions 
by the turbulent fluctuations (3.6) remains to be taken 
into account. To this end we employ the well-known ap­
proximation of the quasilinear theory. Averaging the 
Vlasov equation over the rapidly oscillating variations, 
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we then obtain for the background ion distribution func­
tion fOi the equation 

aj •. + aj.. aj .. + e· E oj" a oj" 
- V--Wffj- - .-=-D(v)­
.at ar a<D m, av aVj" av; , 

where 
e' 

D,,(v)= 1t-~ k,k;hjl.I'6(w - kv), 
m.2~ , . 

Eo is the external electric field, Vx = v 1 cos <P, and 

(4.1) 

Vy = v 1 sin <P. From (4.1) one can obtain the continuity 
equation and the equations of motion for the ions: 

an. 
Tt+divn.u=O, (4.2) 

au; e e 1 apt; 1 
-+(uV)u;--[uH.];--E.,+--.-=-F;, (4.3) at mj mi mlno O:CI mi 

where 

F e' 1: S (OJ,, ) ~-rr-- khjlkl' dv k- 6(w-kv), 
m,no av 

k 

Thus, Eq. (4.3) differs from the equation of motion of 
the ions in the absence of instability by the presence of 
the turbulent friction force F in the right-hand side. The 
presence of this force should naturally influence the 
damping of the current in the plasma. However, this 
problem is not investigated here because it calls for 
knowledge of the external fields exciting the current in 
the plasma and the geometry of the system. We therefore 
give only an estimate of the effective collision frequency 
lIeff of the ions with the turbulent field fluctuations (3.6) 

Veff"'~~WHj(m,)'j,~. (4.4) 
m,U mi UTI 

To estimate the heating of the ions, Eq. (4.1) should 
be written in the reference system where the average 
velocity of the ions vanishes. Writing v = u + Vi, we ob­
tain the following equation for fOi in terms of the varia­
bles Vi, rand t: 

aj" + (v' + u) aj" + a~., {_ (v' ~) u; + _e_[ v'H.l 
ilt iJr dv; m,e 

1 apl; 1 } a , aj., 
+--.---F, =-, Dr;(v +u)-,. 

m,nfj ax, m, aUi f}Vj (4.5) 

Recognizing that 

we observe that the term with the magnetic field in the 
curly brackets in Eq. (4.5) is decisive. Neglecting then 
the small terms in Eq. (4.5) (i.e., neglecting the diffu­
sion of ions in ordinary space), we obtain 

aj" _ oj .. =_o_D(v' +u)aj" +~Foj" . (4.6) 
at WH' q(il fJv/ lJ {}v/ mj av' 

It is easy to verify that at the turbulence level (3.6) the 
term wHiafOi/a<p in Eq. (4.6) is the main one. There­
fore ~e qu~ntity fOi c~n be represented in the form 
fOi = fOi + fOi' where fOi does not depend on the azimuthal 
angle <P in velocity space. Averaging then with r~spect 
to the angle <P and neglecting the contribution of fOi in 
the right-hand side, we o.!?tain the following equation for 
the distribution function fOi: 

(4.7) 

where 
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Consequently, for the noise level given by (3.6) the order 
of magnitude of IIi is 

( m.),j, u' 
Vi""WHi - _" 

mj UTi 

(4.8) 

and for the heating rate of the ions we obtain the esti­
mate 

(4.9) 

In concluding this section, we stop to discuss the dif­
fusion of particles in ordinary space and the associated 
cooling of the plasma. For a plasma cylinder placed in 
an external magnetic field one can employ the model 
equation (see, e.g., [5]) 

OlOi =~_a_V.LV~+~~rv~ al" (4.10) 
at U j iJvJ.. I iJvJ... r or I U 2COHi2. fJr . 

Recognizing now that a/or ~ 1/ r ~ Kn, we easily verify 
that the rate of decrease of the ion temperature due to 
spatial diffusion of the particles is smaller by a factor 
(U/Un)2 than the rate of ion heating due to particle diffu­
sion in velocity space. In conclusion, we notice that the 
heating of ions obviously continues until the drift velocity 
un ~ vTi becomes comparable to the c).lrrent velocity u. 
However, we indicated already that the given theory be­
comes inapplicable in that case. 

5. STOCHASTIC HEATING 

Let us now consider the possibility of stochastic heat­
ing in the strong turbulence regime examined above. 
The ideas underlying stochastic heating[lO] also apply in 
the case of instabilities of a plasma with a perpendicular 
current[H]. Therefore, it makes sense to estimate the 
rate of stochastic heating of electrons and ions, although 
this problem seems problematical to us. 

Since the correlation time T of the Fourier compon­
ents of the potential iJik for ions is finite, one may use 
the modified equations (4.1), (4.3), (4.7) of the quasi­
linear theory, in which the quantities F and Vi are of the 
following form: 3 ) 

F=--~.Ekl¢.12S dV(k OJ.:) ,8(,), 
"rrm,no OV • 

(5.1) 

where 8(T) = exp[-(w -k'u -k'V/)2T2], and the brackets 
Oav mean averaging over the angle <P. It is reasonable 
to determine the quantity T from the following considera­
tions. At the noise level (3.6), the oscillations are in the 
strongly nonlinear regime in which the frequency and the 
growth rate depend essentially on the amplitude of the 
waves, but their order of magnitude remains determined 
by the equations of the linear theory. In that case the 
time dependence of the potential iJi becomes obviously so 
complicated that the oscillations "forget" their own 
history within a time of the order of the period of the 
oscillations, i.e., T ~ 1/w. But then the quantities F and 
IIi are of the same order as the corresponding estimates 
Obtained from the quasilinear theory. Hence, the change 
of the ion temperature is estimated by (4.9) also in the 
case of stochastic heating. 

For the description of stochastic heating of the elec­
trons we use the method developed in[H]. For the back­
ground electron distribution functions fOe we then obtain 
the equation (see Appendix II) 
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(5.2) 

where 
D~-~«E,+ E.cll.c) u-), 

me H(l 

au- e (iJU- au- ) e ( El.Hol ) -+-- Ey----Ex- =- E +---at m,WHO iJx ay m,' 110 • (5.3) 

At the turbulence level (3.6) the nonlinear terms of (5.3) 
are of the same order as the linear ones. Therefore the 
velocity u is connected with the intensity of the electro­
magnetic fields E and H in a complicated manner. For 
that reason it seems impossible to calculate the diffu­
sion coefficient D, and moreover one cannot even deter­
mine its sign. Under these conditions it still makes 
sense to estimate the order of magnitude in the following 
manner: 

so that we obtain for the increase of the longitudinal elec­
tron temperature Til the estimate 

dTu u (m')'I' 
- - - - COHilniU2• 

dt VTi m, 
(5.4) 

This relation allows us to estimate the maximum posSi­
ble rate of electron heating, if that heating takes place 
at all. From the comparison of Eqs. (4.9) and (5.4) it 
follows that the longitudinal electron temperature will 
not increase faster than the perpendicular ion tempera­
ture. 

Finally, the authors express their gratitude to K. N. 
stepanov for valuable advice. 

APPENDIX I 
For the derivation of the dispersion relation it ie con­

venient to employ the method proposed by 
Mikhahovskil [12]. For this we express the fields E and 
H in terms of scalar and vector potentials according to 
the relations 

1 aA iw 
E ~- - VI/' -- - -+ -ikl/' +-A, 

C at C 

H ~ rot A -+ i[kAl. 

where the potential A is subjected to the Coulomb gauge 
condition (div A - ik· A Rl ik l' A 1 = 0). The perpendicu­
lar components A 1 can be characterized by a single 
quantity A 1 defined by the relation 

1 k. A --~A ' A.c = k.L [kolA]., Ax= - kJ. Aol' V k.c J.. 

In that case the charge density depends on I/!, A l' and A , 
i.e., p = p(l/!) + p(A 1) + p(Az ), and Poisson's equation z 
takes the form 

(1.1) 

From the Maxwell equations we obtain the two miSSing 
equations: 

4n w' 
k'AJ.=---;iL +C'AJ.' 

4:r1 00' 
k'A·~---;;'+7A .. 

where h = ~ X Jz/k1• Further, using the relations 
kJ.w 

(o(A.c),p(A.)} =-4 {eozAJ.,B"A'}, 
• :riC 
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(1.2) 

(1.3) 

W { W W } j'~-4-- -ke"I/'+--c32A.L+-(e,,-l)A, , 
nee (1.4) 

where E ij = 6 ij + E[j + Etj , we obtain from the (1.1) - (1.3) 
the disgersion equation in the local approximation (see, 
e.g., [12 ): 

I::: :::- N' ::: I~· 0 (1.5) 
f30 f. 32. f':J3--- lV2 

where N = kc/w. Using the relations (2.6), we find the 
electron contribution to the expression for the current 
je = -enoV and the charge density Pe = -en'. Next, sub­
stituting these expressions in (1.1)-(1.4), we easily find 
the components Eij: 

w-ku 
Zi=-_--. 

1'2kvTi 

APPENDIX II 
For simplicity, we discard in the Vlasov equation for 

the electron distribution function fe the term with the ex­
ternal electric field, which is responsible for the pres­
ence of an average electron velocity. We then obtain 

!!:...+v at, +Wll, aI, -..!:.(E+~[VH]) ai, =0 (ILl) 
at ar a III m, C iIv' 

We represent the function fe in the form 

I.=F+F, IFI <F, 

where F does not depend on the angle <I> and F vanishes 
after averaging over <1>. Recognizing now that w, kvTe 
« wHe' we expand the function F in powers of wife: 

F =F. +FI + ... , 
Fo = IIF sin <D + f,F cos <D, 

1 a ~ ~ 
FI = - -a (I, cos III -/2 sin IlI)F + 

(Olle t 

We have omitted here from the expression for Fl the 
terms proportional to cos 2<1> and sin 2<1>, which give no 
contribution to the equations for F and the current den­
sity. Averaging Eq. (II-I) over <I> and using the found 
expressions for Fo and F l , we obtain the following equa­
tion for F: 

-,-v,-+----divE---- E + J. J. aF, 8F € VJ. a aF e aF [ E H 
at az 2m, WHo' at avJ. m, av, '----n;--
" lJ J. Z aH,] e [ ( 1 )] H +")~-;;-t +-- VF, E+-[vHl +H'(V.cFv.c) (II. 2) 

-' tie u mLOJHd C "0 

+2 af (aH, aH') XHVJ. ~ 
2Ho a;; iit + v, ----a;: - -2 -1,F = o. 

"In the derivation of this equation we have discarded from 
the expressions proportional to wile the terms propor­
tional to cos e and sin e which make smaller contribu­
tions than the retained ones. 

Resolving now the function F into a background part 
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fOe and an oscillatory part Ie (lie I «fO~)' we obtain 
from Eq. (II.2) by the method employed m the quasi­
linear theory 

of. __ e_(E,+ EJ.HJ. )~ __ e ___ 1 .. (afeE._ of. E.)=O, (II.3) 
at m. H, av, m. WHO ay ax 

~ __ e ~ «(E,+ EJ.HJ. )f.) =0 
at m. av, H, (II.4) 

where () indicates averaging over the rapid oscillations. 
It should be stressed that in Eq. (II.3) we have discarded 
also small terms ~ KH' Kn, CO;ttl, which make no con­
tributions after substitution of fe in Eq. (II.4) (however, 
they are essential for the derivation of the dispersion 
equation! ). 

One easily observes now ~hat Eq. (II.3) admits of the 
solution 

f at,. 
• = _a- u- (r, t), 

v, 

where u ~ (r, t) satisfies the equation 

-+-- -Eu--E =- E +~~ au- e ( au- 8U-) e ( E H ) 
at m,wa, ax ay' m, ' H, . 

Eq. (II.4) then takes the form (5.2). 

*[v,Ho + HJ == v X (Ho + H). 

I)On leave of absence from FOM-Instituut voor Plasma-Fysica, Jutphaas, 
The Netherlands. 

2)The results of the present work and of [6] can be used only if u > un 
because at u - un the inequality 'Y > wHi is not satisfied in practice. 
However, in the case W - k vTi > wHi and 'Y .;;;; wHi the influence of 
the magnetic field on the ions can not be neglected (see, e.g., [9]). 

3)We use here an auto-correlation function R(t) of the form R(t) = 
exp(-t2/T2). 
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