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It is shown that an electromagnetic field of sufficient intensity affects the collision inte­
grals. A kinetic equation derived in the impact approximation contains a collision inte­
gral which can be expressed in terms of the generalized T matrix in which the external 
field is taken into account. A monochromatic field and elastic scattering are considered 
in the non-degenerate state model. Spectroscopic effects in two and three-level systems 
are analyzed. One of the external effects is a reduction of impact broadening of spectral 
lines. 

1. INTRODUCTION 

In an earlier paper (1J we called attention to the limi­
tations on the theory of broadening of spectral lines by 
low magnetic -field intensities. If the external field does 
not succeed in changing the state of the optical electron 
during the collision time T c' then the atom scattering 
takes place practically as in the absence of a field. On 
the other hand, if the following conditions are satisfied: 

WIT,>1, IVI>IIlI, Il=w-wm ", 

v = d"."E / 21i, 
(1.1) 

(dmn is the dipole-moment matrix element, and E and w 
are the amplitude and frequency of the field), then after 
a time T c the field mixes the states m and n of the atom, 
and the scattering can be Significantly altered during 
the collision. In this case, consequently, the colliSion 
integrals, the relaxation constants, and other character­
istics depend on the field. 

One of the phenomena connected with this fact is the 
narrowing of the spectral lines. We recall that in the 
case of elastic scattering, the collision broadening is 
due to the difference between the interaction potentials 
in the two combining states m and n. When the condition 
(1.1) is satisfied, the atom executes several transitions 
m - n during the time TC' and is scattered in a certain 
average potential. The indicated cause of the line broad­
ening therefore disappears, i.e., the impact line width 
should become leveled-out by the strong field (1.1). 

For A ~ 1, f ~ 0.1, and TC ~ 10-12 sec, the condition 
IVITc = 1 is satisfied at intensities ~ 107 W/cm2, which 
at present is by far not exotic. 

The present article is devoted to an investigation of 
the described effect. In Sec. 2 we obtain a general ex­
pression for the colliSion integral (in the impact approxi­
mation). This expression is made more concrete in 
Sec. 3 for the case of a plane monochromatic wave and 
elastic scattering. Sections 4 and 5 contain an analysis 
of the spectroscopic phenomena. 

2. THE COLLISION INTEGRAL 

We consider below a two-component gas (particles a 
and b) at low pressure and calculate the collision inte­
gral for particles a as a result of inte raction with parti­
cles b. We start from a chain of Bogolyubov equations 
terminated at the two-particle function F ab' and with the 
Bogolyubov initial conditions 

a Nb 
iIiTtF,(t)=[H, + V(t),F,(t) 1+ iliS, S =inSPb[W,F'b]' 

a 
iliii/'b(t)=[H, +Hb+ V(t)+ W,F,b(t)], 
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lim F'b(t) = F,(l) X Fb(t), 
1;-_ 00 

(2.1) 

Here Fa and Fb are Single-particle functions. Ha and Hb 
are the Hamiltonians of the isolated particles. V(t) and 
W are the Hamiltonians of the interaction of the particles 
a with the field and with particles b, and Nb is the con­
centration of particles b. 

Relations (2.1) are the net result of solution of the 
statistical part of the problem of calculating the colli­
sion integral S, and any further detailed description of S 
presupposes the use of results of the solution of the 
dynamiC problem of the collision of the two particles a 
and b. We can attempt to express S directly in terms of 
the potential W[1-SJ_ This, however, will not yield a 
universal formula for S, inasmuch as the solution of the 
scattering problem cannot be presented in closed form 
at arbitrary W. The problem has therefore frequently 
been formulated of late in a new manner, namely, ex­
press S in terms of standard collision-theory operators 
(scattering amplitudes, cross sections, etc.). This ap­
proach was used in many papers l ), but these assumed 
besides the premises of impact theory, also the exis­
tence of temporal and spatial homogeneity, which do not 
hold true in six strong external fields. We therefore ob­
tain below for S an expression free of the indicated limi­
tations. 

We introduce Green's functions in accordance with 
the equations 

ili~G(t, t')=[H. +Hb + V(t) lG(t, t')+ ililll(t - t'), at ' 
a 

iIi-;;J(t, t')=[H. + H, + V(t)+ Wl;;J(t,t')+ ililll(t - t'), at 
(2.2) 

The solution of the initial problem for F ab(t) we express 
in terms of ~(t, t'): 

(2.3) 

Between Fab(t') and '#, ~+ we introduce unit matrices in 
the form 

1 = G (t, t') G+ (t, t') = G+ (t, t') G (t, t') 

and write 
F,ott) =Q(t, t')G(t, t')F,,(t')G+(t, t')Q+(t, t'), 

a 
Q(t, t') =;;J(t, t')G+(t, t'), (2.4) 

iii iitQ(t, t') =[H. + Hb + V(t), Q(t, t') 1+ WQ(t, t')+ ili1ll(t-· t'). 

In this form, the use of the initial conditions (2.1) is 
elementary: 

F.,(t)=Q(t) (F.(t)XFb(t))Q+(t), Q(t)= l'~ooQ(t,t'). (2.5) 

The operator n(t) is a generalization of the Moller oper­
ator n(+) to the case of a time-dependent Hamiltonian. 
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When (2.5) is taken into account, the kinetic equation 
takes the form 

a 1 1 
-F.(t)= --[rF.(t)+F.(t)r]+ iii [H. + V(t),F.(t) ]+S, 
at 2 (2.6) 

S = N·sp.ffr(t) (F. XF.)g+(t)- get) (F. X F.);r+(t) }, ;ret) = Wg(t).-
ill 

We have introduced here an additional term with a diag­
onal matrix r. This term describes the spontaneous 
damping. f(t) is a generalized T-matrix. If 0 (t) is 
represented in'the form [10] 

get) = 1+ K(t), (2.7) 

then 8 breaks up into "arrival" terms (containing K(t)) 
and "departure" terms 

N 
S = ~spo{;r(t) (F. X Fo)-(F. XFo);r+(t)+ ;ret) (F. X Fo)K+(t) 

!Ii (2 8) 
-K(t) (F. X F.);r+ (t)}. • 

We emphasize that 8 is expressed in terms of the 
Moller operator, and not the scattering matrix 
(8 matrix). This result is closely connected with the 
fact that collisions are equally probable on the interval 
(- 00, t) that precedes the instant of observation t. D: is 
the operator O(t) which describes the evolution on this 
interval. The scattering matrix, on the other hand, des­
cribes the net result of the evolution on the interval 
(- 00, + 00), and the collision is taken to occur at finite t 
(scattering by a target); the 8 matrix has therefore no 
direct connection with kinetic problems. 

Formulas (2.6), supplemented with Eq. (2.4) for 
O(t, t'), give the- most general, to our knowledge, formu­
lation of the kinetic equation within the framework of the 
problem (2.1). All the known expressions for 8 are ob­
tained from (2.6) as particular cases. It is also easy to 
generalize (2.6) to include the case of collisions of iden­
tical atoms. 

3. COLLISION INTEGRAL IN ELASTIC 
SCATTERING AND IN A STRONG 
MONOCHROMATIC EXTERNAL FIELD 

We consider, in the resonance approximation, elastic 
scattering in the presence of an external field 

Vet) =-dEcos(oot-kr.). (3.1) 

We denote by m and n the states of the isolated atom a, 
for which wmn ~ W (wmn > 0). The similarity trans­
formation with the matrix pet) 

Pij(t) =6", ioFn, Pnn(t) =e'·', 

excludes from the Hamiltonian the explicit dependence 
on the time, and the argument of the operator G(t, t') 
= p-l(t)O(t, t')P(t) is t - t'. Therefore net, t') == 0 does 
not depend on the time and satisfies the equation 

[0.+00 +17, Q] +WQ=o, 17=P-'(t)V(t)P(t), (3.2) 

or the integral equation 

G(-r)= P-' (t)G(t, t - -r)P(t - -r), 

(3.3) 
the forms of which are standard for the stationary scat­
tering theory [10] • On the other hand, the kinetic equa­
tion is 

a iii . 
illfj/'.(t)=[O. + 17,F.(t)]- 2[rF.(t)- F.(t) r]+ IllS; 

F.(t) =P-'(t)F.(t)P(t), 

(R.) nn = En + 1100 + p' / 2m., (0.);,= 6,JE, + p' / 2m., 

1026 Sov. Phys . .JETP, Vol. 37, No.6, December 1973 

N :s = i~ spo{;r(F. (t) X Fo(t) )Q+ - Q(F.(t)X F.(t) );r+}, fT= W(t 
(3.4) 

We assume first the simplest model with nondegener­
ate states nand m and with structureless perturbing par­
ticles. In the equation for 0, we put k = 0 (21T/k is much 
larger than the interaction radius (Pint)), after which the 
variables of the mass center and of the relative motion 
of the particles a and b separate: 

Q,,(p., Pa', p., po') = 6 (P - P') Qij(p, p'), 
Q,,(p, p') = 6 (p - p') 6" + K,,(p, p'); 

P = pa + po, p = Il.P. - lloP., P' = pa' + Po', P' = lloPa' - lloPo', 

m, Il mo Il m.m. (3.5) 
Ila= mrJ+mb=--;;;;:' J.1b= ma+mb =-;;;:t J.L= mO+mb' 

The introduction of 6(P - P') is connected with the as­
sumption W (ra - ~). The system of equations for 
Kij(P, p') is 

liJ.Kll (p, p') - ~ Wll (p - Pl) Kll (p" p') dpl = WlI (p - p'), 14= m, n; 

(
'i.- Wmn/Ii 

V' 
-- V 

'. 0 

(3.6) 

V . -V' 0 ) (Krnm) i. - 6 - W nnlli 0 - V' Knm 
o i. + 6 - W m .. I,1i V Kmn 
- V V' i. - Wnn/Ii Knn 

=(Wr), 
wnn 

(3.7) 

i. = (p" - p2) /21l1i, V = dmnE /211, 

where W .. in the left-hand side of (3.7) should be taken 
to mean !he integral operator (as in (3.6». 

The interaction with the external field connects the 
equations for Kij (i, j = m, n) and in this sense plays a 
role analogous to inelastic processes, the only essential 
distinguishing feature being that the "inelastic part" of 
the potential is constant in the elastic-interaction radius 
Pint' On the other hand, the field inelasticity has a 
specific character, and connects together four equations 
for K .. ; the truly inelastic processes (W mn) lead only to 
a paiitise connection of Kmm with Knm and of Knn with 
Kmn' This difference is due, in final analysis, to the 
fact that V is dynamic in origin and W static (see Eq. 
(3.2». 

The fact that the matrix of the system (3.7) is not 
diagonal means, in "time language," that the external 
field induces transitions of the atom from the state m 
into the state n and back, and the atom "feels" alternately 
first Wmm and then Wnn• This interpretation coincides 
with the explanation of the saturation effect, the analogy 
with which is obvious: the structure of the field terms 
in the equations for Fa and K is the same; the Kjj are 
analogous to the populations (Fa)jj' and Kij are analogous 
to the off-diagonal elements (Fahj; finally, Wjj in the 
right-hand side of (3.7) corresponds to the rates of exci­
tation of the levels j. 

The indicated analogy breaks down at the following 
point: in the theory of effective saturation one usually 
considers a system of four first-order equations; the 
equations for K, on the other hand, are a system of four 
second-order equations (in the coordinate representa­
tion). This difference is eliminated in the eikonal ap­
proximation. In this case, in analogy with the saturation 
effect, we can prove the following: if 

W mm - Wnn I 
11 ' 

IVI-r,~1, 
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then Kron = Knm = 0, Kmm = Knn and satisfies the equa­
tion 

, (3.9) 
, W +W 

:T(I',I")~ SW(P-P.)[8(P.-p')+K",m(p.,p')]dp., W= nn 2 mm 

The condition (3.8) coincides with (1.1) if one includes in 
o the frequency shift due to the interaction. 

Thus, in a strong external field (3.8), the equation for 
Kmn has the same form as at V = 0, but the scattering 
potential is now W. From the point of view of the analogy 
with the saturation effect, this means "equalization of 
the populations" within the time .,. c of the action of the 
"pulsed excitation". !fat least one of the conditions (3.8) 
(or both) is reversed, then the external field has no 
effect: 

Kjj(p, 1") = - 2ni6+ ( p';; p' ) Tjj(p, 1"), j = m, n; 

T;,(p. 1") = S W,,(p - p,) [8 (p, - p') -I- Kjj(p., 1") ]dp., 
(3.10) 

We confine ourselves henceforth to a comparison of 
Sij in strong and weak fields, and the intermediate case 

1 'I Wmm-Wnnl IVI~-+ o---~--
1:, n 

will be disregarded. 

If the states m and n are degenerate (this factor was 
not taken into account above), then the situation becomes 
more complicated: some of the magnetic sublevels may 
not interact directly with the external field, and the lat­
ter will be effective only as a result of collision mixing. 
Therefore the collision integrals will depend not only on 
V, but also on the polarization of the field, on the type of 
the scattering potential, on the ratio of the angular mo­
menta of the combining levels, etc. 

Let us spell out the expressions for Sij more con­
cretely for the case of a spatially homogeneous distri­
bution of Fb: 

F,(p" Pb') = 8 (Pb - 1":) Fo (pb), SF, (1',) dp" = (2nn) '. (3.11) 

With the aid of (305) and (3.11) we obtain from (3.4) 

Sij(p., 1':) = - Vij(p.)F.iJ(Pa, 1':) + S A;,(p" Pa,)F.,j(p." pa. 

+ Pa' - pa)dpa', (3.12) 

where we have left out in (3.12) all the terms except 
those containing Faij(Pa, p~). The general structure of 
Sij coincides with that postulated earlier [11J 0 Depending 
on the field amplitude, the expressions for the departure 
frequencies Vij (Pa ) and the kernels Aij (Pa, Pai) will con­
tain different functions: in the case of a~trong field they 
contain the scattering amplitudes :T and I, which are ob­
tained by solving (3.9): 

iN" S ( [t.,p,- P ) Vij(Pn)=-h" [;1ii(p,p)-;1j/(p,p)]F, --- dp; 
[t ~ 

2nN, S ( [t,pa' - p. ) 
Aij(p.,p".)= h[t" dpdp.F, [to 8(p,,-p •• -I-p,-p) (3.13) 

x {:1ii(p, p,);1j/(p, 1'.)0_ ( P.'2~ p' ) -I- ;1.,(1', p.):1j/ (1',1'.)6+ ( P.~: p' )} 

In the absence of a field'~ij and Aij are obtained from 
(3.13) by replacing 7jj and I jj by Tj' after which the ex­
pression in the curly brackets in (3013) becomes equal 
t02) 

(3.14) 
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In the collisiolL integrals Sij (l F m, n, j = m, n), the fre­
quency and the kernel take the form 

Vij(pa)= hiN" S [TJ/(p,p)-;1j/(p,p) ]Fb ([t,Pa-P) dp, 
~ ~ 

In a number of problems it is convenient to use the 
Wigner representation [4J 

(3.16) 

which we shall use below. Here Sij (q, r) are given by 

S'j(q,r)= -Vij(q)pij(q,r)+ S A,;(q,q,)Pii(ql,r)dq., (3.17) 

with Vij(q) and Aij(q, q1) obtained from (3.13-3.15) after 
making the substitution Pa, Pal - q, ql' 

Let us ascertain now the changes that the external 
fields introduce in the physical properties Sij' We shall 
operate mainly with the departure frequencies Vij (Pa) 
and the arrival frequencies 

(3.18) 

It is easily deduced from (3.13) the universal relation 

(3.19) 

which was proved earlier [lJ in the Born approximation. 
Thus, the fuJiillment of (3.19) does not depend on the ac­
curacy with which the I jj are calculated, nor on the am-

plitude of the external field. We note that, generally 
speaking, Vij F Vij' As is well known, the equalities 
v .. = 1/ .. and Re v .. = Re 1/ .. mean physically, respec-

JJ JJ 1J 1J 
tively, the conservation of the number of particles (at 
the level j) and the conservation of the "phase memory" 
(or the absence of broadening due to the interac- ' 
tion) [11, 12J. 

If Wmm = Wnn, then we obtain from (3.7), regardless, 
of the value of IVI: 

K",m = K" .. , K,,,n = Knm = 0, ;1jj = [Tjj = T jj, An = An"" (3.20) 

i.e., at identical potentials in the states m and n, the ex­
ternal field does not change the collision integrals; both 
the numbers of ~e atoms an<;!. the phase memory are 
conserved (Vjj = Vjj = vmn = vmn). 

Let now Wmm F Wnn. If IVI = 0, then Vjj = -;:;jj by vir­
tue of the diagonality of the scattering potential, which 
is equivalent to the optical theorem 

T,.(p,p)- Tjt(p,p)=-2ni STjj (p,pl)TJ/(p,p,)8( PI3~~LP3) dp •. (3.21) 

In the case of a strongJield, a relation a~logous to 
(3.21) is satisfied for I, but not for:jj (fcorresponds 
to elastic scattering in the potential W). Therefore in 
the general case Vjj F Vjj • It can be stated, therefore, 
that the transitions m - n, which are induced by the ex­
ternal field, lead to "inelasticity" of the collision in­
tegrals in spite of the diagonal potential. The "field 
inelasticity" has opposite signs for Smm and Snn' 
namely, 

(3.22) 
meaning conservation of the number of particles at both 
levels m and no 
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It is frequently useful to use a model in which one of 
the Wjj vanishes. Assume, for concreteness, that Wnn 
= O. Then at IVI = 0 we have 

Snn = 0, Amn = 0, 'V mm = \lmm = 2Re V mn , (3.23) 

Le., there is no arrival term in Smn, and the impact 
half-width of the line Re limn is equal to half the fre­
quency of the elastic scattering in the state m [13J. In a 
strong field we have .f- = fmm /2, and the quantity IImm 
decreases (sca.ttering in a potential W mm /2, but all the 
relations of (3.23), with the exception of Aznn = 0, re­
main in force; there appears in Smn an arrival term 
with complete phase memory and with a kernel3 ) 

2nN,s -- ' 
;1"", =78 Fb6lU;T!J+dpdp" 2RcAmn=Amm. (3.24) 

"f.\. 

Thus, the field mixing of the states m and n during 
the collision time gives rise to Amn f. 0 and, further­
more, annihilates completely the impact broadening of 
the line in the same m - n transition. A similar effect 
exists also for the neighboring transition n -l, in which 
Sn 1 also acquires an arrival term (An 1 = 0 at V = 0): 

2nNbS -
A a, = nf.\a' F,6L;TTII+ dp dp" (3.25) 

where Re !lnl can be either larger or smaller than 
Re IInl' 

It may seem strange that Snn = 0 at W nn = 0 even in 
the case of a strong field. Indeed, an atom colliding at 
the level n with momentum Pal may remain after the 
collision at the same level, but obtain Pa f. Pal, owing to 
the interaction Wmm during the time TC' i.e., Snn f. 0 
seems natural. To resolve this question, we express Snn 
in the form 

iliSaa = Nb Sp.{Waa[Q(F. X Fb)Q+]aa - [Q(FaXFb)Q+]aaWaa}. (3.26) 

The expression in the curly brackets has the same 
meaning as the combination V nm F mn - F nm V mn' which 
describes the field variation of the number of atoms at 
the level n and is interpreted in the following manner: 
in the transition m - n the external field induces a polar­
ization Fmn and performs work proportional to [V, F)nn­
The analogy with (3.26) is obvious. The scattering poten­
tial produces a "polarization" [n(FaX Fb)n+)nn' and the 
change of the number of atoms in the state n, Pa is de­
termined by the work Trb[Wnn, [n(FaX Fb)n+)nn) of the 
interaction forces precisely in this state. But if Wnn 
= 0, then the work is equal to zero, although the polariza­
tion is finite. The foregOing reasoning, however, per­
tained precisely to polarization, but not to work. 

A formally instructive case is Wmm = -Wnn. Here 

Kij = 0, g- = 0, g-jj = fV jj, Sjj = 0, Amn = 0, 
V,,,a = - Vam = 2iNb(2nn)'W mm (0) I nf.\.'. 

(3.27) 

The only nonvanishing terms are limn and IInm' which 
are pure imaginary and are proportional (as in first­
order perturbation theory in W) to the difference of the 
average interaction energies W mm - W nn = 2W mm' 
Consequently, when Wmm = -Wnn' there occurs neither 
a change in the velocity of the atoms, nor a broadening 
of the lines, but only an impact shift (by limn)' This is 
perfectly understandable physically: the atoms "feels" 
alternately potentials that are equal in magnitude but are 
opposite in sign, and does not change its momentum. 
For the line shift, however, the difference W mm - W nn 
is important, and it is finite. On the transitions m -l 
and n - l, the collision integrals differ from zero when 
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Wmm = -Wnn' but the contribution of the levels m and n 
is determined only by Wjj: 

iNb f ( f.\bP. - P ) Vj'(P')=fj3 [Wj,(O)-TII+(p,p)]Fb --- dp, 
f.\a 2nNb f.\. 

A,,(p.,P")=73 fWjj(p-p,)TII+(p,p,) (3.28) 
- 2 2 ftJ-ta 

( P, - P ) 
x6+ -2;- 6(p.-p.,+p,-p)F,dpdp,. 

Of course, the equality Wmm = -Wnn cannot be satis­
fied at all ra - rb (if for no other reason than that 
W > 0 for all states at small distances), but at large 
distances Wmm and Wnn can have opposite signs4 ), and 
the external field will lead to a decrease of Sjj and of the 
line width, but to an increase of the relative Lme shift. 

It is clear from the foregoing that a strong field 
alters radically a number of main properties of collision 
integrals. Each of these changes has a lucid interpreta­
tion in analogy with the saturation effect, but we shall 
not dwell on this obvious fact. 

At high field intensities (IVI »kPa/ma, and a~l the 
more IVITc »1), the natural variables are not Fij but 
their combinations Fij ± Fj/i / For such quantities, the 
collision integrals are determined by the following 
frequencies and kernels: 

1 1 iN, f - -
V'=2[Vmm+Vaa]=2[Vma+Vam]= nf.\.' [;T-;T+]Fbdp, 

2nNb S- -A,(p.,p.,)= '1,[Amm + Aaa]= '/,[Ama + Aam]=73 ;T(p,p,);T+(p, p,) 
"f.\. 

( p,' - P' ) ( f.\bP., - p, ) XO -2-- 6(p.-p.,+p,-p)F, dpdp" 
f.\ f.\a 

v,' = '/2 [v mm - Vaa], iv," = '/2 [Vrna - Vam 1, (3.29) 

'+." iNb f[ () ()]F (f.\bPa-P) \'2='\12 lV2 =~ ?rmm P,P -?rnn P,P b --- dp, 
"f.\a f.\a 

_, , 2nNbf A,- 12[Amm-Aaa]+ 1,[Ama -Aam ]=73 [;Tmm(p,pl)-;Tnn(P,P,)] 
"f.\. 

( PI' - P' ) ( f.\bP"-P,) x6_ ----z;- B(Pa-p,,+p,-p)Fb -f.\-,- dpdp,. 

According to (3.29), the symmetrical combinations of 
the frequencies and of the kernels are identical for the 
diagonal and off-diagonal elements. With respect to the 
departure frequencies, this is a universal property (see 
(3.9)). For kernels, the inequality Amm + Ann = Amn 
+ Anm takes place only in a strong field. In addition, 
!l1 = 111, i.e., phase memory and particle conservation 
exist. We note that antisymmetrical combinations are 
the real and imaginary parts of one and the same quan­
tity (112, Az). 

4. POPULATION AND POLARIZATION 

We consider stationary population and the polarization 
of an atom in a strong field (3.8). We shall use the 
Wigner representation (3.16) and introduce the functions 

P,.,(q, r) =pmm(q, r) ±Paa(q-nk, r), VI IVI =exp(icp), 

P, .• (q, r) =exp[-i(cp+kr)]pma(q-'Mlk, r) (4.1) 
'l' exp[i(cp + kr) ]Pam (q - '/2nk, r). 

We neglect the recoil effect [15J; this corresponds to 
k = 0 in the arguments of Pij' Then the system of kinetic 
equations takes the form 

rp, + ,,(P, = s, (p,) + S,' (p,) + Q" 
rp, + ,,(p, + 2i I VI p, = s, (p,) + S,' (p,) + Q" 

rp, - i6p. + 2i IVI p, = S,(p,) + is/'(p.), 

rp, - i6p, = s, (p,) + is,'' (p,), 
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6 ~ W - wmn-kq! mo , 

S, (p) ~ - v,p + SA, (q, q,)p (q,)dq" 
(4.2) 

S,' (pH IS," (p) ~ - v,p + S A, (q, q,) p(q,) dq,. 

The rates of excitation Qm and Qn of the levels will be 
regarded as Maxwellian functions. Under the conditions 
IV I »liT c »kq /ma of interest to us, the field inter­
acts practically in the uniform manner with all the 
atoms. If, in addition, the perturbing gas has the same 
temperature, then the distribution over the momenta for 
gas a will obviously be Maxwellian. Further, taking into 
account the momentum conservation law q - q1 = P - PI, 
the following identity holds true: 
q,' I g' + [ftbq, - p,]' I fto'p,' ~ q' I ij' + [ft,q - pl' I ~o'j5,' + [p.' - p'] I i/, 

g'l ,no ~ ji,' I m, ~ jI' I ft ~ 2kE T, 
(4.3) 

with the aid of which we can easily find from (3.29) that 
for Maxwellian functions 

2nN,S 
S,(p)~O, S2(p)~-(a+lb)p, a+lb~v,---;;;--, [:Tmm(p,p,) 

"ft. 

_ { P"-P'} - 9""'nn(P, PI) ]g-+(p, p,)exp -----p-- (4.4) 

x 6_ ( P"2~ p' ) F,( ft,qf!~ p ) dp dp,. 

Relations (4.4) simplify the system (4.2), from which 
it follows that 

Q, Q, Qmm + Qnn 
p, ~ r' pmm "" pnn ~ 2r ~ r m + r n ' 

r'+(6-b)' 1 [ 1+ a 1 
p,~pmm-pnn- 41VI' r Q'--r-Q, , 

(4.5) 
I [ 1+a] 

P3~- 21VI Q'--r- Q, 

I rmrn[Qm Qn a ] 
~-m2r "'f.:'-r;:-- rmrn (Qm+Qn) . 

According to (4.5), the Pjj are determined by the mean 
rates of excitation and decay. The difference of the popu­
lations P2 and P3 (which determines the imaginary part 
of the polarizability) depends not only on Qj and r j, but 
also on the parameter of the "field inelasticity" a, which 
plays the same role as the difference 21' = rm - rn of 
the relaxation constants. 

The equation for P4 in (4.2) has a collision integral 
with a complete phase memory Sl, corresponding to the 
general considerations concerning the leveling-off of the 
impact broadening in a strong field (Sec. 1). There ex­
ists, however, a specific line shift connected with the 
term iS2'(P3). If, for example, the parameter a depends 
weakly on q, then P3 is also a Maxwellian function, S~ (P3) 
= -b P3, and for the usual variable P = eik ' r Pmn we ob­
tain from (4.2) and (4.5) the equation 

1 v.( kq )] rp~s,(p)+2TVf[r+, w-wmn-b-m: P3. (4.6) 

We shall find the solution of this equation in two simple 
models. In the Weisskopf model (the velocity of the 
atoms remains unchanged) we have Sl = 0 and (4.6) means 
that the collisions lead only to a shift of the line b, but 
not to broadening. In this strong collision model 

A,(q,q,) ~V,WM(q) ~v,(1;ij)-3exp[-q'/(I']' 

Vii 
p(q)~ 21VI [l+ r (w-Wmn-b)-r+v, kq/mo], 

(4.7) 

i.e., here, too, the width is purely radiative. Were we to 
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have VI f. 1'1> then the frequency dependence would be 
determined by the combination 

(til - W m ,,- b) I (r+v,-\1,), 

i.e., it would contain an impact width (this follows from 
the result of an earlier article [16J ). 

5. EFFECTS OF NONLINEAR SPECTROSCOPY 

As is well known, a monochromatic field splits the 
levels of an atom into sublevels (see, e.g., (17,18]) 

Em±IVI+0/2, En±IVI-o/2 (5.1) 

and the emission (or absorption) of radiation at the fre­
quencies wiJ. different from W can be regarded as tran­
sitions between the sublevels (5.1) (the two-level prob­
lem) or between a third levelZ and several of the (5.1) 
sublevels (three-level problem). In this section we are 
interested in the line contours corresponding to these 
transitions and in their impact broadening. We start with 
the three-level problem, assuming, for the sake of con­
creteness, wiJ. ~ CA:m 1 and wm Z > O. The radiation at 
this transition takes the form of a doublet with resonan­
ces at the frequencies 

w. ~ wm, ± I v I + 6 I 2. 

At IV I »1/r c + 10 I the components of the doublet do not 
overlap and their spectral contours can be considered 
independently (moreover, they must be considered separ­
ately, since the impact approximation is valid only near 
the maxima, within a frequency interval much larger 
than 1ITc)' 

We shall stipulate a weak field in the form of a mono­
chromatic (wiJ.) plane traveling (kJ..l) wave. Then the m, Z 

element of the Wigner function can be naturally repre­
sented in the form 

Pml(q, r, t) ~ pml(q)eXP[ -I(w.t - k,r)], (5.2) 

and Pm Z(q), as can be easily shown, satisfies the equa­
tion 

[112 (1' ml + r nl) - IE± ]Pml (q) ~ S - 1/2iV,[pmm (q) - pll{q) ], 

V~ = dm.E.I 2h, 8" = w, - Wml ± I VI- 1/2(W - Wm,,) - (k. - 1/2k)ql m" 

(5.3) 

ZnN, S -- ( P.' - P' ) A(q,q,)=h;,! 9""'(p, p,)T+(p,p,)6 --Zft- 6(q-q, +p,-p) 

F ( ftbq, - p, ) d d 
X " P p,. 

ft. 

The singularities of the spontaneous width 
(rmZ + rn Z)/2, of the shift of the line maximum by 
± IVI + (w - wmn)/2, of the Doppler shift (kJ..l - k/2)q/ma" 
and of the right-hand side iE- Eq. (5.3J for PmZ(q) are en­
sured already at IV I »kJ..l q /ma, 10 I 18]. The stronger 
condition IVI »lIT + 10 I determines the specifics of 
the collision integral S, which contains Y (scattering in 
W). If 

kij / In" + I Ii I ~ I v I ~ 1 h, -+- I Ii I, 

then II and A would contain in place of I the combination 
(Tmm + Tnn)/2, and each of the Tjj corresponds to scat­
tering in the potential Wjj' Thus, the impact broadening 
on the transition m -l will change. We denote by 1'1 and 
1'2 the impact widths (Re (1'-11)) at IVI »lITc +101 and 
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kii/ma + 161 « IYI « 1lrc + 161, respectively. From 
(5.3) we easily get . 

nNb S . 
1'-1'=-/i 3 Re [21.9"'-T"I'-ITrnrn-Tlll'-IT""-T"I'] 

110 
(5.4) 

( p' P') x 6 ' 2~ FbdPdp,. 

In the Born approximation we have Y = Wand Tjj = Wjj, 
and a direct check shows that Yz > y 1, i.e., a strong 
field (in the sense of (3.8)) decreases the broadening 
(due to the interaction) on the transition m -l. For 
another neighboring transition n - l, the collision fre­
quency and the kernel are given by the same formulas 
(5.3), and everything said concerning the m -l transi­
tion automatically holds for the n - l transition. 

In the three-level problem, to calculate the line con­
tour it is necessary to know the function 

pmn(q, r, t) = pm"(q) exp (ikr) + rmn(q) exp[ -i(oo.- oo)t 

+ik.r] +rrnn(q)exp[i(oo.-oo)t-i(k.-2k)r]. (5.5) 

The quantities Pmn(q) and rmn(q) determine_the dipole 
moment at the frequencies wand Ww while rmn(q) de­
termine them at the combination frequency 2w - wJl [J.9] 

The resonant frequencies for the emission (absorption) 
of a weak field are wJl = wand wJl = W ± 21YI. Near these 
frequencies, the equations for rmn take the form (if (3.8) 
holds) 

(r - ie}rmn = S,(rmn) - IMv.Pmm, 

[r-i(e±2IVI)lrmn=8,(rmn ) - 1/.iV.Prnm. (5.6) 
e = 00" - 00 - (k. - k) q / mo , 

The solution (5.6) enables us, using the known pre­
scription [17], to calculate the spectral density of the 
spontaneous emission on the transition m - n. The 
dielectric constant is determined with the aid of rmn, 
which satisfies an analogous equation, but with a differ­
ent right-hand part: 

i e 
(r - ie)rmn = 8, (rmn)- 2 V.y;-Pnm, 

i IVI 
[r - i(e ± 21VI) ]rmn = 8, (rmn) '+' 2"" V"----V-- pn ... 

(5.7) 

Equations (5.6) and (5.7) contain a collision integral Sl 
without impact broadening (complete phase memory). 
This property is most clearly manifest in the case of 
"observation forward" (kfJ. "k), when E does not depend 
on q and the mean value (rmn>q is obtained from (5.6) 
and (5.7) in elementary fashion, since (Sl)q = 0: 

i v.<Prnm>. <rmn>q = - ------I , 
4 r-i(oo,,-oo±2IVI) 

i v.(oo.-oo)<pnm>. 8) 
<rmn>.=-zV' r-i(oo.-oo) , <rmn>. (5. 

= '+' i IVIV. <Pnrn>. 
2 V· r-i(oo,,-oo±2IVI) 

The widths of all the spectral contours (5.8) are deter­
mined only by the spontaneous decay, and the collisions 
do not come into play at all. If kJl is not parallel to k, 
then E contains q, and the line contour will depend on 
the concrete type of Sl' In any case, however, Sl des­
cribes the change of velocity without a phase collapse, 
and the collisions will only narrow down the line contour 
(the Dicke effect). We can use here the results of [12J 
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(where the wave vector should be 'taken to mean the dif­
ference kfJ. - k, which depends on the angle between kfJ. 
and k). 

The authors are grateful to I. L. Bergman and E. A. 
Yukov for a useful discussion of some of the problems 
touched upon above. 

l)From among the latest papers, we mention, e.g., [6-9], where addition­
al references can be found. 

2) Sij can be expr~ed also in terms of the scattering amplitudes fkk' which 
are connected with the T-matrix elements in the normalization assumed 
here, by the relation. 

t .. (p,p,) = -(21t)'IlIio/',,(p,p.)· 

3)For the sake of brevity, we shall not indicate the arguments of the 
functions where there is no danger of misunderstanding. 

4) By way of example we indicate the difference between the signs of W ii 
in the ground and metastable states ofhelium[14]. 
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