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The formation of ultrashort light pulses in a ruby ring laser with active resonance loss 
modulation is investigated experimentally and numerical calculations are performed 
by computer. It is shown that a stationary pulse is formed in the linear amplification 
range in such lasers and the laser parameters remain essentially constant in the non
linear range. As a result, lasers with active modulation can generate ultrashort pulses 
with stable parameters. The experimental results are in good agreement with the 
calculations. Ultrashort 10-10 sec pulses reproducible in successive flashes are ob
tained experimentally. 

Ultrashort light pulses can be produced in lasers by 
some method of locking the axial modes of the resonator. 
The currently most widespread method of mode locking 
is self-locking in lasers with nonlinear absorbers [1,2J 
The general acceptance of this method is due to its tech
nical simplicity and to the fact that nonlinear absorber 
lasers achieved record values of length and peak power 
of their ultrashort pulses. Nevertheless, as is shown 
in [3-5J, a regular sequence of single ultrashort pulses 
can be obtained from such lasers only with some prob
ability. The time behavior of the emission is not always 
reproducible from flash to flash, because pulse shaping 
up to the bleaching of the nonlinear absorber is a random 
process [3J. Poor reproducibility of the emission time 
behavior is a significant shortcoming of lasers with non
linear absorbers. 

There is another well known method of mode locking, 
i.e., the active modulation of laser parameters. The 
method is based on a resonant (at intermode frequency 
or its multiPtle) variation of the optica11ength (phase 
modulation) 6,7J or a variation of resonator losses (am
plitude modulation) [8,9J. From now on we consider only 
the active loss modulation lasers. The modulators in 
such lasers are most often represented by acoustic [8J 
or electro-optical [10,11J shutters. In contrast to lasers 
with bleachable filters, such a modulation allows us to 
control the formation of ultrashort pulses and seems to 
offer in principle the possibility of obtaining pulses with 
good reproducibility of the parameters. The feasibility 
of generating stationary pulses in an active loss modu
lation laser was demonstrated, for example, in [12,13J 
However, that research failed to determine the stabili
zation time of the stationary pulse, which is an im
portant characteristic of solid-state lasers operating 
in the pulsed mode. It is noted that stationary pulse 
stabilization time can be found only by investigating the 
pulse formation process in the laser. Such an investiga
tion can also identify the amplification stage in which the 
stationary pulse was established. In[l2,13 l , this stage was 
determined for selected models, which are not applicable 
to lasers with Lorentz amplification line shape. 

No investigator has examined whether stationary 
pulses can exist in lasers with Lorentz line shape, such 
as the ruby laser1) , or the question of the effect of vary
ing laser parameters on the stability of stationary 
pulses. 
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It is the above problems that are considered in this 
paper. The formation of ultrashort pulses in a ruby ring 
laser with resonance loss modulation is studied both by 
numerical computer simulation and by experimental 
methods. The simulation of laser operation is performed 
in the time domain, which is considered to be the more 
suitable approach. We calculated the pulse-parameter 
variation caused by the modulator and by the active me
dium after a complete pass. Multiple repetition of anal
ogous computations allowed us to trace the entire process 
of ultrashort pulse formation in the laser. The computa
tions show that the stationary pulse is established in the 
linear amplification stage. The stabilization time is de
termined by the effective gain of the laser and by the 
modulation law. The computation results are in good 
agreement with the results of experimental investigation 
of the ultrashort pulse-formation process. 

NUMERICAL COMPUTATION 

Computer simulation was performed for a ring res
onator laser model with a one-dimensional active medium 
of length l (O:S z:S l), representing an ensemble of two
level atoms with a homogeneously broadened line, and a 
loss modulator. All losses in the resonator were at
tributed to the modulator, whose effective transmission 
coeffiCient p(t) was a time-periodic function with a 
period equal to the time of one round trip through the 
resonator. 

The computation was commenced by specifying the ini
tial noise field distribution from which the modulator 
shaped the initial (starting) pulse. The starting pulse was 
applied to the input (z = 0) of the active medium. The 
pulse generated by the starting pulse during the first trip 
was computed next. This pulse then served as the initial 
pulse for the second trip through the resonator. This 
computation was repeated for each of the subsequent 
trips. 

In the computation it was assumed that the path of a 
pulse in the resonator can be divided into three sections: 
the active medium, free space, and the loss modulator. 
If we assume zero dispersion in free space, a change in 
the pulse can take place only in the active medium and 
in the modulator. Traversal of the free space in the 
resonator merely introduces a delay in the pulse. 

The effect of the modulator is accounted for in a 
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simple manner, since modulator losses are independent 
of field intensity. The active medium thus represents 
the most complex section. The propagation of a light 
pulse in a two-level active medium with a homogeneously 
broadened line and with the pulse carrier frequency be
ing in exact resonance with the atomic transition fre
quency Wo is described by equations for slowly varying 
amplitudes[15-17) : 

iJE 1 iJE 2nroo 
-+--=--p 
.iJz c at c ' 

fJP 1 11' 
-+-P=-NE 
iit T, h ' 

iJN t t 
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dt T, h 

(1) 

(2) 

(3) 

Here E(t, z), P(t, z), and N(t, z) are slowly varying real 
amplitudes of the field, polarization, and population in
version; c is the speed of light; Tl is the atomic longi
tudinal relaxation time; T2 is the transverse relaxation 
time; No is the initial population inversion; and jJ. is the 
matrix element of the dipole moment. 

The factors that act in the linear and nonlinear ampli
fication stages of the active medium are significantly 
different. In the linear amplification stage, the active
medium gain can be considered independent of field 
intensity. The determining factor in this stage is the 
frequency dependence of gain. This dependence is par
ticularly effective if the linear amplification stage in 
the laser is long. 

In a solid-state laser operating in the pulse mode, 
the pulse entering the linear stage removes the inver
sion rapidly (in a few trips). At the same time, to achieve 
a high emission power, we can shape the pulse in the 
linear amplification stage in a low-Q regime and then 
switch-on the full Q in the nonlinear stage. This further 
shortens the nonlinear amplification stage. The short 
duration of this stage leads us to assume that gain in 
this stage does not depend on frequency but only on field 
intensity. 

The system (1)-(3) for the linear stage is easily 
solved by the Riemann method[18) , yielding 

F(' }=E(' =0)+ S"E( =o} . {_ (t' -t)} [,(21'a(t' -t)laz d .~ t, z "t ,z t, z exp t. 
o T, 'It'-t 

(4) 

Here a = 27TjJ.2("oNo/cti; If is a modified Bessel function 
of order 1; and t'=t-z/c. In the nonlinear amplification 
stage we consider only the case of noncoherent inter
action of the pulse with the medium (T2 « Tp« T1, where 
Tp is pulse length). The solution of (1)-(3) is known in 
this approximation[19,20): 

[(t',z}=I(t',z=O) (t-[t-exp { -a jNo(t'=O,Z')dZ'}] 
o 

(5) 

x exp { - 2ac J [(t, z = O) dt }) -t , 
o 

N(t', z}= No(t' = 0, z}exp {-a jNo(t' = 0, z'}dz' } 
o (6) 

x [exp { 2acS [(t,z = O}dt }+exp { -a j No(t' = O,z')dZ'} -1 ] -'. 
o 0 

Here a= 47TwojJ.2T2/ cn is the transition cross section at 
the frequency wo; 1= cE2/87T is the field intensity; and 
t'=t-z/c. We note that the expression 
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g(t'}= exp{ a j N(t', z'}dz'}, (7) 
o 

encountered in (5) and (6) is the gain of the active me
dium. In the computation, expression (4) was rewritten 
for intensity I. 

The relationships (4) and (5) for z = l connect the 
pulse shape at the output of the active medium (I(t', z = l)) 
with the input pulse shape (I(t', z=O)). At t=T (T is the 
resonator round trip time) (6) determines the population 
inversion in the active medium (N(t', z») after the pulse 
has passed through the value (No(t' = 0, z») of the inver
sion before the arrival of the pulse. 

Equations (4)-(6) were the basis of the numerical 
simulation of the pulse propagation process in the ac
tive medium. The boundary conditions had the form 

1 .. ,(t} I,~o = p(t)!.(t), (8) 

where k is the number of round trips through the reso
nator and Ik(t) is the pulse envelope after the k-th 
round trip, taking the corresponding delay into account. 

The dependence of the gain of the active medium on 
field intensity in the resonator was constantly moni
tored in the computation of pulse evolution. The linear 
amplification stage lasted as long as the gain was in
dependent of the intensity, and the computation was per
formed according to the corresponding formula (4). As 
soon as gain became dependent on intensity (varied by 
1 %), the nonlinear amplification stage began and the pulse 
evolution was computed according to (5) and (6). 

The computation error was no worse than 0.1% per 
pass. The results of the computation are shown in Figs. 
1-4. 

Figure 1 shows the modulator transmission distribu
tion in the period T (T = 5 x 10-9 sec is the round trip 
time through the resonator), It is described by the equa
tion 

p (t) = po cos' [O.3n cos (2nt / T .) 1 (9) 

(Po is the maximum transmission coefficient and TM is 
the period of modulating voltage, TM = 2T). The figure 
shows also the pulse envelopes after 1, 10, 50, 100, and 
150 round trips in the linear amplification stage. Equa
tion (9) corresponds to the transmission of an electro
optical modulator driven by sinusoidal voltage [21). It 
can be seen from Fig. 1 that :J,t first the modulator "cuts 
out" a pulse from noise; the pulse maximum in the 
period T coincides with the loss minimum and the pulse 
length is determined by the modulator transmission law. 
The pulse length becomes progressively shortened by the 
modulator as the number of round trips through the 
resonator increases. At the same time, the pulse max
imum becomes displaced to the right (delay). The pulse 
maximum continues shifting only up to a certain number 
of round trips (see the curve marked k = 150), after 
which the maximum takes up a fixed position in the 

FIG. I, Modu
lator transmission 
p (t) per period and 
pulse envelope 
family for different 
round-trip numbers 
k. 
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FIG. 2. Pulse length as a function of the number of resonator 
round trips for various initial field distributions: I - "smooth" 
initial field distribution; 2, 3 - intensity overshoots present in the 
modulation period 1. 

FIG. 3. Pulse length as a function of the number of resonator 
round trips for various loss modulation laws: I - P (t) = Po sin2 [O.51T 
sin(21T tjlM)]; 2 - pet) = Pocos2 [O.31T cos(21TtjlM)]; 3 - pet) = 
Po cos2 [O.51T COS(21T tjlM)]' 
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period. The length and shape of the pulse become sta
tionary (lines for k = 100 and 150) and the intensity in
creases in proportion to the number of round trips. 

The reason why a stationary pulse occurs in the linear 
amplification stage becomes clear if we consider the 
simultaneous effect of modulator losses and the active 
medium gain on the pulse. Modulator losses shorten the 
pulse during each successive round trip, so that an ever 
shorter pulse travels through the active medium. Now, 
we know the effect of the active medium on pulses of dif
ferent length [22). As the entering pulse length Tp 
shortens, the gain of the active medium decreases, the 
pulse lengthens, and the lag of the pulse peak increases 
because the group velocity of the pulse decreases in the 
active medium. However, as long as Tp »T2, the pulse 
does not broaden significantly in the active medium, and 
only the pulse maximum is delayed. Significant pulse 
broadening is observed if pulse length Tp is compar
able with T2. 

Consequently, the initial traversals (Tp »T2) result 
in pulse shortening due to the modulator, while the ac
tive medium merely delays the pulse maximum. This 
pulse shortening continues until the pulse length be
comes comparable with T2 (in order of magnitude). As 
soon as comparability is reached, the pulse begins to 
broaden. Thus we observe a situation in which the 
shortening of the pulse per pass, effected by the modu
lator, is compensated by pulse broadening during the 
same pass through the active medium. In this case the 
pulse length and its position in the period do not change 
during the subsequent trips in the resonator. The pulse 
becomes stationary. The shape of the stationary pulse 
is determined by the modulation law. 

We note that the stabilization of the stationary pulse 
occurs in the linear amplification stage after a large 
number (-500) of trips. In order for the pulse to remain 
in this stage for such a long time, the effective gain2l 
must be small (-1.05 for a maximum modulator trans-
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mission). When the effective gain is large, field inten
sity quickly reaches saturation and the nonlinear ampli
fication stage begins before the pulse can become 
stationary. 

Figure 2 shows the pulse length T p at half width in 
the linear amplification stage as a function of the num
ber of round trips through the resonator, for one type of 
modulation law (9) and for various initial field distribu
tions. We see that the length of a stationary pulse does 
not depend on the initial field distribution. The difference 
in length appears only in the early formative stage of the 
stationary pulse. In this stage the pulse parameters are 
determined to a considerable extent by the initial field 
distribution. It follows from Fig. 2 that pulse parameters 
with fixed linear development time are not reproducible 
at large effective gains, when stationary pulse cannot 
establish itself in the linear amplification stage. 

Figure 3 shows the pulse length Tp as a function of 
the number of round trips k for one shape of the start
ing pulse (one initial field distribution) and various 
modulation laws. Figure 3 illustrates the fact that an in
creaSing slope of the modulating function (see lines 1, 2, 
and 3, which are arranged in the order of increasing 
slope of the function p(t)) weakly affects the length of 
the stationary pulse. The increasing slope of the func
tion p(t) increases the pulse compression rate. 

Figure 4 pertains to the nonlinear pulse amplification 
stage. The diagram shows the gain g (see (7)), the log
arithm of relative peak intensity (log Imax = 10g(lk maxi 
10 max)), and the pulse length Tp at half-width as func
tions of the number k of round trips through the resona
tor. It is apparent that the gain of the active medium de
creases in the nonlinear stage (saturation effect). Pulse 
intensity decreases exponentially. We also observe a 
slight shortening of the pulse caused by the preferential 
amplification of the pulse front. 

EXPERIMENTAL RESULTS 

The formation of ultrashort pulses was investigated 
experimentally with the setup shown in Fig. 5. The laser 
resonator (optical length of 150 cm) formed a ring based 
on four dispersionless prisms P. The active material K 
was a 5.5 x 120 mm ruby crystal. There was no axial 
mode selection. Diaphragms D, 1.8 mm in diameter, 
eliminated the transverse modes. 

Resonance loss modulation was obtained by an elec
tro-optical method using the LiNb03 crystal M2 • A half
wave phase shift for LiNb03 at A= 0.7 Jl required 580 v. 

;~~~~~P.~t 
FIG. 5. Experimental setup: K - crystal; P - non dispersion 

prisms; 0 - iris; M, , M2 - modulators; G - Glan prism. Bottom: 
nomograms illustrating the transmission of electro-optical modulators: 
tp - pumping time; T[-linear amplification time: Tnl-nonlinear 
amplification time. 
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Modulator Ml (KDP crystal) served as the Q-switch in 
the nonlinear amplification stage and as a radiation 
outlet from the resonator. The nomograms in Fig. 5 
illustrate the operation of the system. First the mini
mum-Q voltage is applied to switch Ml' At the point of 
maximum inversion Ml partially switches-in the cavity 
Q. A sinusoidal voltage, whose half period TM/2= 5 nsec 
equals the pulse round trip time, is simultaneously ap
plied to M2. After the time 7l corresponding to the 
linear development of generation, Ml turns on the full 
Q. In the course of several round trips at high geff the 
pulse intenSity increases sharply and a high-power 
pulse appears in the resonator. The pulse power con
tinues to increase during the subsequent round trips 
while the medium gain decreases (nonlinear amplifica
tion process). When the pulse reaches maximum power 
(g:::: 1), switch Ml turns on the Q and the pulse is let out 
of the resonator through a Glan prism. Since the back
ward wave was not suppressed, two pulses moving in 
opposite directions were formed simultaneously. How
ever the pulses did not encounter each other in the ac
tive medium because of the appropriate placement of the 
loss modulator relative to the ruby crystal. 

The experimental investigation was divided into two 
parts. In the first part we studied the effect of the linear 
development time on the following parameters: length, 
shape, and spectrum of the emitted pulse. A photoelec
tron recorder with a resolution of 10-11 sec was used to 
observe the length and shape of the pulse. The spectrum 
of the emitted pulse was recorded with a spectrograph 
(dispersion of 7.5 A/mm) with a resolution of 0.09 cm- 1 • 

The linear development time was controlled by varying 
the transmission of modulator Ml in the linear amplifi
cation stage. Modulator M2 provided a 70% depth of 
modulation which remained constant during the experi
ment. In order to limit the observation to the linear 
amplification stage, the pulse was let out of the resonator 
for each 7l at a point when its energy was low and just 
adequate to activate the measuring instruments. 

Figure 6 shows intensity diagrams of pulses and the 
corresponding spectra for various values of the linear 
development time. When the linear development time is 
short, the laser generates relatively long pulses; the 
pulses and the corresponding spectra have a complex 
shape that is not reproducible from flash to flash (Fig. 
6 a and b). The emitted pulses have a "pedestal" (non
locked modes) and an approximate estimate of the de
gree of mode-locking yields 7p~ll= 20-50. As 7l in
creases, the pulse shortens and its shape and spectrum 
acquire more regularity (Fig. 6 c). For 7l?! 1.7 j.Lsec, 
the shape of the pulses becomes simple and the spectrum 
is smooth [231. The pulse length (7p:::: 10-10 sec) and spec-

a f\:..1=0.02 }\A 

dS~ 

t"k"jr' 
~C'\ C'\ 

10 '0 Hz 
~ 

FIG. 6. Intensity diagrams for pulses and the corresponding 
spectra for various T/(in J,Lsec). 
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tral width become stabilized and 7p~ll- 3. Figure 6 d 
shows intensity diagrams of pulses and spectra aver
aged for 15 flashes. An increase of the linear develop
ment time to 2.5 j.Lsec caused no changes (within the 
limits of experimental accuracy) in the pulse parameters. 

Figure 7 shows the pulse length 7 p as a function of 
the linear development time 7l. Line 1 represents a theo
retical function for an initial field distribution of the 
E(t) = Eo type and the modulation law p(t) used in the 
experiment. We see that the theoretical curve is in a 
good agreement with the experiment in the region of long 
linear development time. For short 71 the experimental 
function 7p( 71) is represented by a broad band that 
shortens with increasing 71. This confirms the theo
retical conclusion that the pulse has not enough time 
to assume the stationary form within a short linear 
amplification stage. Therefore for equal 71 successive 
flashes generate pulses whose length varies within the 
band shown in the diagram. 

We note that line 2 contains pOints of maximum pos
sible pulse length for fixed 71' Such long pulses are ob
tained in the case of a "smooth" initial field distribu
tion, Le., when there are no intense excursions in the 
period of modulation. Indeed, in such a case, the modu
lator first "carves out" the pulse from the noise field, 
the pulse shape being determined by the modulation law. 
The pulse length then shortens in the linear amplifica
tion stage down to a value determined by the duration of 
the stage. Thus we see that in Fig. 7 line 2 coincides 
with the theoretical line 1 in the region of short 71 for 
the case of a "smooth" initial field distribution. 

In the second part of the experiment we studied the 
pulse behavior in the nonlinear amplification stage. 

According to calculations, the power of the generated 
pulse is maximum at the point of saturation of the gain 
(See Fig. 4), Le., after the pulse has passed the non
linear amplification stage. In order to observe the evolu
tion of pulse parameters in the course of the nonlinear 
amplification process, the pulse was allowed to leave the 
laser after different time intervals from the point of 
total Q. We recorded the same pulse parameters as in 
the first part of the experiment: shape, length, and spec
trum. The parameters of 15 pulses were recorded for 
each time interval. The results of measurements showed 
that nonlinear amplification causes merely a slight (-1.5 
times) shortening of the pulse front with the other pulse 
parameters (within experimental accuracy) remaining 
unchanged. 

Tp,/O-fOsec 

16 

IZ 

0.75 1.0 f.Z5 
TbJ.!sec 

FIG. 7. Pulse length as a function of linear development time; line 
I - theoretical; lines 2 and 3 limit the region of experimental data. 
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The single ultrashort pulses obtained in the experi
ment had a maximum power of -8 MW and a divergence 
close to the diffraction limit. 

CONCLUSION 

The calculations and experimental investigation of a 
ruby ring laser with resonance loss modulation prove 
the feasibility of generating ultrashort pulses with ade
quate stability in such a laser. 

The stability of ultrashort pulses is due to the fact 
that a stationary pulse is established in the laser in the 
linear amplification stage and that pulse parameters do 
not change significantly in the nonlinear amplification 
stage. The pulse becomes stationary by virtue of the 
joint action of two factors: compression due to modula
tion and expansion in the active medium. The establish
ment of the stationary form of the ultrashort pulsere
quires a long time (-2x10-s sec). To obtain such a long 
stage of linear amplification, we must ensure a low ef
fective gain. The reduced effective gain imparts low 
power to the emitted pulses because of the decreased 
amplification in the active medium. A higher power of 
ultrashort pulses can be obtained by Q-switching, so that 
for a high effective gain of the active medium pulses are 
formed in the linear amplification stage at low Q (large 
losses) and the Q is turned on fully in the nonlinear am
plification stage. Ultrashort pulses formed by the method 
of resonance loss variation in the ruby laser are rela-

'tively long (_10- 10 sec). However, USing such a laser as 
a driving generator, we can obtain shorter and yet 
powerful ultrashort pulses with stable parameters by 
means of cascade amplification. The stability of pulse 
parameters from flash to flash, the comparative sim
plicity of generating either single ultrashort pulses or 
series of pulses (with a controllable number of pulses 
in a series), and the controlled timing of an ultrashort 
pulse with an accuracy of -10-9 sec render such a laser 
a valuable and useful instrument for scientific research. 

The authors thank A. M. Prokhorov for support in 
this work and Yu. N. Polivanov for useful discussion. 

I)Exccpt for [14] , which is mainly concerned with hysteresis phe
nomena in active loss-modulation laser. 

2)The effective gain of a laser if geff{t) = p (t)g(t). 
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