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A dynamical theory of the diffraction of Y quanta resonantly interacting with the nuclei in 
a crystal under conditions of hyperfine splitting is developed. A wide class of cases when 
complete suppression of the inelastic channels occurs is discovered. The obtained re
sults allow us to find the optimum conditions for the observation of the suppression effect 
practically from the knowledge only of the hyperfine structure of the ordinary resonant
absorption spectrum. As an example, the case of quadrupole splitting is considered in 
detail. 

1. INTRODUCTION 

In previous investigations of the problem of the 
resonant interaction of Y quanta [1] and neutrons [2] with 
the nuclei in regular crystals (see also[3]), the present 
authors predicted the possibility (owing to the collec
ti ve nature of the interaction between the particles and 
the nuclei in the crystals) of the suppression of the in
elastic nuclear-reaction channel (the Y-quantum 
- electron conversion in the case of Y quanta and the 
n - Y reaction in the case of neutrons). Strong sup
pression can occur even in those cases when for the 
individual nucleus the inelastic reaction is the main 
result of the interaction of the particles with the nucleus. 
The suppression of the nuclear reaction occurs under 
diffraction conditions when the particles impinge on the 
crystal at an angle close to the Bragg angle. The 
crystal then becomes transparent to the resonant 
nuclear particles, whereas under ordinary conditions a 
thin layer of the substance practically completely ab
sorbs the radiation. 

The suppression effect (SE) has been observed ex
perimentally both in the case of Y quanta [4,5] and in the 
case of neutrons [6J. 

In the analysis in[lJ of the resonant interaction of Y 
quanta with nuclei it was assumed for simplicity that 
hyperfine splitting was absent. Such cases are en
countered quite often, and the first experiments on the 
detection of the SE were performed on samples in 
which the nuclei were not subjected to hyperfine inter
action. On the other hand, it is clear that the number of 
cases with hyperfine splitting is enormous, and their 
analysiS is undoubtedly of great interest. Thus, the 
experiments[5J by SklyarevskH, Smirnov, et al. were 
performed under conditions of hyperfine splitting. 

A number of concrete variants with hyperfine split
ting (among them the cases considered inI51 ) easily 
reduce to the case of the unsplit line, when the results 
of the paper[l] can be used directly (see[31). The gen
eral situation, however, turns out to be much more 
complex. In the first place, there arises here an enor
mous number of diverse variants differing in the multi
pole order of the nuclear tranSition, in the nature of the 
hyperfine splitting, in the structure of the unit cell, etc. 
Furthermore, the problem also becomes quite compli
cated from the mathematical point of view. Neverthe
less, as will be shown be low, it is possible to find a 
fairly wide class of cases when complete (a hundred 
percent) suppression of the inelastic channels occurs. 
The obtained results will be presented in a form which 
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will allow us practically from the knowledge only of the 
hyperfine structure of the ordinary resonant-absorption 
spectrum to choose the optimum conditions for observ
ing the SE. 

2. GENERAL FORMULAS AND THE 
FORMULATION OF THE PROBLEM 

Below we shall use extenSively the results of[ 1J, 
references to the formulas of which will be cited as 
(0.0 ),1. Let us restate that we shall assume that the Y 
quanta (with the wave vector ko) impinge on the crystal 
at an angle close to the Bragg angle and that only one 
diffracted wave (with a wave vector kl = ko + K) arises 
as a result of the diffraction. The motion of the Y 
quanta through the crystal is determined by the system 
of dynamical equations (3.1) ,1. 

On account of the weakness of the interaction between 
the Y quanta and the crystal, the electromagnetic field 
in the crystal remains practically transverse, i.e., 
E(koJ'lea = O. Thus, the system (3.1),1 is already a 
system of not six, but only four equations. Let us 
choose arbitrarily two transverse polarizations: e~1,2) 
in the incident and ei 1,2) in the diffracted waves. We 
can represent the fields E( ko) and E( k1) in the form 

E (k.) = e.(t) E:t) + c:') E~Z) . (1) 

From (3.1 ),1 we obtain for the scalar amplitudes E~) 
the following system of equations: 

(k 'f Z - 1)E('l - \""1 ( "'E(")+ .. ' E("» 
1 x 1 - £..J g10 0 gl1 1 , 

8'=1,2 

where 

88' ~ (8) '[ (~') 
g., = L...". (e. ),g.,' (e, ),"; 

K = \ K \, K is the wave vector of the Y quanta in 
vacuum. The coefficients g~f3 are determined by the 
formulas (3.2),1 and (2.11),1. 

Let a Y-ray beam be incident on a crystal in the 
form of a plate. Owing to the weak refraction at the 
boundary, the vector ko will differ slightly from the 
vector K: 

ko = " + "Bn, \6\ < 1, 

where n is the inward normal to the surface of the 
crystal. 
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Let us, as usual, introduce the quantity 

eo = 106, 1o" = cos <): (ko" 0), 

and rewrite the system of equations (2) in the matrix 
form: 

(5) 

here g, a, and ~ are four-dimensional matrices of the 
form: 

~ = (~~n, 
, (00) 0= 00 ' 

while E is a four-dimensional column composed of the 
quantities E~): 

The parameter Q determines the deviation from the 
exact fulfilment of the Bragg condition: a = K . (K 
+ 2K)1 K2, while f3 = Y oil' 1. 

The conditions for the existence of a nontrivial solu
tion to the system (5) lead to the following equation for 
Eo: 

The wave field inside the crystal will be given by an 
expression of the form 

• 
E (r) = eixr L exp {iX8~m)tl'/o} { L [e~') E~') (m) + eiKre~') E~') (m)l} , 

"'=1 8=1,2 

(6) 

t = nr. (7) 

Here E~m) are the roots of Eq. (6) and E( m) are the 
solutions corresponding to these roots. Since our basic 
system (5) is homogeneous, to determine E( m) we 
must also invoke boundary conditions. 

In the present paper we shall be interested in only 
diffraction in the Laue geometry. The boundary condi
tions (when the small difference between E and D is 
neglected) then has the form 

• • 
.EE:') (m)=<'8.('), .EE,(') (m)=O, (8) 

where <'8~s) i;~~e amplitude ofmt-~e electric field with 
the polarization s incident on the crystal. 

From (6) and (8) it is not difficult to obtain 

!!.{m) = {II (e~"'d-e~m)lf'{ II (e~m,)_ /)}~, 
"'loFffl fflr#-m 

18(1) 

_'" ~ ( 1t0~2) ) • 7 = '/2~ (g - a), ., = 

o 

(9 ) 

The formulas (7), (6), (9), (3), (3.2),1, and (2.11),1 com
pletely solve the problem of the motion of the Y quanta 
through the crystal for an arbitrary character of the 
hyperfine splitting. The general case is however quite 
complex for analysis, since it is not possible to find in 
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explicit form the roots of Eq. (6). The analysis is made 
substantially easier if by an appropriate choice of the 
polarizations we are able to reduce the tensor g~~' to 
the diagonal form with respect to the polarization in 
indices: 

as obtains, for example, in the case of the unsplit 
line [1]. The system of equations (2) then breaks up into 
two pairs of independent equations, and the direct 
analysis (see[1,5]) shows that if the parameter 

L\ \&, = go~') gl~') -. gO(18) g::) = 0, 

then one of the roots E(~) vanishes when the Bragg 
condition is exactly fulfilled. In this case, as can be 
seen from (7), part of the Y-ray beam will travel 
through the crystal completely unabsorbed. In the ab
sence of hyperfine splittiI;lg, for the E1 and M1 transi
tions, the parameter t:J.. (S) is equal to zero for one of 
the polarizations. In the case of the E2 )tranSitions, 
however, neither of the parameters t:J.. (s vanishes 
identically, but we can, by an appropriate choice of the 
scattering geometry, sharply reduce t:J.. (s), and thereby 
sharply decrease the effective coefficient of absorption 
of the Y quanta. 

Situations in which 

for one of the roots will be called cases of realization 
of the total suppression effect, and the determination 
of these situations will be the principal problem of the 
following section. 

3. THE PRINCIPAL RESULTS. THE GENERAL 
CASE 

Let us consider the general case, when hyperfine 
splitting is present, and let us addre.ss ourselves to 
the expression for the coefficients g1Jf3 , (3.2),1 and 
(2.11 ),1, an expression which we find convenient to re
write in the following form: 

g.~iI=_g • .EA.' (p)R (p}At (p). (10 ) 

Here p is the set of indices j, l:o, and !; characterizing 
the position of the nucleus in the unit cell and the quan
tum numbers of the nuclear sublevels in the ground and 
excited states respectively; 

4n'1 21+ 1 r, 
g.= x'V 2(21.+1) r' 

{ Z;(k.)} r/2 
!;(k.)=exp --2- , R(p)= w-w",+ir/2' 

The remaining notation is standard (see[1]). 

(11) 

(12) 

(13 ) 

As was shown in [1], to the total suppres~ion of the 
inelastic channels corresponds that coherent superpo
sition of the incident and diffracted waves in which the 
amplitude of excited-nucleus formation strictly 
vanishes. In the presence of hyperfine splitting, we 
should require the vanishing of the corresponding am
plitudes for all the hyperfine transitions which turn out 
to be important for the spectral region in question. 
This, as is easily verified, is equivalent to the follow
ing conditions: 
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(14 ) 

".' 
for all the p over which the summation is carried out 
in (10). 

The superposition of the fields that satisfies the 
conditions (14) is, as can directly be verified, a solu
tion to Eq. (3) for a = 0, and to this solution corre-
s ponds the root 

(15) 

i.e., this superposition will travel through the crystal 
without absorption. 

Let us now assume that the energy of the Y quanta 
falls in a region of the spectrum where not more than 
three lines of the hyperfine structure are grouped and 
the rest are located sufficiently far away, so that their 
contribution to (10) can be neglected. In this case (14) 
is only a system of not more than three homogeneous 
equations for the four quantities EJ:). It is c lear that a 
solution always exists, and, consequently, the total sup
pression effect can be realized. 

If in the spectral region in question all the three 
lines turn out to be important, then only one linearly 
independent solution of Eqs. (14) exists. A hundred 
percent SE can then be realized for Y quanta of a 
definite polarization. If, however, only two lines lie in 
the corresponding spectral region, then the system of 
equations (14) has two linearly independent solutions. 
This means that in this case the SE can be realized 
for Y quanta of both polarizations. 

First of all it should be noted that the obtained result 
is very general and encompasses a huge number of 
diverse cases differing from each other in the multipole 
order of the nuclear transition, in the nature of the 
hyperfine splitting, in the geometry of the directions of 
the magnetic and electric hyperfine fields relative to 
the scattering plane and the crystallographic axes, in 
the structure of the unit cell, etc. On the other hand, it 
is clear that in the cases when the hyperfine splitting 
is large, we can practically always choose a section of 
the spectrum where not more than three lines group 
together and thereby a priori ensure the conditions for 
strong suppression of the inelastic Y ~ e process. (In 
computing the number of lines, we should take into ac
count the multiplicity of their degeneracy.) 

Notice that the simultaneous presence of two ano
malously absorbable waves leads, in the case of two 
close lines, to peculiar interference phenomena. Indeed, 
for small deviations from the exact fulfilment of the 
Bragg condition, i.e., for I a I « go, the roots E~m) 
which strictly vanish for a = 0 (m = 1, 2) will be equal 
to 

£0(1.')= _ d(1, 2)0: - '1,c(1, 2)0:'. (16) 

Here the d's and c's are some real and complex con
stants, respectively. Since in the general case Re E~l) 
o;t! Re E~ 2), the two waves "accumulate" different phase 
factors as they approach the exit surface of the crystal. 
This leads at once to an oscillatory dependence of the 
intensities of the transmitted and diffracted waves on 
the crystal thickness t for fixed a, or on a for fixed t. 
An analogous phenomenon is well known in x-ray 
physics under the name of the pendellosung effect[5]. 
The pendellosung effect is however observed only in 
weakly absorbing crystals. Our phenomenon is charac-
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terized by the fact that the oscillations take place under 
strong-absorption conditions. 

Furthermore, in the case of Y quanta interference 
phenomena of the type indicated above can, in a number 
of situations, also manifest themselves in the integrated 
characteristics, predetermining quite peculiar energy 
dependences. 

In the case when the energy of the Y quanta falls in 
a region of the spectrum where only one line is located, 
the system (14) has three linearly independent solutions 
and the dispersion equation (6) has accordingly three 
tri vial roots. However, not all the trivial roots are 
connected with the SE. Indeed, under conditions of 
hyperfine splitting, cases are possible when Y quanta 
of definite polarization in the incident or diffracted 
beams do not at all interact with the nuclei. Thus, in 
the case of one line Y quanta with polarizations e (s) 

a 
resrecti vely perpendicular to the vectors Aa (Pi), i.e., 
e!f . ~ (Pi) = 0, do not interact with the nuclei. Thus, 
two trivial roots are connected with this trivial circum
stance. The existence of a third root is due wholly to 
the suppression effect. It should be noted that in the 
cases of two and three lines one of the trivial roots may 
also be connected not with the SE, but with the pres
ence of Y quanta which do not interact with the nuclei. 
However, such situations in the cases of two and three 
lines are encountered quite seldom and are not a gen
eral rule, as in the case of one line. 

The dependence of the SE on the structure of the 
unit ce 11 turns out to be quite distinctive. Let us sup
pose that the section of the spectrum of interest to us 
contains three (or two) lines, each line corresponding 
to transitions in nuclei occupying different nonequiva
lent positions in the unit cell and subjected to different 
hyperfine interactions. In this case, according to the 
general result, the total SE is always realized and the 
structural factors Sj = exp (iK . Kj) (Rj is the vector 
determining the position of the j-th nucleus in the unit 
cell) can have an arbitrary value. We recall that in the 
case of x rays the deviation of the structural factors Sj 
from unity sharply decreases the Borrmann effect. 
Physically, this is connected with the fact that in the 
case of x rays to the sharp reduction in the photoelec
tric absorption corresponds that coherent superposition 
of the waves in which electric-field nodes are formed 
at the locations of the atoms. But if the factors Sj o;t! 1, 
then it is not possible for purely geometrical reasons 
for the electric field to vanish simultaneously at all the 
locations of the atoms in the unit cell. In the case, how
ever, of resonant Y quanta the realization of the SE 
requires the formation of a coherent superposition in 
which the corresponding amplitude of the excited 
nucleus vanishes for each nucleus in the unit cell. But 
if the nuclei are subjected to different hyperfine inter
actions, then the excited-state production amplitudes 
are also different. Under these conditions the geometri
cal factors turn out to be unimportant. If, on the other 
hand, the same hyperfine structure obtains in the vari
ous nuclei, then the realization of the total SE requires 
the equality to unity of the structural factors Sj. 

4. THE E1 AND M1 TRANSITIONS 

Among the nuclear transitions of different multipole 
order, the E1 and M1 transitions turn out to occupy a 
special position, since in their case the number of 
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cases (besides the above -considered general cases) 
when the total SE is realized sharply increases. Let us 
to begin with consider the E1 transitions. For these 
transitions the current operator j(k) in (12) does not 
depend of the direction of the vector k. Let us suppose 
now that the reflection has been chosen in such a way 
that 

S; = 1, f,(ko) = f,(k,). (17) 

The vectors Aa(p) then do not depend on the index a. 

Let us now turn to the system of equations (14). It is 
not difficult to see that, irrespective of the number of 
equations in this system, it always has the solution 

E/')= -E:'), (18) 

where, as the polarization vectors e~~2, we have chosen 
the unit vector perpendicular to the plane (ko, k l ). 

Thus, under the assumptions made above about the 
choice of the reflection plane and about the isotropy of 
the Mossbauer factors, in the case of the E1 transi
tion, no matter how complex the spectrum of the hyper
fine structure is (including the case of the unresolved 
spectrum), the total suppression effect is always 
realized. 

If the unit cell contains only one resonant nucleus, 
or if the Mossbauer factors are the same for all the 
nuclei, then the total SE is also realizable when 
f(ko) c;! f(k l ). The solution of the system (14) will then 
be 

(19 ) 

A similar situation obtains for the M1 transitions. The 
current operator in this case has the form 

1 (k) = ic[k;..], (20) 

where ~ is the nuclear magnetic moment operator. It 
is not difficult to verify directly that in this case, when 
(17) is fulfilled, the system of equations (14) always 
has the solution 

(21) 

where, as the polarization vectors e~~2, we have chosen 
the vectors 

(22) 

If, on the other hand, the M5ssbauer factors do not de
pend on the position of the nucleus in the unit cell, then 
the solution is determined by the formula (19) in which 
E!.i') must be replaced by E~). The result concerning 

the M1 transitions is the most important result, since 
to this type of multipole order pertains a large group of 
M5ssbauer tranSitions, including the 14.4-keV transi
tion in Fe 5 \ as well as the 24 .6-ke V transition in 
Sn1l9 • 

5. CONCRETE EXAMPLES 

We shall demonstrate below the general statements 
of the preceding sections by means of a number of 
concrete examples. Let us restrict ourselves to the 
consideration of only M1 transitions, taking our cue 
mainly from the nuclei Fe 57 and Sn ll9 , Let us for the 
same reason set 10 = 7'2 and I = :Y2. 

Let us now suppose that there exists in the nucleus 
an axially symmetric electric-field gradient. The 
spectrum of the hyperfine structure will in this case 
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consist of two lines: the two-fold degenerate line cor
responding to the ± % ~ ± 7'2 transitions and the four
fold degenerate line of the ±Y2 ~ ±7'2 transitions. 

Using now the expression for the current operator 
(20), as well as the formulas (10)-(13), we find* 

ga," = - go/(k.)f(k,) {a[ (k.k,)6" - k,'k.'] I x' + b[k.q]'[k,q]' I x'}, 

a = 'I,R(+) + '/,R(-), b = 'I,[R(+) -R(-)], 
R('F) = (x± 'hI'!. + i)-', x = 2w/r. 

(23) 

Here q is the unit vector directed along the electric
field gradient and A is the magnitude of the quadrupole 
splitting in units of r /2. The x = - A/2 line corre
sponds to the ±7'2 ~ ±7'2 transitions and the x = A/2 
line, to the ±:Y2 ~ ±7'2 transitions. 

In writing down (23), we assumed that the unit cell 
contains only one atom. In order to make the analysis 
most transparent, let us direct the vector q towards 
the scattering plane (ko, k l ). In this case, as can be 
easily obtained directly from (23), the system of dy
namical equations (2) splits up into two pairs of equa
tions separately for the a- and 1T-polarized waves. In 
this case 

(24) 

(25) 

where 
(n) (n) 

q. = qe •. 

The roots of the dispersion equation (6) will be deter
mined by the formula (3.10),1. 

It is easy to show (see[3 J) that the minimum value of 
1m Eo is realized for 

a = a, = - Im[ (go~')- ~g,<"\!::)']/~ 1m go<:) , (26) 

and 

It is already easy to see from formulas (25)-(27) that 
for the 1T-polarized quanta 3. (1T) = 0 and 1m Eo(a = 0) 
= 0, Le., a hundred percent SE is realized. For the 
a-polarized y quanta 

,'\<,) = go'j'(ko)t'(k, ) (1 - p<n,,) 1m a 1m (a - b). (28) 

It follows immediate ly from (23) that in the vicinity of 
the ±% ~ ±7'2 transition a = b and, consequently, 
:A(a) = O. 

Thus, in this spectral region a hundred percent SE 
is also realized for a-polarized Y quanta. In the 
~ici.,pity of the ±7'2 ~ ±7'2 tranSition, where the condition 
A (a) = 0 is not fulfilled, Y quanta of this polarization 
are strongly absorbed. All this is in complete agree
ment with the results of preceding sections. The 
realization of the hundred percent SE for 1T-polarized 
quanta is the result of the multipole order of the 
nuclear transition, while the characteristics of the ab
sorption of a-type y quanta are determined by the 
multiplicity of the degeneracy of the corresponding 
spectral lines. 

For a c;! aI, but I a I « go, we easily find from 
(3.10 ),1 

1m 80. = 1m 80.(a.) + (a - a,l' I 2ao', 
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Furthermore, in the case of a thick crystal, when 
only the weakly absorbable superpositions correspond
ing to the roots (29) reach the exist surface of the 
crystal, it is not difficult to obtain for the intensities of 
the transmitted (JT) and diffracted (JR) beams the 
following formulas 

(a-a,)' Xl} 
, ' ao 10 

(31 ) 

If the beam incident on the crystal is uncollimated, then 
the intensities of the transmitted and diffracted quanta 
will be proportional to the integrals 

(32) 

From (31) we easily find that 

(33) 

The above-noted distinguishing features of the SE 
are, in the presence of quadrupole splitting, distinctly 
manifested in the integrated characteristics as well 
(and, consequently, they can relatively easily be experi
mentally observed). Thus, for the 7T-polarization, (}l 
= 0 and 1m E:07T( 0) = 0, and from the formulas (31)- (33), 
(24), and (23) we have 

ITR = iTP' {Im (-~)} -'I, = iTR (1+~ ,." ) -'," 
" a ' 16 (x+M4)'+1 ' 

(34) 

where iT,R are constants not depending on x. 

The corresponding curve of the dependence J~)R(X) , 
is shown in the figure. The upper part of the figure 
shows the usual absorption spectrum of a thin crystal 
corresponding to the direction of the axis of the gradi
ent of the crystalline field in the ko - kl plane (see the 
sketch in the figure). It can be seen from the curve 
J(7T) (x), as well as from the formula (34), that the in-

T,R 

I't/To=IUU 

-10 5' 10 i& 
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tensities of the 7T-polarized quanta transmitted through 
the crystal are approximately the same in the vicinities 
of the ±~2 - ±Y2 (x = ~/2) and ±Y2 - ±Y2 (x = -~/2) 
transitions, in spite of the fact that the strengths of the 
interaction between the Y quanta and the nuclei differ 
strongly in the vicinities of th.e indicated transitions. 
The deep dip in the curve J~k(x) is determined by the 

interference of the amplitudes of the nuclear scattering 
from the two lines. The corresponding amplitudes are 
absolutely quenched when x = ~/4. For a-polarized 
quanta the situation changes abruptly. As can be seen 
from the corresponding curve J~ k, strong absorption 

occurs near the ±Y2- ±Y2 transition, while in the 
vicinity of the ±% - ±Y2 transition we have J(a) 
~ J~k. T,R , 

The dependence of the integrated characteristics on 
the energy of the incident quanta that is qualitatively 
described above remains for an arbitrary direction of 
the axis of the electric-field gradient. Only the direc
tions of the vector q drop out from the general case, 
when q is perpendicular to either ko or kl (or to both 
vectors at once). In fact, let us direct q along the 
vector e(a). The 7T-polarized Y quanta do not then inter
act at all with the nuclei near the ±% - ±Y2 transition. 
The interaction of these quanta with the nuclei in the 
vicinity of the ±Y2 - ±Y2 transition guarantees them a 
hundred percent SE. For the a-polarized quanta a 
hundred percent SE is not realized in any region of the 
spectrum. They will be strongly absorbed in the vicini
ties of both the ±~2 - ±Y2 and ±Y2 - ±Y2 transitions. 

As to the magnetic hyperfine splitting, we shall not 
here dwell on the cases when the magnetic unit cell 
contains two groups of Mossbauer nuclei acted on by 
hyperfine magnetic fields that are close in value but 
different in direction. The hematite Fe 203 can serve as 
an example (see[7 l). In the case of strong splitting when 
the spectral lines are sufficiently far apart, in order for 
total SE to be realized, it is sufficient that the structural 
factors Sj be equal only within each group. The rela
tion between the structural factors of different groups 
can be arbitrary. A hundred percent SE is then realized 
at once for both polarizations. This result very much 
enlarges the number of reflections in which total SE is 
realized. It is worth noting that even a small difference 
among the structural factors within one group leads to 
an appreciable restoration of the nuclear absorption, a 
fact which has been experimentally observed inI7l . 

6. ROLE OF THE INTERACTION WITH THE 
ATOMIC ELECTRONS 

In the resonant Y-ray diffraction process there 
participate not only the nuclei, but the atomic electrons 
as well. Since diffraction scattering is a purely elastic 
coherent process, interference occurs between the 
resonant nuclear and electron Rayleigh scatterings. 
This interference is sharply manifested in the energy 
dependence of the intensity of the transmitted and dif
fracted quanta and has already been quite well investi
gated from both the theoretical and experimental points 
of view (see[8-11] and the references cited therein). It is 
natural for an enormous number of diverse manifesta
tions of this interference to arise under hyperfine
splitting conditions. However, in the present case there 
emerges another aspect of the role of the electrons. 

In the preceding section we found a large class of 
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cases when the total SE is realized under purely
nuclear-scattering conditions. The question arises: In 
which of these cases is the total SE preserved in the 
presence of electron scattering, and to what extent is 
nuclear absorption restored in the remaining situations. 

The interaction with the electrons introduces into the 
coefficients of the dynamical system of equations (2) 
the additive terms 

where POI is the location of the a-th atom in the unit 
cell and FOI(k) is the atomic structural factor in which 
we have included small imaginary corrections deter
mined by the photoelectric -absorption process (see, for 
example, [12,13)). In the absence of nuclear scattering the 
system of dynamical equations (2) with the coefficients 
(35) has as solutions superpositions of either the 11-
polarized waves only, or the a-polarized waves only. It 
follows immediately from this that the switching on of 
electron scattering will not lead to the restoration of 
nuclear absorption only in those cases in which the 
superimposed waves, which are responsible for the 
realization of the total SE, are only 11-type, or only 
a-type waves. The cases considered in the preceding 
section for the E1 and M1 transitions are just cases in 
point. 

The above-noted conditions are, however, necessary 
but not sufficient. In order to find the situations of in
terest to us, we must verify that the superpositions (19), 
(30), or (18) are, for some value of Ct, a solution to the 
diffraction problem (2) when both nuclear and electron 
scattering are taken into account. Direct analysis leads 
to the requirement that the coefficients xM and xU be 
real. The imaginary corrections in the atomic ampli
tudes FOI(k) can be neglected, since allowance for them 
leads to the restoration of absorption of the order of 
just the ordinary photoelectric absorption. 

Thus, we arrive at the following general statement. 
In order for the total SE to be preserved in the cases 
of the E1 or M1 transitions in the presence of electron 
scattering, it is sufficient to choose the reflection so as 
to satisfy, besides the condition (17), also the condition 

1m {L/KPa ta(K) Re Fa (K)} = O. 
a . 

(36) 

If the unit cell contains only one atom, then the condi
tion (17) is automatically fulfilled. But even in complex 
lattices it is easy to satisfy this condition. In the re
maining cases electron scattering leads to a partial 
restoration of nuclear absorption. If the electron
scattering amplitude is small compared to the nuclear
scattering amplitude, then this restoration will also be 
small-of the order of J.L~es I XoI!go 12. 

Finally, let us briefly discuss the role of electronic 
absorption. Under diffraction conditions there occurs 
not only suppression of nuclear reactions, but also a 
reduction in the photoelectric absorption (the Borrmann 
effect), the maximum decrease in the photoabsorption 
occurring in the superposition of a-waves. As was 
shown above, the superposition of a-waves provides a 
strong suppression of the inelastic channel in the case 
of E1 transitions. It follows immediately from this that 
we need not, in the E 1 transitions, particular ly worry 
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about the thickness of the crystal, since there occurs in 
this case a sharp decrease in both the nuclear and the 
electronic absorptions. 

For the M1 transitions the situation changes 
abruptly. Here the nuclear-absorption suppression oc
curs in the superposition of 11-waves, while the elec
tronic-absorption suppression occurs in the superpo
sition of a-waves. It is clear that in the present case 
it is not possible to work with crystals that are too 
thick. The thickness l of the crystal should be of the 
order of, or less than the photoelectric absorption 
length lph. It should be noted here however that in a 
number of cases it is disadvantageous to take crystals 
which are too thin, since more expressive curves of the 
energy dependence JT R are obtained for thicknesses 
lph ~ l. ' 

*[k"q] =ko X q. 
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