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Asymptotics of the nonrenormalized photon and meson Green's functions and 
vertex function are obtained in the high momentum range and also the charge 
renormalization constant are obtained in the so-called ao(aoL)n-approximation 
(the definition of which is given in the text). The analysis is performed in the 
Duffin-Kemmer formalism. 

INTRODUCTION 

The calculation of the asymptotic Green's functions 
and the renormalization constants by the method of sum­
ming the principal terms of the expansions in the coupling 
constants plays an important role in the investigation of 
the structure of renormalizable field theories[1-5). Such 
calculations constitute a definite departure from standard 
perturbation theory and, besides being of independent sig­
nificance, make it possible to investigate, to a certain 
degree, such questions as the problem of the self-consis­
tency of the theory, the question of the true character 
(outside the scope of perturbation theory) of the diver­
gences, the existence of solutions of the superconducting 
type, etc. 

In spinor electrodynamics, such investigations were 
carried out[6, 7) up to the so-called "five-gamma" or 
a(aLjll approximation, which follows from the "three­
gamma" or (aL)n approximation of Landau, Abrikosov, 
Khalatnikov, and Fradkin[l, 2). It is of interest to consider 
with the aid of analogous methods also the scalar electro­
dynamics. In this theory, calculation of the Green's 
functions in the "three-vertex" or (aoL)n approximation 
was carried out by Gor'kov and Khalatnikov[5). They have 
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vertex function r;\.(p, q) (49) are represented by formulas 
(50), (55), (57), (58), and (63); those of the photon Green's 
function and of the charge renormalization constant Z3 by 
formulas (27) and (23). 

THE CONSTANT Z3 

Z3(aO) is defined in terms of the polarization operator 
1T*(k) by means of the formula[S) 

6.. a' .) I 1 + C Z,-'(cx.o)=1+i----II (k .. . 
8 ak. ak. '-0 

(1) 

It is easy to show that the ao~aoL)n contribution to C is 
made by the following integrals1 (Fig. 1): 

C = C1 + C, + C,; (2) 

(3) 

shown that in a specially chosen gauge of the photon C, = ~(~)' Sp S T.{p) T. (p) Ta(P, k)Tv{k)T.{k)Ta(k,p)D{k- p)d'pd'k, 
Green's function (Feynman gauge), the equation for the 12 4" (4) 
vertex function contains in the (aoL)n approximation only . 

! ( cx. )' one three-vertex diagram, so that the system of the Dyson C,=- -7 spf T.(p)T.(p,k)Tv(k)Tv(k)T.(k,p)T.{p)D(k-p)d'pd'k, 
equations becomes closed. 12 4" (5) 

In this paper we calculate the asymptotic forms of the 
photon and meson Green's functions D(k) and G(p) in the 
vertex function r;\.(p, q) in the region p2, k2 ,..,. q2 » m2, 

where we put for brevity 

T.(p, k) ... f.(p, k)G(k), T.(p) "" T.(p, p). 

and also the renormalization constant of the charge Z3 in We consider first the integrals C2 and C3. In these 
the ao(aoL)n approximation that fonows (aoL)n. In this integrals, to obtain the ao(aoL)n terms it suffices to take 
approximation, all the terms of the type ao(aoL)n are all the functions in the (aoL)n approximation, since one of 
summed in terms of the nonrenormalized coupling con- the integration has a nonlogarithmic character. The func-
stant a o where n = 0 1 2 ... and L is the general sym- tions G, rp', and D in the integrals (4) and (5) take in the , , " , 2 2 n ... [5 10) 2) 
bol for large logarithmic parameters of the type In(A Yp), (aoL) approxImatIOn ill the form ' 
In(A2/m2), etc. We neglect in this case only the terms 
ao"(aoL)n and smaller. The calculations are carried out in 
the Duffin-Kemmer formalism with the aid of the corres-
ponding Dyson equations. 

In the ao(aoL)n approximation, the equation for the ver­
tex function receives contributions not only from the 
three-vertex diagram, but also from the five- and seven­
vertex diagrams (see Fig. 2). More complicated diagrams 
make no contribution, so that the system of Dyson's equa­
tions becomes closed and provides a basis for the investi­
gation of the ao(aoL)n approximation. The results of the 
calculations of the mesic Green's function G(p) (28) are 
represented by formulas (62), (69), and (70); those of the 

977 SOY. Phys.-JETP, Vol. 37, No.6, December 1973 

G (k)=[-kA (k)+imBo(k)]-l= -kAo-imBo+iAo'Bo-l{k'-k')lm 
'0 k'Ao' + m'B," 6" 

ao N -'1, ( ) 
A o(k)=(1+-ln-) 

12" k' , 

Bo(k)=(1+~lnN)'/(1+~lnN)'I' A'>k'>m', (7) 
12" k' 12" m' ' 

Do(k - p) = !(k ~ pl' do(k - p), do(k - p)= (1+ 1~: in (k ~:)' ) -~8) 
iJ 

fo"(p,p) = -iiP:G-'(p)= ~.Ao(p), (9) 

fo"(k, p) = ~,Ao(k) + [-~Ao'(k)Bo-' (k) (k.ka - k'Ii .. ) 
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] 1 
-Ao(k)k"~, k"XI,(k,p)+ ... (k' ~ p'), (10) 

k 

Xl,(k, p)= ~XSG(p - t) r,(p - t, p)D(t)d't = X[p,(Ao(p)Ao-'(k) -1) 
4,,' 

;' +im~,Ao-'(k)(Bo(k)-Bo(p»l. (11) 

In the integrals (4) and (5), the functions (6) - (11) can 
be simplified when account is taken of the following 
remarks. Let the integration with respect to k in (4) and 
(5) be nonlogarithmic. In the integration of the terms 
containing In k2 or In(k - p)2, the ao(aoL)n contribution 
which we need is made, as can be readily seen, by the 
regions A 2 » k2» p2 and k2 « p2. The integrals that 
arise in the region A 2 » k2 » p2 are of the type 

.• ( p' ) m d'k A p' m d'k 
ao S (aolnk')" k' y=ao(aolnp')n S h-'-} y 

p • (12) 

+O(ao'(aoL)n), m,n>O, 

and in the region p2 »k2 » m2 of the type 

• ( k') m d'k aoS (aolnk')n - -.-, =ao(aolnp')n 
PI p2 p'lk2 

P ( k') m d'k .,[ Ii P'k,+O(ao'(aoL)n), m,n>O. 

(13) 

Relations (12) and (13) making it possible to make the 
substitution In k2 - In p2 in the functions (6) - (11) 
without loss in the assumed accuracy; this leads to the 
following simplifications in the integrals (4) and (5): 

Ao(k) ~ Ao(p), Bo(k) ..... Bo(p), do(k - p) ..... do(p); 

ro"(k, k), ro"(k, p) ~ ~"Ao(p). 
(14) 

Substituting (14) and (9) in the integrals (4) and (5), we 
get 

C,= 1i24~' Sp S ~"Go(p)~,Go(p)<p,"(p)Go(p)Ao'(p)d'p, 
. (15) 

C,= 1~ :,:, Sp S pl,Go(p)<P"(p)Go(p)~,,Go(p)Ao'(p)d"p; 

<p,"(p) = ~Ao' (p) S p,Go (k) ~,Go (k) ~"Go (k) ~,Do (k - p) d"k (16) 
4",1 

ao 1 [ PP"P. 1, 1 ( ) = -do(p)- --0-+ -(1'6". - p"~. - p.p") + 2p"X~, + 2PV~'X 17 
4" p' P' 2 

(in 'the last integral we have integrated with respect to k 
in the standard manner). Substituting (17) in (15) and (16) 
and carrying out the logarithmic integration, we obtain 

C,+C,=--ln 1+-ln-ao ( ao A') 
4" 12" m" 

(18) 

We proceed now to the integral Cl. To separate the 
ao(QoL)n contribution of interest to us, the functions G 
and r jJ. in this integral must be taken both in the (aoL)n 
approximation (in which case the integration should be 
exact), and in the ao(aoL)n approximation (in which case 
logarithmic integration suffices). The functions G and 
r jJ.' with allowance for the ao(aoL)n approximation terms, 
take the form 

G(p) = [ - pA (p) + imB(p) _ : Xp2c:p(p) ] -, 

-pA-imB+(ilm)A'B-'(p'-p') i (19) 
= (1+c:pA- 2B)+-Yc:pA-" 

p'A'+m'B' m ' 

a ' a 
r"(p, p)= --G-'(p) = poA (p) + p-A (p) 

ap" up" 
,a i ao pp" 

- lm-B(p)+-X2p"'f!(p)= [l"A +- -:-Aod, 
op" m 4" p-

eto imp", i ( ) 
+ --.-Bod, + - 2p"Xc:p, 20 

2" r m . 

where the argument p has been left out from all the 
functions for simplicity. In the last equation, in the differ-
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entiation of A(p) and B(p) we have replaced A and B by 
Ao and Bo without affecting the assumed accuracy. 

Substituting (19) and (20) in (3) and carrying out the 
corresponding calculations under the integral sign, we 
obtain 

i ao {-4p'+20m'Bo'(p)Ao-'(P) 
C, = 124;;'l (p' + m'Bo' (p)Ao-'(p) )' 

13 ao do(p) } d'p.(21) 
" (p'+m')' 

In the first term of the integrand of (21), the integration 
should be exact, and in the second logarithmic. The first 
term in (21) can be simplified by recognizing that the 
term mBoAo- 1 makes an ao(aoL)n contribution only in the 
region p2 ~ m 2, and therefore, taking into account the 
explicit form of the functions Ao and Bo (7), it can be 
transformed into 

mBo(p)Ao-'(p) ..... mBo(m)Ao-'(m) = m. 

Further integration of (21) entails no difficulty and 
leads to the result 

C,=- In--- +-In 1+-1n- . ao ( A' 8) 13ao ( ao A' ) 
12" m' 3 4" 12" m' (22) 

On the basis of the results (18) and (22), in accordance 
with formulas (1) and (2), we obtain the following value 
for Zs with allowance for the (aoL)n and ao(aoL)n 
approximationsS ) 

Z -t 1 + ao AI Zao ao ( ao A' ) 
3 = -In---+3-ln 1 +-In-

12" m' 9"" 12" m' . 
(23) 

PHOTON GREEN'S FUNCTION 

We proceed now to the photon Green's function D(k). 
The calculation of the asymptotic ao(aoL)n form of the 
function D(k) can be carried out in the usual manner with 
the aid of the Dyson's equations. If we know the value of 
Zs, then the asymptotic form of D(k) can be obtained also 
by another method, using the connection between D and Zs. 

The nonrenormalized function D(k) satisfies the fol­
lowing relations(8l: 

lim ik'D(k) = z" 
'_0 
lim ik'D(k) = 1. 
.-~ 

(24) 

(25) 

The changeover in relations (24) and (25) from the exact 
value of D(k) to its asymptotic form, at the accuracy con­
sidered by us, correspond to replacing the limits k - 0 
and k - co in the logarithmic terms by the limits k - m 
and k - A. This change of the limits is reflected only in 
the value of the nonlogarithmic term, i.e., a constant, 
which we shall denote by c. Comparing relations (24) and 
(25) with the result (23), we find 

[ ao A' ao ( ao A' ) ] -t d(k)= 1+-ln-+3-ln 1+-ln- +aoc . 
12" k'" 12" k' 

(26) 

The constant c is determined from the agreement 
between (26) and the results of the calculations in the first 
order in a o(9l, and turns out to be equal to zero. Thus, the 
asymptotic form of the photon Green's function d(k), with 
allowance for the terms of the (aoL)n and ao(O'oL)n 
approximations, takes the form 

d(k)= 1 +-In-+3-ln 1 +-In- . [ ao A' ao ( ao A' )] -, 
12" k'" 12" k' 

MESON GREEN'S FUNCTION 
ANDVERTEXFUNCTION 

(27) 

1. The meson Green's function G(p) has the following 
structure: 

G-' (p) = - pA (p) + imB(p) _ ~XP'c:p(p). 
m (28) 
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The aa(aaL)n asymptotic forms of the functions A, B, 
and cp are easiest to find from the corresponding 
asymptotic vertex function rA(p, q) in the region p2 » 
q2 » m2, using the generalized Ward identity 

(p - q),r,(p, q)= G-' (q)- G-I(p)= pA (p) - qA (q) 
. i (29) 

-lm[B(p) - B(q) ]+-X[p'<p(p) - q'<p(q)]. 
m 

In this case the asymptotic form of rA(p, q) need be known 
only accurate to terms linear in m/p and qjp. 

In the aa(aaL)n approximation the equation for the 
vertex function can be shown to receive contributions, 
besides the three-vertex diagram r~3), also from the 
five-vertex diagram r~5) and the seven-vertex diagrams 
rr). The appearance of seven-vertex diagrams in this 
approximation is due to the fact that at large momenta 
the mesic Green's function assumes a constant value 
(with logarithmic accuracy), unlike in spinor electro­
dynamics, where the electron Green's function in the 
asymptotip region is inversely proportional to the momen-' 
tum, and this is the reason why there are no seven-vertex 
diagrams in the a(aL)n approximation [6). In the considered 
approximation, the equation for r A takes the form 

rdp, q)=~, + r,('l (p, q) + r:'l (p, q) + r:7l (p, q), (30) 

where r*"), r~5>, and rl') are expressed in terms of r 11' 

G, and D in accordance with the diagrams of Fig. 2. 

To simplify the exposition that follows, we introduce 
the following notation. Anyone of the functions f con­
sidered by us will be represented in the form 

(31 ) 

where fa is the contribution of the (aaL)n approximation 
and 1 is the contribution of the Qa(aaL)n approximation. 
An equation for r\ is obtained from (30) by separating the 
ao(aaL)n parts in each term: 

In accord with Fig. 2, the integralrx3)(p, q)takes the form 

(3) aO S r, (p,q)= ~nJ r.(p,p-k)G(p-k)r,(p-k,q-k) 
(33) 

x G(q - k)f.(q - k, q)D(k)d'k. 

FIG. 2 

logarithmic integration, and the sought aa(aaL)n contri­
bution, the determination of which calls for a more 
accurate integration. The integrands are given by for­
mulas (6) - (11). In the integral (35), the functions G and 
rjl, which contain the momentum p, can be simplified 
(cf. the analogous Simplification (14) in the integrals 
(4) and (5)), and reduce effectively to 

ro"(p, p - k) ->- ~.Ao(p), ro'(p - k, q - k) ->- ~,Ao(p), 

Ao(p-k) ->-Ao(p), Bo(p-k) ->-Bo(p). 
(36) 

We note that since we are calculating I\(p, q) accu­
rate to terms linear in m/p and qjp, it suffices to calcu­
late the function r tL(q - p, q), which enters in (35), 
accurate to terms linear in m/k and qjk. 

As a result of the Simplifications (36), the integral 
(35) takes the form 

1. (p, q) = ~Ao'(p) S ~.Go (p - k) ~,Go(q - k) ro"(q - k, q)Do (k)d'k. (37) 
4n' 

Substituting in (35) the expressions (6) - (11) and inte­
~rating with the aid of the formulas of the Appendix of 
6), we obtain 

o:o{ 3 1 1 A 

I,(p, q) = 4;" -4 ~,Aodo +2Aod0p'(p.~, - pB., - p,~,) [!.(p, q)+ q,] 

+ ;, [ ~ AoBo _I (p,p, - p'B,,) - P,~.] X [ : Aodo (!,(p, q) + q.) (38) 

- ~ q.Aodo(q)+im~,(Bodo-AoBo(q)Ao-l(q)do(q»]}. 

3. We now consider the integral r~)(p, q). This integral 
takes the following form (see Fig. 2) (here and below, 
where there is no danger of misunderstanding, we shall 
not write out the corresponding index in the functions of 
the (aaL)n approximation): 

r?)(p,q)= (.:,)' S f.(p,p-t)G(p-t)r,(p-t,p- t-k) 

x G(p - t - k)r,(p - t - k, q - t- k)G(q - t- k)r.(q -t - k, q - k) 

x G(q - k)f.(q - k, q)D(t)D(k) d'k d't. (39) 

To obtainI'\ (p, q) from (33) it suffices, after repre­
senting each of the functions in the integrand in the form 
(31), to retain, first, the products of all fa (this integral 
will be deSignated I;~) and, second, the product of five fa 
by one of the 1 (the corresponding integrals will be desig- The functions G, r J.I.' and D in (39) are given by formulas 
nated I~), ... I~), where the superscript corresponds to ,(6) - (11). To separate the Qa(QaL)n contribution, one of 
the sericU number of the function taken with the tilde, the integrations in (39) (with respect to d4k) should be 
reading from left to right). In the integrals ~5) and I'x7 ) , logarithmic, and the other (with respect to d4t) must be 
which are not written out to save space, it suffices to exact. The logarithmic integration occurs in the regions 
take all the functions under the integral sign in the (aoL)n A 2 »k2 »p2 and p2 »k2» q2. In the region p2 »k2 » 
approximation. As a result, Eq. (32) takes the form q2 the integrand of (39) can be simplified (cf. the simplifi-

r,(p, q)= hip, q)+ t I:" (p, q)+ f:" (p, q)+ ft' (p, q). (34) (:J:~~~f ~~) l~:~~~~~~c t~~~~~~s in the integrals (4) and 

This equation for ;the vertex function I'\(p, q), in f,'" (p, q) ->- (4~') , S ~.G(p - t) ~.G(p - t) ~,G(q - t - k) 

accordance with the problem posed above, will be solved 
in the region p2 »q2 » m 2 with accuracy up to terms x r.(q - t - k, q - k)G(q - k)r.(q - k, q)D(k)D(t)A'(t)d'k d't 

linear in m/p and qjp. = {a:. [ro'(p, q - k) + hip, q - k)] } !.(p, q) 
(40) 

2. Let us consider the integral Ix (p, q) 
(1;0 S h{p, q) = 7;;3 ro"(p,p - k)Go(p - k)ro'(p - k, q - k) 

x Go (q - k) ro"(q - k, q)Do (k) d'k. 
(35 ) 

It gives both an (aoL)n contribution, which results from 
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0:0 ~,p" 
=-4 A(p)d(p) -, l.(p,g). 

n p-
In the region of logarithmic integration A2 »k2 » p2, 

carrying out the corresponding simplifications of the 
integrands, we obtain 
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f:' (p, q) .... (ex,)' S f.(p,p - t)G(p - t)~,G(p - t- k)~,G(q - t- k) 
4,,' 

x ~.G(q - k) f,(q - k, q)D(k)D(t)A'(k)d'k dlt. (41) 

In the calculation of this integral it is convenient to 
separate the contributions of the term ~ q - p, so that 
this makes it possible to simplify Significantly the 
remaining integral. The calculations are standard and the 
result is 

r,(" (p, q) .... ~~X (~) 'SA (p - q),A'(k)B-'(k)d'(k) dk~' 
4 m. 41t 

p 

+~SA {-~[f"(P' q - k)+ I,(p, q - k) l} G(q - k) 
4,,' " ak, 

(42) 
, A 1 

xf,(q-k,q)D(k)dlk= (:~) S [-4~' 
p 

3 . dk' 
--"":'X(p + q),A(k)B-'(k)] A (k)d'(k)-, . 

4 m k 

Gathering together the results (40) and (42), we obtain for 
r~'(p, q) the final expression: 

1;" (p, q) + 1~" (p, q)+ 1.(" (p, q) .... {r.(p, p)G,(p)~, + ~ii(p) ~.A,(p) 

+ ~.G,(p)r,(p, q) }A,(p)'.(p, q), (46) 

I.'"(p,q)+It' (p,q)+Ii" (p,q) .... ~.G,(p)~,A,'(p) 

x ~S·{C(q - k)fo"(q - k, q)D,(k)+ G,(q - k)i\(q - k, q)D,(k) 
4,,' 

.j (47) 
+ G,(q - k)fo"(q - k, q) D (k) }d'k. 

The functions Ao, Go, rl/", Do, and rJ.,L(p, p) that enter in 
in (46) and (47) ar~gi ven by formulas (6) - (11) and (20), 
while the function G(p) is determined from (19) and takes 
the form 

C(p)=~ [PA - im(B- 2jfB,A'-')-~BA"B,-,(p'- p')] 
p A, m (48) 

i +- Y<pA,-' + G,(p) <pB,A,-'. 
m 

The asymptotic form of the function r A (p, q) in the 
region p2 » q2 »m2 can be represented, accurate to 
terms linear in m/p and qjp, in the form 

- i (P) (1 ) f,(p,q)=~.A,+-;;-XP'<Pl+V' P,q +V. P,q , (49) 
-(., ) ex, ~,p, ) ( ) 
f, (p,q =-4 -, A(p d p ',(p,q) 

" p where y,,(p/p, q) denotes terms of zeroth order, and 
(43) y,(l/p,q)denotesterms of first order in the parameters 

, A 1 3' dk' " <;>: (S) + (~) S [--~'--"":'X(p+ql'A(k)B-'(k)] A(kld'(k)-. m/p and qjp.4) The contribution of the integrals IA,.l A , 
4" p 4 4 m' . k' and r~7) to the function )\ (pip, q) is proportional to. 

4 W d t th . t al r(7)( ) T b the matrix X. It is easy to show that the integrals Iil ) 
. e procee now 0 e m egr SAP, q. 00 - 1 ak t 'b t· h . th t t t 

t · th (L)n t'b t· t r (7)·t ff' t tak 11 a so mea con rl u lon avmg e same s ruc ure 0 am e o!o o!o con rl u lOn 0 A 1 su lces 0 e a y I 
the integrand functions in the (O!oL)n approximation, since A(P p, q). 
one of the integration has a non logarithmic character. Substituting (49) in the generalized Ward identity (29) 
These integrals, just as the integrals rlS) considered and separating terms having the same matrix structure, 
above, are calculated in accord with the following scheme: we obtain the following relations: 
first we separate the regions of exact and logarithmic 
integrations; we then simplify the logarithmic functions in A, =A(p), <PI ~<p(p), (50) 

the integrals (for an analogous simplification see the in- P'V' (pP ,q)= ~ Xpq<p(p), 
tegrals (4) and (5)); this simplification makes it possible 

(51) 

to carry out exact integration, using standard integrals, P'V' ( pi ,q) = im[B(q)-B(p) l+ q[A(p)- A(q) l. 
and the final result is obtained after performing the two 
remaining logarithmic integrations. 

(52) 

We omit the calculations, which are quite cumbersome, 
and present only the final answer for rf): 

-,7, 21 i (€x, )' SA . 1\ (p,q)=--- - [XJ.(k,q) 
4 m 4" 

p 

dk' 
+ J.(k, p)XlA'(k)B-' (k)d'(k)Tz' 

(44) 

5. We consider now the integrals I~)(p, q). We write 
out explicitly only the expression for I~): 

I.'" (p, q) = 4~' S r.(p, p - k)G,(p - k)f,'(p - k, q - k) 

x G,(q - k)fo"(q - k, q)D,(k)d'k. 
(45) 

The remaining I(~) differ from (45) only that for the 
functions with the tilde we take not r /l' but 'functions 
whose pOSitions correspond to the value of the index (i). 
The I~) contain one O!o(QloL)n-approximation function, and 
therefore the Qlo(O!oL)n contribution to them is obtained 
from the logarithmic integration in the regions A2 » k2 
»p2 and p2 » k2 » q2. 

We consider first the region p2 » k2 »q2. Expanding 
the integrand in this region in powers of t .e parameter 
kip, it is easy to estimate that the requirl 1 contribution 
is made to the functions r J.1. (p, p - k), G(p - k), and 
r A (p - k, q - k) only by the first te rm of the expansion. 
This allows us to write 
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Substituting in (46) and (47) all the necessary functions 
and performing the matrix operations, we obtain 

(1) (2) (3) 1 { i I. (p,q)+I. (p,q)+I. (p,q)=-:; -AB-J(2A-BAB- J) 
p- m 

( 2) i _. 3ex, ~ P'P. x hP,-p6 .. -2-p.p'<P-p,~.A--p-Ad 
m 4" p' 

+~P.~,Ad}X'),(p, q), 
21t 

(53) 

(") (5) (6) 1 [ i ] I. (p,q)+I. (p,q)+I. (p,q)=-:; -A'B-J(ppp.-6 .. p')-Ap,~p 
p' m 

X~S'{-imR,,(~- AB + <pB' +Ba) _i.. q !...-
4,,'. P A A' A' Ad 2· d 

(54) 

We now proceed to calculate the integrals I~i> in the 
logarithmic integration region A 2 » k2 »p2. The functions 
r/l(p, p - k) and G(p - k) which ent~r in the int~grals are 
taken in the form (49) and (48), whlle the function 
rA(p - k, q - k) is given in (A.6) of the Appendix. We note 
that the considered region of logarithmic integration in 
the integrals Ixl ) makes no contribution to the function 
Y(l/p, q) from (49), and therefore Y J.1. (lip, q) is deter­
mined completely by the results (38), (43), (44), (53), and 
(54). 

For the calculations that follow, it is convenient to 
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represent the functions Y!l(p/p, q) and Y jJ.(1/p, q) in the 
form 

~, (; , q) + ~, (; , q ) = [ ~ AB-' (p,p, - p'6.,) - p,~, ] 

x :' ~,+ ~,: ( ~ , q) + ~; ( ~ , q) , 
(55) 

where on the basis of (38), (43), (44), (53), and (54) we 
have 

~,= AJ,(p, q)+_o -Ad(J,(p, q) + q,) --q,Ad("q) a [ 1 J 
4" 4 4 

+3(P'~'- P p;, )J,(p,q) J- (57) 

In the foregoing expressions, the functions A, B, d, and q; 
under the integral sign have the argument k, and those 
outside the integral have the argument p. We note that the 
function Ya can be obtained by starting from relations 
(52) and (55) - (57) in the form 

~,= im~" [E(p)- E(q)- :~ (B(p) - B(q) )d(p) ] 

+q{if(q)-A(P)- ;~ A(q)d(p)]. 
(58) 

Substituting the corresponding (QloL)n- [lnd Qlo(QloL)n­
approximation functions in the integrals I~J.) and carrying 
out the logarithmic integration in the region A 2 » k2 » 
p2, we obtain 

~6 (' ao SA { [ 1 ( a: ) B ao Ad] Ix' (p q)~- ~,-- A+A- --qo+-
, 4,," 2 d A 16" _ 

p 

+~X(p+ q), (~qo- 9ao A' d) +~[X"(k,q)+h(k,p)Xl 
m 2 16" B m (59) 

x [~qo_ 3ao A' d':"'~~(lT -E~)] +[x~,·(!!....,q) 
2 16" B 4 B B k 

( k ) ] (k'k, ) } d'k +~; k'P X 2Tz -{", d(k)----;;;;. 

6. Gathering together the calculation results (38), (43), 
(44), and (53) - (59), we obtain the following expression 
for r,,(p, q): 

i\ (p, q) = ~,A + ~ XM +-~i r ~ AI) (pop, - p'b,o) - p,~o] ~, 
m p ~ In J 

+ ~,' (1.., q) + ~,' (~, q) = - 3IXo Ad~, +-!,[ ~ AB (pop, _ p'6,,) 
p p 16" P rn 

_ p,~, [ ~,+ ~,' ( ; , q) + p1,~ [ ~ (A _ B !}; ) (P.P, - P'o,.) - 2N.'I' ] 

XXJ.(P,q)+4~" J {~,[ -+( A+A :) -~ qo] (60) 
p 

i ( 1 3ao A' \ i 
+_X(p+q), -;-qo---d +-[XJ.(k,q)+h(k,p)Xl 

m 2 4"B m 

x [~qo_ 3ao A' d-2~(A -E~)] + [x~;(.!!...., q) 
2 2"B 4B B k 

+~;(~ 'P)X](2k~~'-lh,)}d(k)~:~. 
In the foregoing expression y:!e d~d not write out. explicitly 
the functions y;(1/p, q) and Ya , smce they are glven by 
(57) and (58). 
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Separating in (60) the terms having the same matrix 
structure, we obtain three integral equations for the 
functions A, q;, and Y" * , the solutions of which are 

A(p)= Ao(p) 3IXo (-36-' In 6 -1.. 6' -~6-' +~) " 
2" 8 16 16 

9ao (61) 
qo(p)= 16" (6-' -1H-'1]'I" 

~,(!!.., q) =~Xq,qo +~~X [~(.!T -E~)- 2qo] (62) 
p m p-m B B 

)( (P.P, - p'{',.)J.(p, q); 
eto A2. ao A2 

6 = 1 +-In- 1] = 1 +-In-. (63) 
12" p" 12" m' 

We proceed now to the function 13(p). lYe have deter­
mined this function by starting from relation (52), which 
is the consequence of the generalized Ward identity. Sub­
stituting the expressions (55) - (57) obtained above for 
'1\(1/p, q) in (52) and separating the terms linear in m, 
we obtain the following equation: 

A A ao(7 3 
E(p)-E(q) A(q) =A(B-B(q»+4n" ;;Bd-t;B(q)d; 

-A B(q)d(q»)+A~PS{_~(B _AB+Ba:)+3ao3!..d 
A(q) """ 2 A A' Ad 16" A 

(64) 

_ B(q) (!!.. _..!....~+~.:'!.+ 3ao d) }d(k) dk' 
A A' qo 2 d 2 A 16" k' ' 

where the functions A, B, d, and q; under the integral sign 
have the argument k, and those outside the integral sign 
have the argument p. 

When solving this equation in the region A 2::, p2 »q2 
» m 2, it is convenient to go over to the region p2 "" A 2. 
This changes the value of the nonlogarithmic term in (64), 
i.e., the constant, which we denote by Qlog/7T, and the 
equation takes the form 

B(A)- B(q) =~g+~(B(A)- B(q) d(q») 
A (q) "4,, A (q) 

+~t{ _~(jJ _AB +Bd)+~~d (65) 
4" J, 2 \ A A' Ad 16" A 

_ B(q) (~qo-~~+~~+2.~d)}d(k) dk'. 
A A' 2 d 2 A Hi n, k' 

We have taken into account here the fact that, in accord 
with (7), (8), and (61), 

Ao (A) = do (A) = 1, A (A) = -3ao / 16n. 

The functions A, B, and d in (65) are given by formulas 
(7) and (8), while the functions ct, A, and q; are given by 
(27) (61), and (62). 

The solution of Eq. (65) is 

ao ( 9 ,47 85 ) (66) 
E(p)=Bo(p)-; 96-'lns- 16 S +s6-'+g-16 . 

The constant g is determined from the agreement 
between formula (65) and the result of the calculations of 
13 in first order is Qlo(A.9), and is equal to 

g = -'/". (67) 

Substituting (67) in (66), we obtain ultimately 

ao ( 9 , 47 , 45) (68) 
E(p)=Bo(p)-;;: 9s-'ln6- 16 6 +8~- -8 . 

Thus, the asymptotic forms of the functions A and B, 
with the (QloL)n and Qlo(QloL)n approximations taken into 
account, are 

,[ 3ao ( , 3 , 71 , 75)] A(P)=6- 1, 1+- -36-'ln6--~ --~- +-
2" 8 16 16 

(69) 
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B (p ) ~ ~ '11" [ 1 + :0 ( 9~ -, III ~ - 1 ~ ~'+ 4; £ -, - ~ ) ] . (70) 

The author is deeply grateful to P. 1. Fomin for sug­
gesting the topic and help with the work and to D. V. 
Volkov for useful discussions. 

APPENDIX 1 

In this Appendix we find the ao(aoL)n asymptotic form 
of the function TX (p, p + q) in the momentum region 
p2» q2» m2. In this region, the function rA(p, p + q) 
can be expanded in powers of the parameter Vp. We 
confine ourselves in the expression to terms linear in q, 
and in this case rx (p, p + q) can be represented in the 
form 

- - i _(q) ,(q) r,(p,p+q)=rdp,p)+-;;-Xq,<p,+o, p +0' P' ' (A.1) 

Where 6x (qjp) corresponds to the terms ~ qjp, and 
6 A (qjp2) to the terms ~qm/p2. We note that the terms 
6 x' which contain an odd number of (3 matrices or . 
matrices proportional to. the matrix X, make no contn­
bution to the integrals I{l> considered by us, and will 
therefore be omitted. Substituting (A.1) in the generalized 
Ward identity (29) and taking into account the structure of 
'i\ (p, p) (20), we obtain 

'1', = <p(p). (A.2) 

We now proceed to the functions 6 X. In the logarithmic 
integration, there are no contributions proportional to 
qjp and qm/p2 in the (aoL)n approximation [5). It is easy 
to verify that in the ao(aoL)n approximation the integral 
containing logarithmic integration make no contribution 
to the functions 6 X. The terms of interest to us can 
appear only in the exact integration in the integral Ix. 
This integral takes the form 

h(p,p + q)= 4:°, S r:(p,p - k)Go(p - k)ro'(p - k,p + q - k) (A.3) 

x Go(p + q - k)r:(p + q- k,p + q)D(k)d'k, 

where the functions G, r, and D are represented by~the 
formulas (6) - (11). In the calculation of the terms Ox 
these functions can be simplified. This Simplification is 
connected with the fact that upon integration of the log­
arithmic terms (containing In k2) the ao(aoL)n contribu­
tion proportional to qjp and qm/p2 arises in the regions 
k2 » p2 and p2 »k2 »q2, the integration in which leads 
effectively to the substitution In k2 - In p2 uder the 
integral Sign (see relations (12) and (13)). We thus 
obtain 

In(p - k)" In(p+ q - k)', In(p + q)' -+ In p', 

rt(p, p-k), ro"(p-k, p+q-k), ro"(p+q-k, p+q) (A.4) 
-+ Mo(p) 

and as a result of these Simplifications, Eq. (A.3) takes 
the form 

hlp, p + q) = 4~' Ao' (p) S ~"G (p - k) ~,G(p + q - k)~.D (k) d'k, (A.5) 

where all the logarithmic functions have the argument p. 
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The integration of (A.5) with the required accuracy 
yields 

;S,(q/p) =0, _ ( q) ao imq, 
0, - =--B(p)d(p). 

p' 8n p' (A.6) 

APPENDIX 2 

We obtain here B(p) in first order in ao. By defini­
tion, we have 

G- 1 (p) = -pA + imB = - p+ im - (~(p) -~(Po», (A.7) 

where ~(p) is the mass operator, Po = im, and p~ = _m2. 
Calculations of ~(p) and ~(po) in the first order in a o are 
carried out in standard manner, and the result is 

3ao' Sao 
~(p)-~(Po)= --p+-im. 

i6n i6n 

From this we get 

]J(I) (p) = - Sao / i6n. 

OWe adhere in the main the notation of the book by Akhiezer and 
BerestetskiY [9]. The metric and the ~ matrices are the same as 
in [9]. 

(A.8) 

(A.9) 

2) Here and throughout, the ("'oL)n-approximation functions will be 
marked by a zero subscript. For convenience, the vector indices of the 
vector quantities will be in the form of superscripts. 

3)We note that the value of Z;! in the second order in "'0 coincides with 
the result of Sinclair, Hagen and Kim [11]. 

4) The terms 9"x (lIp, q), which are proportional to the matrix X, make 
no contribution to the integrals considered by us, and will therefore be 
disregarded. 
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