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A Boltzmann kinetic equation, which contains the self-consistent field of the super con­
ducting order parameter, is derived for quasiparticles scattered by impurities from the 
kinetic equation for the generalized electron-hole density matrix in the case of "pure" 
superconductors. After completion of the rapid formation of the super conducting con­
densate, the equation describes nonlinear nonstationary processes in the system, with 
frequencies w « Tc. The equation is employed to analyze the problem of high-frequency 
spatially homogeneous current states in small superconducting samples. The nonlinear 
response-a high-frequency electric field corresponding to the given external current 
passed through the sample-is also found. 

1. Nonlinear, nonstationary phenomena in supercon­
ductors were investigated on the basis of the BCS micro­
scopic theory[l] by Gor'kov and Eliashberg[2-4). The dy­
namical scheme used by them to describe the kinetic 
phenomena is based on an analytic continuation of the 
Gor'kov equations [5] for the electron Green's functions 
into the region of real frequencies. The authors were 
mainly interested in the temperature region close to the 
critical temperature T c of the super conducting transi­
tion. In this region, the rate of relaxation of the super­
conducting order parameter is small, and this relaxation 
which is described by different generalizations of the 
so-called time -dependen t Ginzburg-Landau equations [6,7], 

is the dominating process. 

In earlier papers (see[8,9]) the author has proposed 
to describe kinetic phenomena in superconductors on 
the basis of the BCS theory by using for a generalized 
electron density matrix a kinetic equation that is not 
diagonal in the isotopic spin in the "electron-hole" 
space, and thus takes into account the Cooper pairing 
of the super conducting electrons. For the density 
matrix y (in the coordinate representation y(rp r 2)), 
this equation takes the form 

0"( - _ 
i- = [e("() + U, "(1+ iL<') ("(), 

ot 
i(r" r,) = ~,,6(r, - r,), 

- [- 1 ox (r)] -£,=0, g(p+o,p.(r»+ecp(r)+--- +~(r)+OxL'1(r), 
2 ot 

- gN(r) ( N) 
~(r)=o,~ Nt =N'=2' 

_ p' 
g(p)= 2m' p=-iV, 

p. = my. = '/,(\'X - 2eA) (h = c = 1). 

Here e and m are the electron charge and mass, N is 

(1) 

the electron density, rp and A are the scalar and vector 
potentials of the electromagnetic field, O'x and C1z are 
Pauli matrices, g < 0 is the constant of effective attrac­
tion between the electrons, and X and A are the phase 
and the modulus of the superconducting order parameter, 
the latter being defined by the formula 

(2) 

The electron density N and the electric-current density 
j are expressed in terms of the density matrix: 

N(r) = Tr['/,6(r-r') -o."(r, r')ll,'~" 
(3) 

i(r)=N(r)ev.(r)-J.......:.:(p-p')Tr[..!..6(r-r')-"(r,r')] I . 
2m 2 .'~, 
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The additional equation that determines the phase X 
of the order parameter is the continuity equation 

eoN 1 at + div i = 0, 

which in this case (after introducing the phase X) is not 
an identical consequence of Eqs. (1)-(3). In Eq. (1) we 
have separated, for future use, the potential U of the 
scattering of electrons by the impurities. In the co­
ordinate representation we have 

fj (rio r,) = 0.6 (r, - r,) 1: U (r, - r.), 

where U(r1 - rk) is the potential for scattering by one 
impurity located at the point rk' 

(4) 

The last term in the right-hand side of (1) describes 
the energy relaxation of the electrons. The concrete 
form of the "collision integral" L(2)(y) depends on 
whether the electron-electron or the electron-phonon 
collisions predominate. The characteristic frequencies 
of these collisions are relatively small (1/T2 ~ 108 sec-1 
«Tc ~ 1012 sec-1), so that the last term in (1) de­
scribes in the general case the slowest stage of the re­
laxation of the system to the equilibrium state. 

JOintly with Maxwell's equations, Eqs. (1)- (3) form 
a complete system of equations describing the behavior 
of the superconductor in the electromagnetic field. In 
the case of real metals, these equations admit of certain 
simplifications. As is well known, Owing to the large 
electron density in the metals, the equation div E, 
= 41Te liN , which determines the electric field E, reduces 
to the simpler equation liN = O. For this reason, we can 
neglect the displacement current in the equations for 
the magnetic field H: 

rot H = 4ni + aE 1 at "" 4nj, div H = O. 

The continuity equation expresses accordingly in this 
case the transversality of the current: div j = O. 

Since the scalar and vector potentials of the electro­
magnetic field enter in Eq. (1) in gauge-invariant com­
binations erp + (1/2)3,x/at and V'x - 2eA, it is expedient to 
choose as the independent quantities the momentum 
ps = (V'X - 2eA)/2 of the superconducting condensate and 
the local chemical potential J.1., defined by the relation 

-f.t=..!..(!.:!:..:.+gN) +ecp+ mv.'. 
2 ot 2 (5) 

Then the operator Er (1) takes the form 1) 
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- p' 
6(P)=~.-Il. 

2m 
(6) 

The quantity JJ. is determined in this case from the 
electroneutrality condition oN = 0, and the condensate 
momentum Ps, by definition (see (1»), is determined 
from the equation curl Ps = - eH and from the continuity 
equation div j = O. 

In view of the definition (5), the electric field is de­
termined directly from the relation 

ap.lot=eE- V(Il+mv.'/2). 

It can be easily verified by taking the curls of both 
halves of the last equation that Maxwell's equation 
curl E = -aH/ at is identically satisfied. 

We shall illustrate the application of Eqs. (1)- (3) to 
the solution of concrete problems by using as an ex­
ample the problem of high-frequency spatially-homo­
geneous current states in superconductors. 

Owing to the Meissner effect, spatially-homogeneous 
flow of current is possible only in super conducting 
samples of sufficiently small dimensions (smaller than 
the depth of penetration of the field). In this case the 
magnetic field, at a given current, is small and the equa­
tions presented above, which determine the momentum 
of the condensate Ps, the chemical potential JJ., and the 
electric field E corresponding to the given current, re­
duce to the follOwing simple system 

j = j,." 6N = 0, op, I ot = eE, (7) 

where j and N are defined in (3) and jext is the given 
external current, which depends on the manner in which 
the superconducting element is connected in the external 
circuit. 

Since the purpose of the present paper is to inves­
tigate nonlinear nonequilibrium processes (and not to 
calculate the linear response of the system to a small 
external perturbation), it is important to establish the 
main relations between the characteristic frequencies 
of the problem and to separate by the same token the 
fast and slow processes that occur in the system. At 
temperatures not to close to critical, the formation of 
a superconducting condensate, Le., the relaxation of the 
order parameter A and the diagonalization of the density 
matrix in the representation of the quasiparticle energy 
operator [ (6), occur (see [8J) at frequencies on the order 
of Tc (in volumes ~ ~~, ~o ~ vF/Tc)' An important role 
is played by the relation between the quantity Tc and the 
electron-imRurity collision frequency liT. It is known 
(see, e.g., (10) that superconductors with TTc» 1 and 
TTc « 1 differ strongly in their magnetic properties. 
In the present paper we consider the simpler case of 
"pure" superconductors TT c» 1, in which the electron 
mean free path I = VFT is large in comparison with the 
coherence length ~o ~ vF/Tc (I» ~o) of the supercon­
ducting electrons. The inequality T« T2 is likewise 
practically always satisfied in this case. 

As to the frequency w of the oscillations of the 
current and of other macroscopic quantities, in the case 
w» Tc the superconductor behaves like a normal 
metal. It is therefore of interest to investigate the op­
posite case, W « Tc , and moreover, it is necessary to 
put w « liT, for otherwise the scattering by the im­
purities is negligible and the relaxation of the electrons 
is connected with the spatial dispersion, which is not 
taken into account in this problem. If at the same time 
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the frequency w is so small that w « 1/T2' then an 
equilibrium state has time to be established in the sys­
tem during the variation of the current, and is well 
described by the well known formula [l1J for the de­
pendence of the current j on the condensate velocity vS' 
Thus, the prinCipal inequalities that will be used from 
now on take the following form: 

T, ::I> 1 I 't ::I> CJ) ::I> 1 1't2. 

2. The first of the inequalities, Tc» liT, makes it 
pOSSible, when considering collisions of electrons with 
impurities, to regard the fast process of formation of a 
superconducting condensate and of quasiparticles cor­
responding to the energy operator E (6) as completed, 
and consequently to describe these conditions with the 
aid of a Boltzmann kinetic equation. Using well known 
methods [12], it is easy to find the explicit form of the 
kinetic equation from Eq. (1) for the density matrix. 
According to the foregoing, in the absence of impurities 
the density matrix is synchronized within a time ~ 1/T c 
with the diagonal matrix y(O): 

"(-+"(0)= Lr<jJ"E'A(<jJ), [;("(0»,,,(0)1=0, (8) 

where CPA is the excitation distribution function, EA are 
the projection operators constituting the expansion of 
unity for the operator E (6) (A is the total set of the 
quantum numbers, A = (p, 0'), p is the momentum, 
0'=±1): 

E (r r )=E (r )_ exp[ip(r,-r,)] 1 (1+ (J,S,+(J.~) 
,. 11 2 - p,a h rz - cr _, --_ 

V 2 8 p ' 

(9) 

V is a normalization volume. 

To describe the slow process of relaxation of the ex­
citations on the impurities, it is necessary to represent 
the density matrix y in the form 

"(="(0)(<jJ)+"(1)(<jJ)= L.<jJ,EA(<jJ)+"(I)(<jJ), (10) 
• 

where y (1) is a small non diagonal correction to the 
matrix y(O): 

Sp (E,,,(I) = 0, (11) 

and the slow variation of the distribution function CPA 
should be described by a kinetic equation in the form 

o<jJ'/ iJt =!,(<jJ). (12) 

Substituting ex~ression (10) in (1) and omitting small 
terms of order (y 0)2, we obtain, in view of relations 

, (8) and (12), 

[~+ if, ,,((1)1 = A, 

A = i L.1. (E, + L.<jJA.OEdO<jJ,) -[1\; + if, ,,(0)1- iV'>(,,(") , (13) 
, ,. 

A boundary condition that fixes the solution of the homo­
geneous equation follows for Eq. (13) from the syn­
chronization requirement (8) and, in accordance with 
Eq. (1) (at U = 0 and L (2) = 0), can be written down for 
the off-diagonal matrix y(1) in the form 

Taking this condition into account, Eq. (13) takes the 
form of the integral equation 
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y(l) = i ~ dte-2.'e- i " (A-ltl, y(ll]) eiil , 1]--> + O. 
o 

It follows therefore that Eq. (13), together with the 
boundary condition, becomes 

[; + iI, 1('1] - 2i'11(') = A, 1] -+ +0. 

The formal solution of this equation (see [13]) is 
. +~ 

1('1=--':" S dwR+(w)AR-(w), 1]-++0, 
2n_~ 

where R(z) is the resolvent operator: 

R(z) = [z - (e + 0) ]-', W(w) = R(w ± i1]), 

1 1 1 
R(z)= d(z) +"d'WT(z) d(z) , d(z)=z-;, 

T(z) is the operator for scattering by impurities. 

(14) 

(15) 

Substituting the obtained solution (14) (A is defined 
in (13)) in the condition (11) and taking into account the 
eaSily-proved identities 

Sp (E,aE,,) = 0 Sp ~(E,[6e, 1(01]) = 0, 

we obtain, after discarding small terms of higher order, 
the follOwing expressions for the collision integral (12): 

(16) 

Here I(i) is the quasiparticle-impurity collision integral 
A 

and It is the collision integral describing the quasi­
particle energy relaxation. The explicit form of It is 
given in [a] for the case of electron-electron collisions. 

Further formal transformations in expression (16) 
for the collision integral with impurities Iii) are based 

on the properties of the resolvent operator (15) and coin­
cide with those given in[13]. When account is taken of 
formulas (4) and (19) in the approximation linear in the 
impurity concentration and in the Born approximation 
for the electron-impurity scattering amplitude, these 
calculations lead to the following kinetic equation (in the 
limit as V - ""): 

arpp,a18t = l~~~ (<p) + l~~! (rp), 

l('l=nS d'p' IU( _ ')I'~ ~(1+ '~P~P'-/',.') (17) 
p,a (2n)' p p .l...J 2 00 epe.' 

a'=±l 

X (<pp'.a' - <pp,,) Il (Bp'.,' - B p.a), 

Bp" = oep + pv" 8 p = l'~p' + /',.', 

where n is the impurity concentration and U(p) is the 
Fourier transform of the electron-impurity interaction 
potential. 

Substituting the expression (3) for the density matrix 
y and formulas (9) in Eq. (2) and in expressions (3), we 
obtain in the prinCipal approximation 

Igl S d'p ~ /',. 
!l = -2- (2n) , "7' -;;: o<pp", (18) 

d'p (SP ) 
N=S (2n)' 1--;;-~o<pp.a, (19) 

e d'P(~) j=Nev.+-;;;- S (2n)' p 1- ~<pp, . (20) 

The kinetic equation (17) is outwardly similar to that 
used earlier (see [14,15]) to calculate of the linear re­
sponses in the microscopiC theory of superconductivity. 
It is necessary, however, to emphasize that here this 
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equation has been obtained on the basis of the inequality 
liT « T c as a result of consolation in the description 
of the system with the aid of density matrix y and Eq. 
(1) (and not as a result of the probability of the transi­
tion per unit time for a weakly excited system of quasi­
particles). Therefore Eq. (17) together with the self­
consistency equation (18) constitutes a complicated non­
linear system of integro-differential equations, in which 
the external "fields" Ps, D.. and J1. depend on the time. 

Owing to the shift of the quasiparticle energy O'Ep 
by an amount p . Vs (EI,> S = O'Ep + P . vs ), which is 
contained in the impuritY collision integral (17), the 
energy conservation law is written out ina reference 
frame connected with the impurity-containing crystal 
lattice. The equilibrium distribution function is there­
fore 

!',q _ 1 [ ( oep + pv. ) + 1] _i <PM - - exp T (21) 

and corresponds, as it should, to a complete stoppage of 
the normal component. 

Using a mixed Wigner representation for the density 
matrix y, we can show that in the spatially-inhomogene­
ous case (with a characteristic inhomogeneity radius 
r » ~o ~ vF/Tc)' Eq. (17) should be supplemented in the 
left-hand side by convective terms that represent clas­
sical Poisson brackets2 ): 

( ) 8ap,. 8<pp.. 8ap,. 8<pp,. 
ep,a,cpp,a 55 _____ ~· ---. 

ap ar ar ap (22) 

3. In view of the inequality w « liT, the solution of 
(17) can be obtained by expanding in the frequency w, 
Since the denSity change oN (19), unlike the parameter 
D.. (18) and the current density j (20), is determined by a 
function c;op, 0' that is odd in the electron energy ~p 
reckoned from the Fermi boundary, it suffices to con­
fine oneself henceforth to a distribution function c;op 0' 

that is even in ~p' Then the electroneutrality condition 
oN = 0 is identically satisfied and we can assume 
J1. = const. To separate in explicit form the small terms 
in (17), which are proportional to the rate of change of 
the macroscopic quantities, it is expedient to change 
variables in phase space. Changing over in the collision 
integral (17), in the usual manner, to integration with 
respect to the angles and the energy ~ in the vicinity of 
the Fermi boundary, and recognizing that the distribu­
tion function is even in ~, we choose as an independent 
variable in addition to the unit vector n = pip, the quasi­
particle energy: 

E = ae + nw, w = p,v" e = 1'~2 + /',.', 
(23) 

<p.(e, n) = <p(B, n), <p_,(e, n) = <p(-a, n). 

In terms of these variables, Eq. (17) takes the form 

[a. . a] 
- +(u(E,n)!l+nw)- <p(E,n)=I(<p)+l("(<p), 
at aE 

1 dO' 
l(<p) = -S -viE, n')8«E - n'w) , - /',.') (1- utE, n)u(E, n'» (24) 

'( 4n 
x (<p(E,n')-<p(E,n». 

The dot denotes here differentiation with respect to time 
and, in addition, 

!l IE-nwl {1, x>O 
u(E,n)=---, v(E,n)= , 8(.10)= , 

E-nw l'(E-nw)'-!l' 0, x<o 
(25) 

liT = nmPFUVrr is the frequency of the collisions with 
impurities, the scattering by which is assumed for sim-
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plicity to be isotropic (U (p - p') = Uo const on the Fermi 
surface). In the zeroth approximation in the parameter 
WT « 1, Eq. (24) takes the form 

J(ep) "" a't"-' [(ep) - ep- u«uep> - (u)ep) 1 = 0, (26) 

while the angle brackets denote averaging over the 
angles in accordance with the formula 

1 f dO (f(E, n» "" --;; -;;;:;-v (E, n) S «E - nw)' -ll') feE, n), 

f dO 
a= -v(E,n)S«E -nw)' -ll'). 

4n 

A unique solution of (26) is an arbitrary isotropic 
function of the energy cp = cp(O) (E). In view of the in­
equality W » l/T2> Eq. (24) takes in the next-higher 
approximation the form 

(27) 

(28) 

a ta .. a] - [(ep(!) - ep(!) - u( (u<p(!» - (u) ep('» 1 = - + (ull + nw)- <p('). 
't" at iJE 

. (29) 

From the condition that this equation have a solution, 
namely 

iJep(O) . . iJep(O) 
Tt+«u) II + (nw»aE"= ° (30) 

we get an expression for the function cp (0) (t, E): 

iJep(O) (t E) iJep(O) (t E) 
a(t,E) , + b(t,E) , 0, (31) 

iJt iJE 

where 

b=a«u),i + <nw»= f dO v(E,n)S«E-nw)'-Il') (u(E,n),i tn~). 
4n 

(32) 

Assuming relation (30) to be satisfied and substitut­
ing the value of the derivative a<p(O) /8t from formula 
(30) in (29), we obtain the solution of this equation under 
the additional condition (<p(l» = 0: 

ep(!)=(1-<u)U)-'[f- u ( f >( u >-'], 
1- <u) u 1- <u) u 

<<p(!» = 0, 

(33) 
1 iJep(O) . ., . 

f=---'t"[ll«u> -u)+ <nw> -nwl. 
a iJE 

In the usual situation in a normal metal, the change of 
the quasiequilibrium distribution function cp (0) (t, E) is 
determined by the Joule heat, i.e., by the terms quad­
ratic in the field or, equivalently, in the frequency 
(E2 ~ P~ - w 2 ). In the given nonlinear case, owing to 
the appreciable influence of the field on the quasipar­
ticle spectrum, the distribution function varies in ac­
cordance with Eq. (30) at the same rate as the field. 
Therefore the dynamics of the distribution of the super­
conducting electrons turns out to be more complicated 
and the energy E of the quasiparticles is not a "good" 
variable. However, by direct differentiation of the func­
tions a(t, E) (28) and b(t, E) (32), with allowance for the 
definitions (25), it can be shown that Eq. (31) for the 
function <p(O)(t, E) has the following properties: in the 
corresponding characteristic equation adE - bdt = 0, the 
coefficients a and b satisfy the identity 8a/8t 1- 8b/8E 
for all II and Ps, and consequently the left-hand of this 
equation is a complete differential of a function that can 
be obtained as a result of elementary integration: 

ll'" -- E±w 
d8= adE - bdt, 8 =-f dx S(x' -1)signxl'x'-1, x± =--. 

2w"_ II (34) 

From the definition of (28) we see that the deri vati ve 
aZ/8E = a> 0 and the function Z (E) is monotonic in its 
entire range of definition. This region, generally speak-
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FIG. I. 

ing, has a gap on the energy axis E (-ll + w, II - w) at 
w < ll, and on the boundaries of the gap (and in the dis­
continuity inside the gap) we have Z = O. Accordingly, 
the inverse function E(Z) has in this case a discontinuity 
at the point Z = O. From (34) we obtain the limiting re­
lations 

The quasiequilibrium distribution function cp(OI(t, E) 
satisfying Eq. (31) is an arbitrary function of the "in­
tegral of motion" Z (34): cp(O)(t, E) = <p(O)(z), which is 
thus independent of the prior history of the motion of 
the system and is determined by the instantaneous values 
of the parameters II and vs(w = PFVs). The problem 
consists now of finding the explicit form of the function 
<p°(Z). To this end it would be necessary to take into 
account in the kinematic equation (24), in second order 
in the parameter WT, the term I(2)(<P(0»), which de­
scribes the electron energy relaxation. Such a formula­
tion of the problem, however, is not practically reason­
able. Realistically, good heat-conduction conditions that 
ensure the feasibility of stationary states are the result 
of the contact (thermal and electric) between a small 
superconducting element and bulky metallic samples in 
such a way, that the prinCipal energy exchange between 
the electrons occurs in the interior of these samples, 
which are in the equilibrium state (Fig. 1). In order for 
all the electron excitations to be able to penetrate into 
the interior of these samples and not to be partially 
trapped inside the element by the Andreev reflection 
from the boundaries[16l , these samples must be in the 
normal state. In such a formulation, the problem is 
spatially-inhomogeneous. Using in addition to the ex­
pansion in WT « 1 also an expansion in the small spatial 
gradients (in which case it is necessary to take into 
account the part of the distribution function which is odd 
in ~), we derive from the kinetic equation (17) together 
with the terms (22) the follOwing generalization of (31): 

0<p(0) Dep(O) a ( iJ<p(O) ) 
a--+b--=- D.--

f)t f)E OXi 'ax" ' 
(0) 1 ( E ) 

<pro = 2" 1 + th 2T . (35) 

The physical meaning of this equation is clear. After 
relaxation on the impurities, the subsequent slow evolu­
tion of the electron distribution in space and in time has 
a diffusion character. The diffusion coefficients Dik are 
of the order of vFT and are complicated functions of the 
E (and of the parameters II and w), the explicit form of 
which is not necessary here. 

The dimensions of the super conducting channel Land 
d indicated in Fig. 1 (L is the length and d is the 
diameter of the channel, L » d) should satisfy definite 
conditions. The role of the characteristic length in (35) 
is played by the diffusion length -.iD/w. If L« -.iD/W, 
then the distribution function coincides in first-order 
approximation with the boundary equilibrium function 
(35), which "penetrates" in the interior of the sample. 
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Interest attaches therefore to the opposite case: 
L» 1f5Tw. However, the channel should not be too long: 
L « ';DT , so as to be able to neglect the collision in­
tegral I(d in (17). The condition for the applicability of 
(35) is smallness of the spatial gradient: l/d« l/l, 
l = VFT ~..;r5T. We assume also the inequality d « ,;r57W, 
which enables us to continue the boundary condition (35) 
all the way to the end of the channel. It is convenient to 
combine these equalities into the following chain3 ) 

11 1:, <t: D / L' <t: (U <t: D / d' <t: 1 h. 

Putting E - E(X, t) in (35) with the aid of (34), we 
obtain in the interior of the channel 

acp(O) (8) -D a'cp(0)(8) (0) = (0) =~(1+th E(8,t)) (36) 
a --at- - ax" cp.~o CPX~L 2 2T' 

where x is the coordinate reckoned from the channel 
axis. 

A characteristic feature of the solutions of the dif­
fusion equation (36) is that the high-frequency harmonics 
penetrate into the channel to a distance on the order of 
the diffusion length ff57W, and only the zeroth harmonic 
penetrates into the interior of the channel. Therefore 
the stationary solution '1'(0)(:2:) should take in the super­
conducting channel the form 

cp(O) (8) = 4- ( 1+ th E ~~) ), (37) 

where the superior bar denotes averaging with respect 
to time. It must be emphasized, however, that actually 
formula (37) is not an exact solution of the problem, for 
owing to the s~lf-consistency equations (18), (7), and 
(20) the quantities ~ and Ps, and with them also the coef­
ficients a (28), b (32), and Dik in (35) are themselves 
functions of the coordinates. At the same time, ex­
pression (37) is a reasonable approximation of the exact 
solution, which gives the correct transition to the limit 
as w - 0 and takes into account the general fact that 
nonzero harmonics attenuate in the solution of the dif­
fusion equation. In view of this, the results that follow 
are mainly approximate. 

4. Formulas (37) and (33), together with the defini­
tions (34), (23), (25), (27), and (28), solve our problem 
formally. This solution is quite complicated and even 
its numerical analysis is difficult. For a qualitative 
interpretation we can confine ourselves to sufficiently 
high temperatures, when we can use an asymptotic ex­
pansion in terms of ~/Tc < 1.4 ) It is convenient to sub­
tract and add the equilibrium distribution function (21) 
in the integrands of (18) and (20). The terms containing 
the equilibrium function are expanded in the known 
manner (see, e.g., [10]) in terms of the parameter ~/Tc. 
Changing over in the remaining terms to integration with 
respect to the angles and the energy near the Fermi 
boundary, and replacing the integration with respect to 
E by integration with respect to (34), we obtain, taking 
formulas (37), (23), (35), (27), and (28) into account 

00 1 ~ ~[60'- (6'+~W')] +~J d8[(u>-(th-~ 
8(nT,)' 3 6_

00 
2 2T 

E (8) ) ] -th~ + (uq/t» =0, 
(38) 

n(3) ( 6)' 3Ne Joo [ 1 ( E(8) j=Nev.-- - -- dB (n>- th--
4 nT, PF _00 2 2T 

_ th E?(~) ) + (ncp(t) > ] , 
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where ~o is the BCS gap[l] in the superconductor spec­
trum, and the function cp(l) is defined in accordance with 
(33) by the following formulas: 

cp(t) =(1- (u> U)-I [/- u( 1- ;u> u >( 1- ~u> u >-1] , 

1 = j. + f~ (cp(t) = cp~1) + <p~I»), (39) 
. acp(O) .. acp(O) 

I. = 1:6 «u> - u)--, f~ = 1:( (nw> - nw)--,;;::;-. 
a8 vI:. 

In the obtained expressions (38), all the integrals 
with respect to :E: converge at values :E: ~ ~« Tc, with 
the exception of the integral containing the function 
cp(l) (39) in the expression for the current j (38). In the 
la~t integral, the characteristic values are :E: ~ T c, and 
we can put ~ "'" 0, which reduces this term to the usual 
expression Ne 2TE/m = NeTvs for the conductivity of the 
normal metal. In the remaining terms, using the in­
equality E C;e) ~ ~ ~ Tc, we expand tanh(E/2T) in terms 
of E/T. We thus obtain from (38) 

_n(3) [60'- (6'+~w')] +_1_j d8(u>(E(8)-E(8)) 
8(nT,)' 3 26T, 0 

1 m 

+~ J dB (ucpU» = 0, 

(40) 

pp 7~(3) ( 6 )' . 3 m _ 

-j=-- -- w+1:W--J d8(n>(E(8)-E(8)) 
Ne 4 nT, 2T, 

o 

- 3 S dB (ncp~1) >. 
These formulas can be simplified further because as 
will be shown later, one can assume w « ~ for all 
reasonable values of the current. Denoting by o~ the 
small alternating increment to the order parameter 
(~ - ~ + o~ = 0), we obtain the first nonvanishing terms 
in the expansion of formulas (40) in the quantities o~ 
and w /~. To this end, we consider the difference 

E(8)-E(8)"" 6(M-M) +(E(8)-E(8))~, (41) 
l'8' + 6' 

where the second term denotes the first nonvanishing 
term in the expansion in w/~. When (41) is substituted 
in Eq. (40) for ~, the integral with respect to :E:, which 
contains the first term of ~nverges at:E: ~~. For 
these:E: we have (u) "'" ~NX2 + ~2 (see formula (25)) and 
we thus obtain 

(42) 

In.the second interval, which contains the second term 
of (41), the characteristic values of Z are small: 
Z ~ fw~« ~. For these:E: we can obtain from (34) the 
following asymptotic expansion: 

8 ~ l'w6 <t: 6, E "" 6 + w1jl(38/ l'2w6); 

0<x<2'/', -1<1jl<1, x=(1jl+l)'/'; 
(43) 

x -+ "", 1jl ~ x' / 9 + 3/ 4x'. 

The function x(</!) is monotonic and continuous together 
with the derivative dx/d</!. At the same values of Z, in 
accordance with formula (25), we have (u) "'" 1. Hence, 
taking the expansion (43) into account, we find the inte­
gral of the second term of (41) in Eq. (40) for ~ is equal 
to 
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a= S dX(Ijl(x)-x'/9). (44) 

Straightforward but cumbersome calculations show 
that in equation (40) for A the last term containing the 
correction cpU) (39) to the distribution function makes 
a small contribution to this equation, and can be left out. 
Taking into account formulas (40) and (41), (42) and (44) 
and discarding terms of higher order of smallness, we 
obtain the following equation for A: 

3QL(d '-d')- nM +a_d_ [(2W) 'I, _ (~) 'I,] =0. 
8(nT,)' 0 4T, 12T, d d 

From this, by virtue of the condition liA = 0, we get 

d ~, (2w)'/] 
d "" do. M "" a~ [ (T) - T . (45) 

The current j (40) is calculated analogously. The 
small alternating increment liA (45) makes no contribu­
tion to the current and the last term in formula (40) for 
the current, which contains the increment cp~) (39) to 
the distribution function, is small, just as in the case of 
the equation for A. The calculations yield the following: 

p, n(3) ( d )' . d 1/Z;;;S~ 
-i""-- - W+TW+-WY- dx1](x) 
Ne 4 nT, 2T, d 

o 

x [Ijl(x)-( W~) Ijl C(~') x)J, 
(46) 

-1<1jl<1, 1]='/,(21jl-1), 1<1jl. 1]='/,(Ijl-1'1jl'-1), 

where the function I/J(x) is defined in (43), and the symbol 
(. > t' stands for averaging over t'. 

Attention is called to the circumstance that in the 
resultant expression (46), unlike the first term, which 
is calculated with the aid of the equilibrium function (41) 
by expanding in powers of A/T in formula (20), and 
which is proportional to (A/T cf, the third term is pro­
portional only to the first power of this parameter 
(~A/Tc). Accordingly, even at relative small currents, 
for which w / A» (A/T C)2, the last term becomes the 
principal one. Physically this term is connected with the 
oscillations of the boundaries (A - wand -A + w) of the 
gap in the quasiparticle spectrum, and it is these os­
cillations that make the essentially nonlinear non-equi­
librium contribution to the current j (46). Simple 
estimates show that the inequality w / A « 1, used in the 
derivation of formulas (45) and (46), remains valid up to 
current amplitudes on the order of the equilibrium crit­
ical value: 

Confining ourselves to investigation of currents that 
are not too small (W/A» (A/Tc)2), we omit the first 
term in (46). In view of the approximate character of 
formula (37) and of the entire subsequent analysis, it 
is advantageous to approximate expression (46) by a 
simpler analytic expression. An analysis of the last 
term in the current j (46) leads to the conclusion that 
this approximation can be taken in the form 

Ne [. d 1/-;;( W')] i""- TW+C-Wy- 1--, 
PF To d w. 

(q ='/,), 

where C is a constant on the order of unity and q is a 
certain exponent: 0 < q < 1. For convenience we can 
put q = 3/4. 

(47) 

To find the electric field E = w /evF corresponding to 
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a specified external current jext. it remains to equate 
(47) to the quantity jext and to solve the resultant equa­
tion. Two cases are possible here. In the case of "high" 
frequencies WT » (A/Tc) {Vi73.. the second term in (47) 
plays the role of the small correction, and the sample 
behaves like a normal metal. The more interesting case 
is that of low frequencies: WT« (A/Tc ) .fWT&.. In terms 
of the dimensionless variables 

W = d ( ~yl' V, i = C :: (;)' di, wt = x, 

the equation that determines the field E is 
dv 

l-=i,sinx-t(v), 
dx 

(d) 'I, 
"( = O)T/C To <: 1, 

i(v) =signv(lvl'I'-lvl'I'Iz7T.T). 

We have taken into account here the one-dimensional 
character of the problem and have specified the law 
governing the variation of the external curren t, jext 

(48) 

= josinwt. The function i(v} in (48) is plotteq qualitatively 
in Fig. 2. 

Since y « 1, Eq. (48) describes a rapid relaxation of 
the system to the rest points r(v) = ioBinX, after the 
elapse of which the current i(v} follows adiabatically the 
external current iosinX. According to (48), in the viCinity 
of the rest point Vo the relaxation proceeds in accord­
ance with the law 

( i'(vo) ) 
v-vo""const·exp --l-X' 

.• dv 
1""-. 

dX 

We see therefore that the points at which i'(v) > 0 are 
stable, and conversely, i'(v) < 0 are unstable. When the 
external current increases from negative values (see 
Fig. 2), i(v) follows adiabatically and continuously the 
external current up to the maximum point i'(v) = O. This 
is followed by a rapid transition along the descending 
and ascending sections of the i(v) curve to the equivalent 
rest point i(v) = imax, after which the adiabatic follow­
ing of the external current by i(v) continues again. The 
process proceeds analogously in the opposite direction 
(Fig. 2). In the prinCipal time scale, lit ~ l/w, these 
fast transitions are replaced by jumps from one branch 
of the i(v) curve to the other, and on the whole the picture 
exhibits hysteresis. 

Let us verify the existence of a solution of Eq. (48) 
as y ~ O. Taking into account the choice indicated in 
Fig. 2 for the branches of the i(v) curve, we obtain from 
(48) at y = 0 

y = ~ + [ ( ; )' + sign v . io sin X f', y = I v I ''', i = io sin X. 

. { -1, i < (fi/2) 2 

slgnv= 1, i>(fi/2)' and i' >0; (49) 

. 1, i>-(fi/2)' 
slgnv= { 

-1, i < - (iJ/2) , 
and i' <0. 

This leads to the equation 
--~~----------~ 

fi = ; + [( ~ )' + sign v io sin X r ' 
or in other words 

" 
( . sin X ) 'f, 1 r ( sin X ) 'j, 

1 = 1 + sIgn v--, -- = -J dX '1 + sign v--. -- , 
s,n Xo 2n 0 Sill Xo (50) 

1 -, 
sin Xo = -:- (.!L) < 1. 

10 2 

After simple transformations, with formulas (49) taken 
into account, Eq. (50) can be reduced to the form 

1 " . 
1 =- Sd<p(1 + cos 'P + ctgX' sin <p)'h. 

JL 
o 
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f 

FIG. 2. 

The last equation, as can be easily verified, does indeed 
have a root 0 < Xo < rr/2. 

The time dependence of j, Ps, and Ps = eE is shown 
qualitatively in Fig. 3. A characteristic feature of the 
described process is the presence of electric-field peaks 
corresponding to fast transitions from one branch to the 
other on the current curve i(v) (Fig. 2). 

The results pertain to a relatively simple theoretical 
case, when the dynamiC behavior of the super conducting 
electrons in the nonlinear region can be described in 
terms of the quasiparticles in the kinetic Boltzmann 
equation (17). It was noted above (see footnote 3) that 
such a situation is difficult to realize in practice. Re­
gardless of this, however, the problem of current states 
in a superconductor is of fundamental interest and, as 
seen from the foregoing, even in this Simplest case the 
superconducting condensate exhibits a nontrivial be­
havior. 

Of greater practical interest in the case of "dirty" 
superconductors with l« ~o. The kinetic equation (17) 
certainly does not hold for such superconductors, since 
the characteristics distances (~ ~o) over which the very 
concept of the quasiparticle can be introduced are larger 
in comparison with the mean free path. A kinetic de­
scription with these systems, which differs more rad­
ically from the description of normal methods, calls 
for a special investigation. 

I)In view of the inequality Pp =» III) (where I) is the depth of pene­
tration of the field and Pp = mvp is the Fermi momentum), we can neg­
lect the non-commutativity of the quantities p and vs. 

2)It should be noted that Eq. (17) together with the terms (22) have lim­
ited applicability to the description of the proper electromagnetic pro­
cesses in a superconductor. Since I) «~o in most pure superconduc­
tors (I) is the depth of penetration of the field), the weakly inhomoge-
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neous states considered here are not realized in such superconductors. 
See footnote 3 below in this connection. 

3)Since the Meissner effect can be neglected only in the case d .;;; I) (I) is 
the depth of penetration of the field), the presented inequalities are 
quite stringent in practice and can probably be satisfied only in slightly 
contaminated samples of Nb. 

4Trhe temperature must not be too close to critical, so that the fonnation 
of the condensate and of the quasiparticles remains the fastest process 
as before. 
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