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The relation between the short-wave asymptotic of the conductivity tensor of a metal and 
the electron component of the dragging of the plastic-deformation carriers in the crystal 
is established in the linear-response approximation. The short-wave ultrasound absorp
tion coefficient and the phonon damping coefficient are also expressed in terms of the 
conductivity. It is shown that this relation makes possible in principle an experimental 
study of the deformation potential. Estimates of electron dragging of dislocation kinks 
and crowdions are obtained. The relative contribution to viscous energy losses during 
plastic deformation of the metal by electron drag of dislocations, kinks, and crowdions 
is elucidated. The temperature regions are indicated in which electron drag of disloca
tions, kinks, and crowdions exceeds phonon drag and limits viscous losses. 

INTRODUCTION 

At low temperatures in metals, when the phonon gas 
is frozen out, dynamic dragging of dislocations, kinks, 
crowdions, and other carriers of plastic deformation is 
limited by electron scattering from these deformations. 
In principle, the electronic component of the energy 
loss in plastic deformation is determined by the same 
dissipative processes in the electronic subsystem of 
the metal as the electric conductivity. Bearing this in 
mind, some authors (see, e.g.,[l,2)) attempted to con
nect the electron dragging of dislocations with the 
macroscopic electric conductivity of the metal. Such 
attempts turned out to be in error each time (as al
ready indicated in the literature[3-S)), because, in final 
analysis, the main contribution to the energy dissipa
tion is made by processes of electron scattering near 
the dislocations, processes that do not lend themselves 
to macroscopic description and require that the spatial 
dispersion of the electric conductivity be taken into ac
count. The situation is similar here to the only recently 
explained problem of phonon dragging of dislocations. 

We shall show below that the electron dragging of 
any source of elastic field in a metal can be expressed 
in explicit form in terms of the short-wave asymptotic 
expression for the dynamic electric conductivity. 
Establishment of a direct connection between these 
kinetic characteristics of the crystal makes it possible 
in principle to determine experimentally the deforma
tion potential-the constant of the coupling between the 
electrons and the elastic field, concerning which only 
very scanty data are available at present[7-9). 

FORMULATION OF THE PROBLEM 

As a rule, plastic deformation in a crystal propagates 
at velocities much lower than that of sound, and the 
elastic field of the carriers of the deformation can be 
described in the quasistatic approximation. For a 
source moving with velocity v, we have 

ei;(r, I) = e;;(r - vI) = ~e;~ei(.r-".t)" Q. = kv. 
k 

Here E~. is the Fourier transform of the deformation 
lJ 

(1) 

tensor of the static field of the source. In this language, 
the problem of pinning a moving source of elastic field 
reduces to an analysis of the damping of a certain packet 
of plane waves (1). 
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The Hamiltonian of the electronic subsystem of a 
crystal in an alternating elastic field (1) can be repre
sented in the form of the sum 

H=Ho+Hint, (2 ) 

in which Ho is the Hamiltonian of the electrons in the 
absence of deformation, and Hint is the Hamiltonian of 
the interaction of the electrons with the elastic field: 

(3) 

Here .\P. is the tensor of the deformation potential, ail 
lJ 

and ap are the creation and annihilation operators of 
an electron with momentum p (the spin variable has 
been omitted since it is of no importance for the 
present problem). For convenience, we shall henceforth 
assume a unit volume of the crystal and use a system of 
units in which Planck's constant is Ii '" 1. 

The system density matrix p is defined by the equa
tion 

ap / at+ i[H, r>l = O. (4) 

It is convenient to introduce the deviation of the matrix 
from the equilibrium value po: 6.p '" P - po, which de
termines the energy dissipation per unit time: 

D = -Sp (paH / at) = -Sp (/',paHint! at). (5) 

The solution of Eq. (4) with the initial condition 
p ( - ao) '" po in an approximation linear in the perturba
tion is[lO) 

, 
/',p = i J dt' eiH.(t'-» [po, Hint (t') ]e-iIl.(I'-<). (6) 

Substituting (6) in (5) with allowance for (3) we obtain 
the following expression for the energy dissipation per 
unit time: 

D = - iLL, Q. ('A,te,:) ()""p' e,,')' Gpp ' (k, Q.), 
k p,p' 

(7) 

where Gpp'(k, w) is the Fourier transform of the two
particle retarded Green's function: . 

8(x)=i if x;;' 0, 8(x)=0 if x<1. 

The angle brackets < ... ) denote averaging over the 
Gibbs grand canonical ensemble. We note that in our 
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(8) 
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approximation the energy dissipation is equal to the sum 
of the attenuation of the individual plane waves from the 
packet (1). 

Retaining in (7) the first nonvanishing term of the 
expansion of D in the parameter vi vF (VF is the 
electron velocity on the Fermi surface), we obtain an 
expression for the viscous component of the dissipation: 

-1:1: ' ,k P k. aG".(k, OJ) I D ~ -I Q. (f..;j e;j ) (f.." e" ) . 
GO) 111-0 

k p,p' 

CONNECTION BETWEEN THE ELECTRONIC 
COMPONENT OF THE DAMPING OF A PACKET 
OF ELASTIC WAVE AND THE ELECTRIC 
CONDUCTIVITY OF A METAL 

Thus, the problem of the damping of packet (1) re
duces to a determination of a two-particle Green's 
function for the electrons in the unperturbed crystal. 
But the same function determines also the dynamic 
electric conductivity of the metal[l1]: 

(9 ) 

cr",(k,OJ)~i( :)' ~ (p_ ~ ),. G •• '(k,OJ)-:.'(k,O) (p'_ ~) . 

p.' (10) 

Kravchenko[3] and Kaganovand Natsik[12] have 
shown, for the case of dislocations, that the main con
tribution to the dissipation is connected with the short
est partial waves of the packet (1), for which kl » 1 
(l is the electron mean free path)l). This conclusion 
remains in force also for other carriers of plastic de
formation with sufficiently rapid fall-off of the elastic 
field. We confine ourselves therefore to a study of the 
damping of short elastic waves with wave vectors 
k »r\ when, according to[l1], the Green's function 
Gpp'(k, w) can be regarded as diagonal in p and p': 

Gpp • ~I) ... G,. (11) 

Since the principal role in scattering processes are 
played by electrons with energies Ep and Ep_k close to 
the Fermi energy EF, the decisive contribution in ex
pressions (9) and (10) are made by the vectors p, 
which move along a certain contour 2 corresponding 
to the line of intersection of the surfaces Ep = EF and 
Ep-k = EF. Assuming that the contour 2 belongs to a 
Fermi-surface section that can be described by the 
quadratic formula 

(12) 

it is easy to obtain from (10), with allowance for (11) 

m.~-'cr., (k, 0) ~ 2i (~)'(eF -~ m.,-'k.k,) ~ aG". (k, OJ) I . (13) 
m· 8 £....J rJw w=o 

p,p' 

Taking outside the summation sign in (9) a certain 
value averaged on the contour 2 

If..;;' I , ~ lA/I' 
and eliminating with the aid of (9}and (13) the Green's 
function Gpp '( k, w), we obtain an expression that 
establishes a connection between the electronic com
ponent of the damping of the packet (1) and the short
wave asymptotic form of the electric-conductivity 
tensor: 

D~-~(.!:":)' ~Q.2IA,ke_;kI2, m.,-'a.,(k,O) (14) 
2 e ~ J I, EF - 1/8ma~-1kakf> • 

A direct consequence of formula (14) is the simple 
connection between the absorption coefficient r of the 
short-wave (kl » 1) ultrasound and the electric con
ducti vity of the metal: 
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1'- 1 (m)2IA,'OJkI2 -, (kO) --- - ---mar. Oaf) , • 

2 e C'jeF 
(15 ) 

Here wk is the ultrasound frequency, Cij is the cor
responding component of the elastic-modulus tensor of 
the crystal. Equation (15) takes into account the fact 
that the inequality k « PF, where PF = (2mEF)1/2 is 
the Fermi momentum, certainly holds true for any 
ultrasound. In this case the contour 2 is the intersec
tion of the Fermi surface with the plane p. k = O. 

It is possible, in perfect analogy, to express with 
the aid of (14) the phonon damping coefficient 

r,(k) ~ _ ~ (.!!!:.)'JMT' OJ,(k) m.,-' cr.,(k, 0) (16) 
2 e tF - )/smu.,-lku.kr. 

in terms of the electric conductivity, where w,\(k) is 
the frequency of a phonon with wave vector k and 
polarization '\, fMT2 is the square, averaged over the 
contour 2, of the matrix element characterizing the 
value of the electron-phonon coupling. In the long-wave 
limit we have 

IMI' ~ I Aj"k,l"jl , / pOJ,(k) 

(p is the denSity of the crystal and llU is the phonon 
polarization vector), and expression (16) goes over 
into (15). 

It can be shown that formulas (14)-(16) remain in 
force in the general case when the contour !i' cannot 
be described by the quadratic formula (12). The tensor 
m-;;f3 should then be replaced everywhere by 

2n d 2n: d 

m •• -'~28 •• e. Ip'IK~'l')1 / IIK(:)I' 
Here K( cp ) is the Gaussian curvature of the Fermi sur
face, and the integration is carried out along the con
tour 2. 

Returning to the problem of the pinning of moving 
sources of internal stresses, we note that the problem 
calculating the energy dissipation consists merely of 
subst\tuting in (14) the explicit expression for the ten
sor Eij and summing over all the wave vectors k. We 
consider here the three most important examples of 
sources; a linear dislocation, a dislocation kink, and 
a crowdion. 

DRAGGING OF A LINEAR DISLOCATION 

As a first check on relation (14), we estimate with 
its aid the damping constant for a dislocation in the ap
proximation where the Fermi surface is spherical, 
m~lf3 = oa/3/m, and compare the result with the known 
estimate obtained from direct calculations[3,15]. Fol
lowing Eliashberg[l1], it is easy to obtain an expression 
for the short-wave asymptotic electric-conductivity 
coefficient: 

Here 

n (e,) ~ [exp ( e, -~ eF ) + 1 ] -', 
• pO 

ep = 2m' 
p 

V e =-, 
m 

and T is the temperature in energy units. 

T=-, 
UF 

(17) 

(18) 

Taking into account the smallness of the parameters 
T/ Ep and (klt\ we have a simple estimate for the 
trace of the tensor all /): 

e' ( k' ) dp a""(k,O)~---;;; p/--;; S (2rr)' 6(ep+k/,-e.)6(pk) 
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__ e' P/-k2/4 e( _~). 
2n k PF 2 

It can be shown[131 that for a linear dislocation of 
length L we have 

i8 kl' '" 2nb'L /i(kn) <D (~) 
I) k2 k' 

(19) 

(20) 

where ~ (k/ k) is function of the directions and is of the 
order of unity, b is the Burgers vector, and n is a 
unit vector along the dislocation. Using (19) and (20), 
and assuming, in order of magnitude, that A~ ~ EF, 

we obtain from (14) an estimate of the damping constant 
B = D/v2L, which agrees with the results of direct 
calculations2) : 

B __ 1_ b'qm N8F • 

2n VF 
(21) 

Here qm = min{2PF, ri/}, ro is the radius of the dis
location kernel (ro ~ b), and N = py/31T2 is the denSity 
of the number of conduction electrons. 

Plastic deformation reduces to a uniform motion of 
linear dislocations in only rare cases. However, taking 
into account the smallness of the characteristic disloca
tion velocities in comparison with the average electron 
velocity, it is easily understood that the electrons fol
low practically the instantaneous dislocation velocity, 
and the limitation on the non-uniformity of the motion 
cannot be significant. On the other hand, since the 
main contribution to the effect is made by processes 
near the dislocation, the bending of the dislocation needs 
to be taken into account only in exceptional cases, when 
the radius of curvature is comparable with the lattice 
parameters. A similar situation is realized, however, 
in the cases of practical importance, those of a kink on 
a dislocation and of a crowdion. 

DRAGGING OF DISLOCATION KINK 

In crystals having a high Peierls relief, the disloca
tions are arranged along the valleys of the relief and 
are displaced by an amount equal to the lattice parame
ter into the neighboring valley by the mechanism of 
ejection and lateral spread of the kinks. The kink width 
w is determined by the shape and height of the relief 
andean be of the order of one or several interatomic 
distances. The electronic dragging of the kink cannot 
be analyzed in this case by means of formula (21), and 
the calculation must be carried out anew. 

The components of the tensor E~. for a kink on a 
screw dislocation oriented along th~ z axis and located 
in the slip plane XZ have been written out in explicit 
form by Seeger and Engelke[161. It is easy to verify that 
the main contribution to the dissipation is connected 
with components of the form 

k sin (kd/2) (k) 
8 -ab m -

'J k, (kd/2) 'Y k . 
(22) 

Here d = {a, 0, w}, .p(k/k) is the direction function, 
has no singularities, and is of the order of unity. Sub
stituting (22) and (19) in (14) and changing over from 
the dissipation D to the dragging coefficient 17k = D/v2, 
we obtain 

2 Si sin2 xz 
F(x)=- dz--, -(1-z')'/'. 

J1X Z2 
o 

(23) 

For wide kinks (w» a), when F(x)"" 1, our esti
mate (23) can be obtained from formula (21) by taking 
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into account the obvious connection between the velocity 
of the kink and the normal component of the velocity of 
the mOving section of the dislocation, vn = avd-1. For 
narrow kinks, the dragging coefficient 17k depends on 
the width of the kink in a more complicated manner. 

DRAGGING OF CROWDION 

Data have been recently published concerning the 
significant role of the crowdion mechanism of plastic 
deformation these data have dimulated both theoreti
cal and experimental studies of crowdion dynamics. 
Electron dragging of crowdions can be estimated from 
the formula of[141. The elastic field of a crowdion is 
equivalent to the field of a small prismatic loop of 
radius R on the order of the lattice parameter, and 
can be calculated with the formulas indicated by one of 
the authors[201. The components of the corresponding 
Fourier transform E~. have the following structure: 

IJ 
8 k _ Q [ sin kR _ ci (kR) ] 

'J kR ' 
(24) 

where n is a quantity on the order of the atomic vol
ume and ci(x) is the integral cosine. 

Combining formulas (14), (19), and (24) we can ob
tain, just as in the case of a kink, an estimate of the 
dragging coefficient of a crowdion: 

S• [Sint ]' f(x)= dtt' -t --ci(t) . (25) 
o 

As expected, formula (25), generally speaking, does not 
reduce to the estimate (21), although when recalculated 
"per unit length" the dissipation level is of the same 
order in both cases: 17c/21TR ~ B. Comparison of the 
dragging of a crowdion and of a kink shows that in order 
of magnitude we have TJk ~ 17ca/l. 

DISCUSSION 

1. The connection obtained by us between macro
scopically measurable kinetic characteristics of crystals 
in terms of little-investigated microscopic constants 
makes it possible to investigate these constants experi
mentally and in this sense can be of fundamental inter
est. The needed short-wave asymptotic expression for 
the electric-conductivity tensor can be obtained from 
experiments (say on the anomalous skin effect(211). On 
the other hand, there exist at present reliable methods 
of measuring both the dynamic dragging of defects in 
crystals, and the absorption of short-wave ultrasound 
and phonon damping. All this gives ground for hoping 
to be able to carry out an all-inclusive investigation of 
the deformation potential and of the electron-phonon 
coupling constant in different metals. 

Another aspect of the problem is the prediction of 
the plastic properties of metals from known singulari
ties of the electric conductivity and of the deformation 
potential. Thus, according to Nowak and Lee[91, there 
is a strong anisotropy of the deformation potential in 
copper near the ''neck'' on the Fermi surface. One can 
therefore expect a corresponding anisotropy of the 
dynamic plastic properties of copper to appear at low 
temperatures. 

2. DynamiC dragging of the carriers of plastic de
formation is usually attributed to phonon mechanisms 
of energy dissipation. It is of interest, on the basis of 
the estimates (21), (23) and (25) given in the paper, and 
also on the basis of known data on phonon dragging of 
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dislocations l13,221, and kinks(16) and the estimate ob
tained by analogy for the phonon dragging of crowdions, 
to ascertain the temperature starting with which the 
phonons in metals are frozen out to such a degree that 
the predominant dissipation mechanism is the tempera
ture-independent electron scattering. Such a compari
son, at reasonable values of the parameters for the 
normal metal, can show that the critical temperatures 
below which electron dragging predominates are differ
ent for dislocations (Td), kinks (Tk), and crowdions 
(Tc), and are of the order of 

Td"" (2-3)Tc -1O-'8, Tk -1O-' (a/w)8, (26) 

where @ is the Debye temperature. The difference be
tween the characteristic temperatures Td, Tk, and Tc 
may be useful when it comes to revealing the mecha
nisms that limit viscous energy losses in plastic defor
mation under various conditions. 

The authors are deeply grateful to M. I. Kaganov for 
fruitful discussions and valuable remarks, which found 
reflection in the text of this article. 

I)In the region kl < I it is necessary, when Gpp'(k, w) is calculated, to 
take relaxational processes into account; this analysis is not trivial, 
owing to the presence of singular diagrams, summation of which is 
equivalent to the solution of the kinetic equation ["]. As applied to 
to the problem of phonon dragging of dislocations, an analogous 
Green's function for phonons was investigated in [13] both in the 
short wave (kl> I) and in the long wave (kl < I) region, which made 
it possible to estimate the relative role of the relaxation processes in 
the phonon subsystem. Unfortunately, in our case there is no need 
for such an analysis, since the corresponding kinetic problem for the 
electrons was solved earlier in a well known paper by Akhiezer [14]. 
Its results have indeed the basis of the conclusion that the region kl < I 
plays no significant role in dislocation pinning [3.12]. 

2)Substitution of (19) in (15), naturally, also leads to the result known 
from the direct calculations [14]. 
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