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A method is proposed for determining the temperature dependence of the energy gap 
on the basis of data obtained by measuring the thermal conductivity of superconductors 
with a high impurity-atom content. Results are presented of an investigation of the 
temperature dependence of the thermal conductivity of niobium (99.6%) and a solid nio­
bium solution containing 1.7 at.% zirconium in the super conducting state, and also of the 
thermal conductivity of the samples in the 10-20oK temperature range. The dependence 
of the specific heat of the solid solution with 1.7 at.% zirconium on temperature between 
2.5 and 18°K is presented. From the results obtained the temperature dependence of the 
energy gap of the samples is determined. Electron and lattice components of the thermal 
conductivity of the samples in the superconducting state are found. The contribution of 
phonon scattering by crystal structure defects to the lattice thermal resistance in the 
superconducting state is determined. 

We consider in this paper the results of investigations 
of the formal conductivity and the electric conductivity 
of niobium samples 99.6% pure and niobium with 1.7 at% 
zirconium. For the latter sample, we investigated also 
the temperature dependence of the specific heat. The 
measurements of the thermal conductivity and of the 
electric conductivity were accurate to ~ 2% and ~ 0.5%, 
respectively. The error in the measurement of the 
specific heat in the temperature range 4-18°K was 
1_18%(1,2]. The investigated samples were kindly sup­
plied to us by V. V. Baron and V. A. Frolov of the Balkov 
Metallurgy Institute of the USSR Academy of Sciences. 
Some characteristic of the superconducting state of solid 
solutions of the niobium-zirconium system were con­
sidered by us ear lier [3 ,4). 

The investigated compositions were prepared by the 
method of multiple remelting of mixtures of initial com­
ponents in a vacuum electric-arc oven on a copper water­
cooled hearth in a medium of pure helium at a pressure 
400-500 mm Hg. After mechanical working, the samples 
were etched to clean their surface, and then subjected to 
homogenizing annealing in a vacuum oven at a temper­
ature of 1500°C for eight hours, after which the sample 
with 1.7 at% zirconium was quenched to fix the (3-solid 
solution of zirconium in niobium, and the niobium sample 
was slowly cooled with the oven in a vacuum of ~ 10-6 

Torr. 

The temperature dependences of the thermal con­
ductivity of the investigated samples are shown by 
curves 1 of Figs. 1 and 2. The results of the measure­
ments of the electric conductivity are shown in Fig. 3. 
The change of the electric resistance in the temperature 
interval 10-18°K is much less than the residual re­
sistance, and this gives grounds for assuming that the 
electrons are predominantly scattered by impurities. 
This is confirmed also by an analysis of the Lorentz 
numbers[3), which were calculated from the values of the 
residual resistances obtained by graphic extrapolation, 
or from an analytic relation of the form 

p =po +AT' +BT'. 

The obtained values of Po enable us to determine the 
electronic component of the thermal conductivity in the 
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FIG. I. Temperature dependence of the thermal conductivity of 
niobium sample: I-total thermal conductivity Ks; 2-electronic thermal 
conductivity Kes; 3-phonon thennal conductivity Kgs = Ks-Kes; 4-
phonon thermal conductivity K~s = Bt2 n(b). 

normal state: Ken = LoT/Po (Lo is the Sommerfeld num­
ber). For the investigated samples the values of Ken 
coincide in practice with the general thermal conduc­
tivity in the normal state. Figure 4 shows the temper­
ature dependence of the specific heat of the niobium 
sample with 1.7 at.% zirconium. 

The obtained experimental data can be used to 
determine the temperature dependence of the super­
conducting gap. There are several direct methods of 
observing the energy gap in the spectrum of electronic 
excitations of superconductors. The Simplest and most 

i reliable method of measuring the tunnel current between 
two layers of superconducting materials, separated by 
a thin oxide film, cannot be used for the investigated 
objects because of great technological difficulties en­
countered when an attempt is made to produce the 
"sandwich." This explains also why it is impossible to 
determine the energy gap from the absorption of infrared 
radiation in thin films of the investigated materials. 

From the temperature dependence of the electronic 
thermal conductivity it is possible to obtain information 
on the value of the gap parameter at rather low tem-
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FIG. 2. Temperature dependence of the thermal conductivity of a 
solid solution of neobium with 1.7 at.% zirconium: I-total thermal con­
ductivity KS; 2-electronic thermal conductivity Kes; 3-phonon thermal 
conductivity Kgs = Ks-Kes; 4-phonon thermal conductivity K~S = 
Bt 2,Q(b). 

peratures (Doo) and its behavior near the transition tem­
perature[5,6]: 

The factor {3 is connected with the discontinuity of the 
electronic thermal conductivity by the relation 

!!.:.:.I ~ 1 + -.-.; ~'. 
Ccn TI.' 2n 

(1) 

Data on the thermal conductivity, as will be shown 
later on, make it possible to determine with sufficient 
accuracy the values of the energy gap at intermediate 
temperatures, and in some cases practically in the 
entire temperature interval of the superconducting state. 

In the calculations we used an expression that follows 
from the formulas given by Bardeen et al. [7] and by 
Gemkman[8] and describe the electronic thermal con­
ductivity of superconductors in the case of scattering of 
electronic excitations by point defects: 

x" b' ~ (_1)'+' 
-=tl>(b)~{--+2 r---e-·b 

Xen e" + 1 ......, SZ 
8=1 

(2) 

+ S~ x'exdx ). (3) 
'2b(e'-1)'[x+2b-2In(eb+x +1)(e" '+1) '] 

Using formulas (2) and (3), we can write down an 
expression for the total thermal conductivity in the 
following form: 

x, = atrtJ (b) + Bt2~2(b), 
where a and B are the coefficients characterizing the 
respective contribution of the electronic and lattice 
thermal conductivities to the total conductivity. At 

(4) 

T 2: T2 we have b = 0, cJ>(0) = 1, and n(O) = 7.209. In this 
case, expression (4) describes the thermal conductivity 
of the sample in the normal state. 

In (4), a = LaTc/Po; to determine the coefficient B it 
is necessary to know the value of the gap ba at a certain 
temperature to: 

B = x. - at,tl> (b,) 
t,'Q(b,) (5) 

An analysis carried out with a computer shows that 
Eq. (4) has a unique root in the interval b = 0-10. The 
value of the root at each temperature makes it possible 
to determine the energy gap. The calculations can be 
carried out with a computer or manually. In the latter 
case, we used the functions cJ>(b) and n(b), which were 
tabulated by us in detail for values b = 0-10 in steps 
of 0.01-0.03 uSing the VM-222 calculator. 

Let us describe the procedure of the manual cal­
culation. Choosing a certain (initial) curve paSSing 
through bo, relation (2) is used to calculate Kes , and then, 
using expression (3), we obtain again the values of b 
from the values of Kgs = KS - Kes. By comparing these 
values with the initial ones we can estimate the correc­
tions that must be introduced in the initial curve to ob­
tain a self-consistent condition. In the temperature 
region where K s are small in comparison with the error 
with which the fotal thermal conductivity is determined, 
the criterion of the correct choice of the temperature 
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FIG. 3. Temperature dependence of the resistivity of the investigated 
samples: I-investigated niobium sample, 2-niobium with 1.7 at.% zirco-

where Kes is the electronic thermal conductivity in nium. 
superconducting state, Ken is the electronic thermal 
conductivity in the normal state and is determined by 
extrapolation, into the region of low temperatures, of 
the linear dependence of the normal thermal conductivity 
measured at 

T> To, b = tiT / T,t, t = T / Te. 

The lattice thermal conductivity, which is controlled 
by the scattering of the phonons from the electronic 
excitations, was calculated with a formula proposed by 
Gehikman and Kresin [9] 

2b x~ex dx 

Xg, = Bt'Q (b) = Bt' [~ (eX ~ 1) '(2x _ 21n(e"+x + 1) (eb + 1) '] 
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FIG. 4. Temperature depen­
dence of the specific heat of a 
solid solution of niobium with 
1.7 at.% zirconium: I-total 
specific heat, 2-electronic 
specific heat. 
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TABLE I. Estimate of the gap errors due to the 
error in the thermal-conductivity measurement 
(to.= I) 

I 

0.10 --0.014 -007 · --0:30 I · 0.9 1.03 0.05 ---0.007 -0.04 -0.18 · 0.01 -0.002 -0.008 -0.05 --0.24 I 0.15 
0.10 -0.02 -0.1 · · · 0.8 1.56 0.05 -0.01 -0.05 -0.2 · · 0.01 -0,002 -0.01 -0.06 --0.15 · 0.10 -0.03 -0.13 · · · 0.28 6.25 0.05 -0.02 -0.07 --0.29 · · 0.01 -0.003 -0.02 ---0 07 --0.16 · 

• lObi> 0.3. 

dependence of the gap may be a comparison of the lattice 
thermal conductivity, calculated from formula (3), with 
Kgs = KS - Kes. The discrepancy must not exceed the 
error in the determination of the total thermal conduc­
tivity. 

Let us see first what requirements must be imposed 
on the experimental accuracy to obtain sufficiently re­
liable values of the energy gap from measurements of 
the thermal conductivity. Let us assume, to Simplify 
the subsequent arguments, that the relative error in the 
determination of the thermal conductivity is oKIKs = K 
> 0 and does not depend on the temperature. In our 
case, this is indeed the case, since the errors are sys­
tematic and are due mainly to parasitic heat losses [1l. 

Using (4), we obtain 

(1 + K) attD (b) + (1 +- K)Bt'Q(b) ~ attD(b) + Bt'Q(o), (6) 

where 13 and b are quantities corresponding to the 
measured value of the thermal conductivity. The coef­
ficient a is determined from the values of the electric 
conductivity, which is measured with rather high ac­
curacy. We therefore assume that the true value of this 
coefficient is used in (6). 

Assuming that at a certain temperature to the value 
of the gap is known and is equal to bo, and putting 
b = b + ob, we obtain, confinining ourselves to the first 
two terms of the expansions of <I>(b) and O(b) in powers 
of ob, 

lib "" K[<l>(b)- <l>(b,)tQ(b)/t,Q(b,) 1 . 
!D' (b) + B (1 + K + K<l> (b,) a/t,Q (bolBl tQ' (b)/a ' 

tD'(b) ~f)tD/f)b, Q'(b) ~(jQ/{jb. 

Formula (7) contains the parameter a/B, which 
depends on the degree contamination of the sample: 

(7) 

a IBn (0) is the ratio of the electronic and lattice thermal 
conductivities at t = 1. The relative contribution of the 
lattice thermal conductivity increases with increasing 
impurity-atom content. Therefore, to obtain numerical 
estimates of the error in the determination of the gap, 
we use values of alB in the interval 2-1000. For the 
case to = 1 (bo = 0), the results of the estimate are 
shown in Table I. 

The values of b in Table 1 are set in correspondence 
with the values of t obtained from the temperature de­
pendence of the BCS-model gap[lOl. For any other model, 
naturally, the values of b in the table will correspond to 
other values of the temperature. 

It follows from Table I that for samples with high 
impurity-atom content, and consequently with an ap­
preciable contribution of the phonon thermal conductivity 
in the normal state (alB ~ 10), the errors in the de-
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TABLE II. Estimate of the gap errors 
due to the error in the measurement of 
the thermal conductivity (to = 0,6) 

0.9 1.03 0.05 +0.20 
0.01 +0.04 +0,17 -0.1 

0.8 2.80 0.05 +0.06 +0.25 -0.21 
0.01 +001 +0.05 -0.04 

0.28 6.25 0.05 -0.02 +0.03 -0.25 
0.01 _0.003 +0.01 -0,06 

• lObi> 0.3. 

termination of the gap do not exceed 4% even if the 
thermal-conductivity measurement is made with an 
error ~ 5%. This accuracy can be regarded as acceptable. 
However, at values alB ~ 100, the gap is determined 
very roughly even with relatively accurate measure­
ments of the thermal conductivity. This is due to the 
large error in the determination of the coefficient B. 
Indeed, at alB ~ 100, the lattice thermal conductivity 
at the transition temperature amounts to about 1% of the 
total thermal conductivity and consequently, when the 
thermal conductivity is measured with accuracy K = 0.01, 
the values of B are obtained with an error ~ 100%. 

It might seem for samples with a ratio alB ~ 1000 
one can neglect the phonon thermal conductivity when 
determining the energy gap near T c. It is easy to see, 
however, that the error in the determination of b amount 
in this case to 

b _K<l>(b)+(HK)BtQ(b)la 
(j - <l>'(b) , (8) 

from which it follows that even at t = 0.9 and T = 0.01 
the gap is determined with an error exceeding 20%. The 
error increases rapidly with decreasing temperature. 
The phonon thermal conductivity can be neglected in the 
determination of the gap only in the case of very pure 
samples with a ratio a/B ~ 104 • 

The result of the determination of the gap can be 
greatly improved for relatively pure samples by choos­
ing as to a sufficiently low temperature, at which the 
contribution of the lattice thermal conductivity becomes 
noticeable, but it can be assumed as before that the only 
mechanism that limits the lattice thermal conductivity is 
the scattering of phonons by electrons. The errors in 
the determination of the gap, as functions of the error 
in the measurement of the thermal conductivity, are 
shown in Table II for the case to = 0.6. 

As seen from the table, the determination of the tem­
perature dependence of the gap of a relatively pure 
sample, especially at temperatures close to Tc , calls 
for highly accurate measurements of the thermal con­
ductivity (K ~ 0.01). This accuracy can be attained at 
the present state of the art. 

The only limitation on the proposed method of de­
termining the temperature dependence of the gap is the 
need for knowing its value at the temperature to, since 
this makes it possible to obtain the coefficient B of (4). 
As will be shown later on, we can use for this purpose 
also the values of the gap at OOK or the temperature de­
pendence of the gap near Tc , which can be obtained, for 
example, with the aid of (1). 

By way of example we have determined the temper­
ature dependence of the gap from the result of meas­
urement of the thermal conductivity of a niobium sample. 
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FIG. 5. Temperature dependence of the gap of niobium and of a 
solution of niobium with 1.7 at.% zirconium. I-Niobium without al­
lowance for the phonon thermal conductivity; 2-investigated niobium 
sample; 3-niobium in accordance with the data of [13]; 4-BCS gap 
model with 0 = 1.97. Calculation of the gap from the discontinuity of 
the specific heat: O-niobium in accord with the data of [11] ; .-niobium 
with 1.7 at.% zirconium (see Fig. 4), 5-niobium with 1.7 at.% zirconium. 

In this case Po = 1.08 X 10-6 Sf- cm, and the Lorentz 
number is practically equal to the Sommerfeld value. 
This makes it possible to use for Ken an extrapolation of 
the proton thermal conductivity of the normal state, 
Ken = 190t mW Icm-deg. Curve 1 in Fig. 5 shows the 
values of the gap determined without allowance for the 
phonon thermal conductivity. It is reasonable to assume 
that the maximum in this curve and the low values of the 
gap at t "" 0.6 are due to the growth of the phonon con­
tribution with decreasing temperature. 

In the region 0.5:s t:S 1, Eq. (4) is satisfied, in the 
case of the investigated sample, by gap values repre­
sented by curve 2. The coefficient B was obtained by 
substituting in (5) the values to = 2.92 and to = 0.6 
(alB = 870). The correctness of the choice of these 
values is confirmed by the agreement of the t.(t) relation 
represented by curve 2 with the values of the gap cal­
culated from the discontinuity in the specific heat, using 
the data of[ll). 

At low temperatures, curve 2 approaches the value of 
t.o obtained from ultrasound absorption [12]. This value 
agrees with numerous determinations of t.o from meas­
urements of the specific heat[13]. 

At t < 0.5, the gap values calculated from Kgs cannot 
be reconciled with the monotonic extrapolation of curve 
2 into the low-temperature region (dashed). It must be 
assumed that phonon scattering by the crystal-lattice 
defects has a noticeable effect in this temperature region. 

Figure 5 shows also the temperature dependence of 
the superconducting gap (curve 3) of the niobium sample 
(Po = 5.2 . 10-7 Sf-cm), calculated by us from thermal­
conductivity measures performed-by Wasim and 
Lebouni [13]. In spite of the difference in the purity and 
in the number of defects in the samples (the latter is 
illustrated by the difference in the temperatures up to 
which the only mechanism controlling the lattice thermal 
conductivity is the scattering of phonons by electrons), 
the temperature dependences of the gaps are very close. 
The discrepancy between curves 2 and 3 can be ex­
plained by assuming a systematic error on the order of 
2-2.5% in the thermal conductivity measurement made 
by Wasim and Leboumi [13). The authors of this paper 
themselves, assuming that the contribution of the phonon 
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thermal conductivity can be neglected at t ~ 0.7, inter­
preted their experimental data by using for the gap a 

d 1[10] 
temperature dependence calculated by the BCS mo e 
with ~ = 1.97 (curve 4). Comparison with curves 2 and 
3 shows that at t < 0.5 the values of the gap, and conse­
quently the resolution of KS into electronic and lattice 
components with the aid of these values, are highly 
inaccurate. 

We consider now a case when there are no additional 
data that make it possible to verify the correctness of 
the choice of the initial gap. Assuming at the temper­
ature to the erroneous gap value bo = bo + c5bo, we incur 
by the same token the following error in the determina­
tion of the coefficient B in formula (4): 

13 Q'(bol+all>'(bol/Bto 
1--"'Mo • (9) 

B Q(bol- Moll>' (bola/Bto 

The use of the coefficient B in (4) in place of the correct 
value B leads to the following error in the determination 
of the gap: 

(1-13/BlQ(bl 
M"" Q'(b)+<D'(b)Ba/BBt (10) 

At a ratio alB ~ 10, the coefficient B can be determined 
with sufficient reliability from the thermal conductivity 
and electric conductivity at temperature t = 1. The prob­
lem of the correct choice of the coefficient B arises 
only at the parameter values alB ~ 100. 

Figure 6 shows the results of calculations of the 
energy gap in accordance with formula (10) for the case 
when the true temperature dependence of the gap is given 
by the BCS model [7]0. The calculations were performed 
with the parameter values alB = 100 and alB = 1000. 
The value (B - B)/B corresponds to a gap error c5bo 
= ± 0.13 at to "" 0.6. For a given experimental KS (t) 
curve it is possible to set in correspondence, wi th the 
aid of Eq. (4), each value of B with a separate t.(t) curve. 
From the shapes of the curves in Fig. 6, however, it 
follows that the requirements that t.(t) be monotonic and 
that the square-root dependence (1) be preserved near 
t = 1 are satisfied by the solutions of (4) only if the coef­
ficient B is correctly chosen. The error in the choice 
of this coefficient comes most strongly into play at 
values alB ~ 1000. In this case, even a relatively small 
error in the coefficient B leads to a strong and easily 
observed violation of the monotonicity of the function 
t.(t). In the case of samples whose thermal conductivity 
in the normal state is determined primarily by the 
electronic component, this makes it possible to obtain 
a sufficiently correct temperature dependence of the 
energy gap by solving Eq. (4) without using additional 
data, which can then be used to monitor the correctness 
of the choice of the coefficient B. 

We have made use of this possibility to determine the 
temperature dependence of the gap from measured values 
of the thermal conductivity of the solid solution of nio­
bium with 1.7 at.% zirconium. It is possible to obtain 
for Eq. (4) solutions that lead to a monotonic temperature 
dependence of the gap if B is equal to 0.424 mW /cm-deg. 
This dependence is represented by curve 5 of Fig. 5. 
Near t = 1, this curve agrees ~atisfactorily with the gap 
values calculated from formula (1) using data on the 
electronic specific heat of this sample. The values of 
the gap were determined from the thermal-conductivity 
data only in the interval 0.55 ':S t'5 1, inasmuch at lower 
temperatures the scattering of the phonons by the crystal­
structure lattice becomes appreciable. At t < 0.55, the 
value of the gap is obtained by extrapolation (dashed 
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FIG. 6. Temperature dependence of the gap, calculated from thermal­
conductivity data at different values of BIB: I-Sbo = 0, BIB = I; Sbo = 
0.13, BIB = 1.14;4-Sbo = O.l3,B/B = 0.90. 

FIG. 7. Temperature dependence of additional thermal resistance due 
to scattering of phonons by crystal-structure defects: O-niobium with 
1.7 at.% zirconium, .-niobium. 

continuations of curves 2, 3, and 5 in Fig. 5). This 
extrapolation is justified to a considerable degree by 
the character of the curves in that temperature region 
where they correspond to Eq. (4). 

The obtained temperature dependence of the gap 
make it possible to calculate the electron and phonon 
components of the thermal conductivity of the inves­
tigated samples (curves 2 and 3 in Figs. 1 and 2). Curves 
4 in Figs. 1 and 2 correspond to the values of the phonon 
thermal conductivity calculated from formula (3), lim­
ited only by the scattering of the phonons from the 
electronic excitations. Curves 3 and 4 coincide in that 
temperature region in which this mechanism of phonon 
scattering is predominant. The presence of maxima on 
the plots of the total thermal conductivity indicates that 
below a certain temperature the contribution of the 
scattering of the phonons by the crystal-structure defect 
becomes Significant. Therefore the discrepancy between 
curves 3 and 4 becomes reasonable. 

Assuming that the processes of phonon scattering by 
electrons and by structure defects are independent, we 
obtained the thermal resistivity due to the last mech­
anism as the difference between the reciprocals of the 
ordinates of curves 3 and 4. Figure 7 shows the de­
pendence of the logarithm of this thermoresistance 
(~Wph) on the logarithm of the reduced temperature. 
This dependence is described by the relation 

(11) 

where n ~ 3 for the investigated samples (see Table III). 

This value of the exponent allows uS to assume that 
the phonon-scattering defects are the grain and block 
boundaries of the investigated solid crystalline samples. 
If this is the case, then the thermal conductivity, which 
is controlled by phonon scattering from boundaries 
separated by a characteristic distance l, can be es­
timated by a relation that follows from [141. 

__ 1_ ~-.!...Cul=258 .10'v-'I, eD -' IT 't' mw (12) 
~WPh 3 m, cm.deg' 

where eD is the Debye temperature and vm is the molar 
volume. From (11) and (12) we obtain 

(13) 

The values of 1 obtained in this manner are given in 
Table III. They should be regarded as reasonable, since 
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TABLE III. Certain characteristics of investigated samples 

Sample 
/ 

Tc',_~ 
/ 

alB 
/ 

d. 
/ 

pf/·l0'. 
n-cm ATe' I n /"10'. em 

Investigated niobium 9.1 870 1.87 1.08 1580 2.84 2,6t-O.16 
Niobium in [13) 2500 9.0 1.89 0.52 
Niobium with 1. 7 at.% 9.5 700 1,80 0.76 1450 2.94 2.3 

zirconium 

they correspond approximately to the dimensions of the 
crystallites and blocks of the investigated samples. The 
values of ~Wph depend, naturally, on the correctness 
with which the temperature dependences of the gaps 
were extrapolated into the low-temperature region. 
Therefore the fact that the temperature dependence of 
~W'ph satisfies relation (11), and also the fact that 
estimates of 1 based on the construction in Fig. 7 turn 
out to be reasonable, favors the correctness of the 
values of ~o obtained by extrapolation. 

The authors thank V. Z. Dresin for interest in the 
work and for a discussion, and A. S. Volovik for help 
with the computer calculations. 

I)Formula (10) makes it possible to calculate the gap error due to the 
error in the coefficient B for an arbitrary gap, since ,neb), ,n'(b), and 
<1>' (b) are universal functions of b. 
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