
Theory of the anomalous skin effect in a plasma with a 
diffuse boundary . 

S. M. Dikman and B. E. Mel'erovich 
Institute of Physics Problems, 
USSR Academy of Sciences 
(Submitted December 20, 1972) 
Zh. Eksp. Teor. Fiz. 64,1653-1671 (May 1973) 

A theory is developed of the anomalous skin effect in a diffuse-boundary plasma located in 
a magnetic field. Penetration of an electromagnetic wave into a finite size plasma layer is 
also investigated. Final solutions are obtained for cases when the electron concentration 
outside the plasma drops exponentially or according to a power law. 

1. INTRODUCTION 

The question of the anomalous skin effect in a plasma 
with a diffuse boundary was raised by Kapitza in connec­
tion with a study of a microwave pinch discharge in a 
high-pressure gas [1J. Since the plasma boundary in the 
high-frequency discharge is not abrupt, the existing 
theory of the anomalous skin effect (see, e.g. [2J ), in 
Secs. 33 and 34 of[3J, Secs. 17 and 18 of[4J, etc.), which 
was developed for metals with sharp boundaries, cannot 
be applied directly to a plasma. In the absence of a mag­
netic field, a theory for the anomalous skin effect in a 
plasma with a diffuse boundary was constructed by 
Liberman, Pitaevskil, and one of the authors [5J under 
the assumption that the concentration of the electrons 
depends· monotonically on the coordinate. The final 
formulas were obtained in [5J for the case when the elec­
tron density decreases exponentially with distance out­
side the plasma. 

In Sec. 2 we develop the theory of the anomalous skin 
effect in a plasma having a diffuse boundary and situated 
in a constant and uniform magnetic field. In Sec. 3 we 
consider the anomalous skin effect in a plasma layer 
with diffuse boundaries. This question is important, 
since the characteristic dimensions of the plasma in the 
experinlents can be of the same order as, and even 
smaller than the electron mean free path. Since there 
are no grounds for assuming that the electron concen­
tration always decreases exponentially with increasing 
distance outside the plasma, considerable interest at­
taches to the solution, in Sec. 4, of the integral equation 
for the case of the extremely anomalous skin effect in a 
plasma with a power-law dependence of the electron 
concentration on the coordinate. 

We shall assume that in the absence of the high­
frequency field the plasma is at equilibrium and that the 
dependence of the electron density ne(x) on the coordin­
ate is specified and is maintained by the field of external 
forces eEo(x) that act on the electrons (including the 
forces exerted by the ions). The potential cp(x) of this 
field is connected with ne(x) by the Boltzmann formula 

n,(x) =no8Xp (-erp(x) IkT,). (1.1) 

In Secs. 2 and 4 we shall assume that the electron den­
sity ne(x) is a monotonic function and depends only on 
one coordinate x. The singularities resulting from the 
non-monotonicity of the function ne(x) are investigated in 
Sec. 3. Since the plasma is assumed to be in equilibrium, 
the presence of the electron concentration gradient does 
not affect the distribution of the constant magnetic field 
H (which is perpendicular to the density gradient); this 
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field penetrates freely into the plasma and will hence­
forth be assumed uniform. 

The magnetic field bends the electron trajectories. 
The electron motion in the direction of the concentration 
gradient is finite. The motion of the electrons in a 
plasma layer is likewise finite (see Sec. 3), for in this 
case cp(x) - 00 both as x - -00 and as x - + 00, leading to 
the presence of two classical turning points (see Fig. 4 
below). Moving along a finite trajectory, the electron 
can return many times to the skin layer, where it inter­
acts actively with the field of the electromagnetic wave. 
In the general case, the connection between the current 
denSity j in the plasma and the electromagnetic field E 
is integral. For a wave propagating in the direction of 
the gradient electron concentration x we have 

+~ 

i.(x)= J };.v(x,x')Ev(x')dx'; J.l,V = Y,Z. (1.2) 

In the present paper we obtain expressions for the 
conductivity kernel ~ /l v(x, x') at arbitrary relations be­
tween the electron mean free path, the dimensions of 
their trajectories, and the depth of penetration of the 
field into the plasma, and also at an arbitrary fie(x). 

In the presence of a magnetic field, just as in the 
case of a sharp boundary, the interaction of the elec­
trons with the high-frequency field has a resonant char­
acter if the period of the electron motion is close to an 
integer number of periods of the field (the Azbel' - Kaner 
cyclotron resonance [6J). . 

Besides the cyclotron resonance in a plasma with a 
continuous boundary, a new resonant phenomenon takes 
place, the gist of which consists of the following. 1f one 
period of motion of the electron is close to an integer 
odd number of half-periods of the high-frequency field, 
then after each revolution the field exerts on the electron 
a force which is equal in magnitude but opposite in sign. 
Therefore, if the electron acquires energy in the given 
revolution, then in the next revolution it will return this 
energy. The electrons thus do not interact resonantly 
with the electromagnetic wave, as a result of which the 
wave attenuates weakly. This phenomenon can be natur­
ally called cyclotron antiresonance. 

The investigation in Sec. 4 shows that the problem 
of the strongly anomalous skin effect in a plasma with a 
power-law fie(x) dependence is meaningful only if the 
exponent is p > 4. It should be noted that the effective 
depth of field penetration into the plasma has a charac­
teristic dependence on the frequency in the case of a 
power-law function ne(x). The shapes of the cyclotron-
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resonance and cyclotron-antiresonance lines depend sig­
nificantly on the exponent in the case of a power-law 
function ne(x), and differ strongly from the correspond­
ing lines in a plasma with an exponentially decreasing 
electron concentration. 

2. ANOMALOUS SKIN EFFECT IN A PLASMA WITH 
A DIFFUSE BOUNDARY IN A MAGNETIC FIELD. 
CYCLOTRON RESONANCE AND CYCLOTRON 
ANT I RESONANCE 

We choose the y axis parallel to the constant and 
uniform magnetic field H. The kinetic equation linear­
ized with respect to the small electromagnetic field 
Eeiwt takes the form 

at. eEo at. (at. at. ) 
(iw+Vefr)t.+V,-+~-+Q v,--v'-a 

ax m av, av, v, 

eE. at. 
=-;;- av.' v=y,z. 

(2.1) 

Here fl is the increment to the equilibrium distribution 
function 

( m ) 'I. (mv' ) 
to=2nkT. n.(;')exp - 2kT. ' 

and is proportional to the external electromagnetic field 
in whose penetration into the plasma we are interested; 
Eo(x) is the electric field that contains the electrons and 
is constant in time. 11s potential cp (x) is connected with 
the electron concentration ne(x) by the Boltzmann form­
ula (1.1); w is the frequency of the electromagnetic 
wave, IIfilff is the effective number of collisions, and 
n = eH /mc is the Larmor frequency of the electrons. 

Equation (2.1) is a first-order linear differential 
equation. Its solution reduces to integration of ordinary 
differential equations (the so-called characteristic 
equations) 

dx dv, 
v, eEo/m + Qv, 

dv, ( ) -- =dt, Qv, 

which, when rewritten in the form 
dx 

""dt= v" 
dv, 
_=-Qv", 
dt 

(2.2) 

are the equations of motion of the electron in the con­
stant and homogeneous magnetic field H and in the elec­
tric field Eo(x). Multiplying the second equation of (2.2) 
by vx' the third by v z' and adding, we obtain an integral 
of the motion, namely the law of conservation of the en­
ergy €: 

e = 1/2m(v.' + v,') + e<p (x). (2.3) 

From the first and third equations of (2.2) we obtain one 
more integral of the motion 

Xo =x+ v,/Q. 

Eliminating Vz from (2.3) and (2.4), we get 
mQ' 

q;(x)=<p(x)+-. -(x-xo)', 
2e 

(2.4) 

i.e., the electron moves in the direction of the x axis in 
a field having an effective potential cp(x) that increases 
without limit as x - ± 00 (see Fig. 1). The electrons 
move along finite trajectories, and the classical turning 
points xt and x: are determined as functions of E and Xo 
from the equation 

eq;(x') = e. 

The electrons reverse direction at the classical turn­
ing point. The corresponding boundary conditions on the 
distribution function are 
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!(v,) =!.(-v,), x = x..... (2.5) 
They define uniquely an electron distribution function 
that satisfies Eq. (2.1). As a result we obtain for the 
denSity of the electric current in the plasma 

~ +~ +~ z 

i.(x)=-2eiSdv, SdV.S dv, (v •• • ) [S ch «D(x.·,x')ch «D (x", x) 
o _00 _00 sh a> Xi 1 X2 XI. • 

..S· (.) (. ').] v.(x') aloE ( ')d ' 

(2.6) 

+,ch«DX. xch«Dx"x v.(x')a;" v X x; /l,V=Y,Z. 

Here v jl(x') is the velocity, at the point x', of an elec­
tron having a velOCity v at the point x. It is determined 
by eliminating E, Xo, and vz(x') from the relations 

8 = 3!.(v.' + v,') + e<p(x) = ~[v.' (x') + v,' (x') ]+ e<p(x'), 
2 2 

Xo = x+ v,/Q = x' + v,(x') / Q. 

We have 
v,(x')=v,+Q(x-x'), vy(x')=vy=const, '.(27) 

2e }', . • 
v.(x')=±{v.'+v,'- [v,+Q(x-x')]'+-;;;-[<P(x)-<p(x')] .• 

The arguments of the hyperbOlic functions in (2.6) are 

lCs dx" 
«D(x.,x,)=(iw+Vefr) S-(-,-,- =(iw+v.~~)t(x.,x,), 

XI VX x ) 
(2.8) 

where 
XI dx" 

t(x.,x,)= s-( ") v, x 
" 

is the time during which the electron covers the dis­
tance from Xl to X2. 

In the region of integration in (2,6), the radicand of 
(2.7) is not negative, with ~(x') = 0 only at the classical 
turning points x' = xi 2' The region of integration is 
shown schematically in Fig. 2 in terms of the coordin­
ates x' and v . At specified x and x', the region of inte­
gration with ~espect to v z takes the form 

- 00 < Vz < vz~(x, x'), x> x', 

v;/(x, x') < Vz < +00, x' > x, 

where v~(x, x') is determined from the condition v~(x') 
= 0: 

v; (x, x') 
v.' 1 e <p(x)- <p(x') 

-:::-;:-..,----;~ - ~Q(x - x') + 
2Q(x-x') 2 mQ x-x' 

Reversing the order of integration with respect to v z 
and Xl.! we obtain for the electric-current denSity in the 
plasma the expression (1.2) with a conductivity kernel 

FIG. I. Dependence of the effec­
tive potential ~ on the coordinate. 

FIG. 2. Integration region in for­
mula (2.6). 
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~.,(x, x') 

Oi;l +00 V z , ",'" 
_ 2 '~ d r d ~ d lJ!'v, (x ) !!l!!.. eh (D (Xlo x ) eh <lJ (x" x) 

e Vx \ Vy v, (') ~ ." 
o ...::,., _~ Vx x ve sh <lJ(x" x,) 

x' <x; 

(2.9) 

x'>x; 

this expression is valid for any relation between the 
depth of penetration of the field into the plasma, the elec­
tron mean free path, the Larmor radius, and the dimen­
sions of the transition region at the plasma boundaries. 

We confine ourselves below to the most interesting 
case, of the extremely anomalous skin effect, when the 
depth 6 of penetration into the plasma is small in com­
parison with the characteristic dimensions of the elec­
tron trajectories as well as in comparison with the mean 
free path: 

5<vIQ,I; l~vl liw+Veffl, (2.10) 

V = (2kTe/m)1/2 is the average thermal velocity of the 
electrons. In this case, the most Significant values of x 
and x' are those that differ from the classical turning 
point by an amount on the order of 6, inasmuch as the 
electromagnetic field and current density in the plasma 
attenuate rapidly at larger distances. The arguments of 
the hyperbolic functions of (2.9) vary significantly over 
distances on the order of the dimensions of electron 
trajectories that are much larger than the penetration 
depth. We can therefore put in (2.9) 

eh cD(x,',x')eh cD (x,', x) 

sh cD (x,', x;) 

ch cD (x,', x,')eh cD (x,', x:) 

sh cD (x,', x;) 
eth cD (x,', x;), 

eh, cD (x,', x)eh cD (x;, x') 

sh cD (x,' x,) 
eth cD (x,', x;). 

(2.11) 

(2.12) 

In the limiting case of a strongly anomalous skin effect, 
only a small fraction of the electron trajectory (of the 
order of 6) near the turning point is of importance. In 
this case the bending of the electron trajectory by the 
magnetic field in the skin layer can be neglected. As a 
result, Eq. (2.9) reduces to the form (afo/aE = -fo/kTe); 
we reverse the order of integration with respect to 
vx and vz, after which the dependence on the magnetic 
field remains Significant only in the factor 
coth cI>(xi, x:)): 

~.,(x, x') ~ 

2 2+00 +ac +00 
e S S S v,v. kT dv. dv, dv. ( ''- .,)"./oethcD(x,·,x,), 
e_ oo _00 v~. VX v: 

x'<x, 

2 2+00 +00 +00 
e S S S v,v. kT,_~dvy_~dv. 0 dv. (v.'~v;')'" !octhcD(x,',x;), x'>x, 

where 

v;' ~ 2e[<jl(x') - <jl(x) 1 1m. 

We have used here also the fact that the potential cp(x) is 
monotonic: cp(x') > cp(x) at x' < x. The character of the 
interaction of the electrons with the electromagnetic 
field in the skin layer on a small segment of the trajec­
tory does not depend on the magnetic field. The mag­
netic field enters only in the factor coth cI>(xi, xi), which 
takes into account the return of the electrons to the skin 
layer after each period of electron motion on the finite 
trajectory along the x axis. We confine ourselves to the 
case when the period of the finite motion of the electron 
along the x axis does not depend on the electron energy, 
This occurs, for example, when the electron concentra­
tion depends exponentially on the coordinate in a region 
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exceeding the dimensions of the electron trajectories 
along the x axis, and also when the dimensions of the 
transition region at the plasma boundary are small in 
comparison with the average Larmor radius of the elec­
trons. In both cases we have 

<!l(x,', x,') "" n~ ~ n{iro +Veff) IQ 

(U is the frequency of revolution of the electrons and 
coincides in this case with the Larmor frequency), and 
does not depend on the electron velocity. The remaining 
integrals do not differ from the corresponding integrals 
without the magnetic field (see, e.g., [5J ), and we obtain 

~ •• ~~cth(n,~) [n,(x)n,(x') l"'Ko(_e -l<jl(x)- <jl(x') I )6." 
l'n mv 2kT, 

where Ko(x) is a Macdonald function. The conductivity 
kernel is thus isotropic in the region (2,10). 

The integral equation for the electromagnetic field in 
a plasma (wavelength A = c/w »6) is given by 

d'E.~ icthn~+sw E (x')ex {-e[<jl(x)+<jl(x')]}. 
dx' 50' •. P 2kT, 

-~ (2.13) 
XKo(2:T. l<jl(x) - <jl (x') I) dx', !1 ~ y, z 

60 = (C~m/41T1ke2noW)1h is of the same order of magni­
tude as the anomalous skin depth of the field penetration 
into a plasma with a sharp boundary and with a constant 
electron density no. Equation (2.13) differs from the 
equation without the magnetic field only by the factor 
coth (1T{3). This equation cannot be solved for an arbitrary 
cp(x). Let us consider the case when the electron density 
decreases exponentially as x - -00 and tends to a cer­
tain constant limit no as x _ + 00: 1) 

{ n e'fa X ..... - 00 
( ) 

0, , 

n, x = + no, x -i-- 00 

a= kT,leEo. 

Just as in[5J, we consider the case when the devia­
tion of the electron density from exponential can be 
neglected in a region in which the high frequency field 
is still appreciable. This means that the electromagnetic 
wave attenuates strongly even before it reaches the 
place where the electron density in the plasma begins to 
deviate strongly from exponential. The corresponding 
condition takes the form 

L == In(a'i cth n~ I 150') » 1. (2.14) 

The region in which the electric -current density is 
maximal is separated from the region in which the elec­
tron density is close to no by a distance on the order of 
aL. Thus, under the condition (2.14), it suffices to ob­
tain the solution of the integral equation (2.13) in the 
region where the electron density does not differ from 
exponential: 

n,(x) ~ 1I0e"', a ~ kT.I eEo. 

The potential cp(x) is then a linear function of the coor­
dinate, cp(x) = -Eox. In terms of the dimensionless 
variables 

x~a(6-L), 1(6) =E.(x(s» 

Eq. (2.13) takes the form 

where 

+w 

d'f(s) Ids' = e'(nf'H) J I(s) e(H")f'Ko(ls - s' 1/2)'ds' , 

sin(2nw/Q) 
g ~ 1m In cth n ~ = - arctg <-I --''------''­

sh(2nveff/Q) 

(2.15 ) 

(2.16) 

Equation (2.16) differs from the corresponding equation 

S. M. Dikman and B. E. Me'i'erovich 837 



without the magnetic field (see[5J, formula (22)) only by 
a complex factor, and can be solved by the same method. 
Leaving out the details, which are given in [5J, we obtain 

1('6)=_1_.
ot
S'-F(k)e.t dk, -1<c<0, 

23tt c_ico 

(2.17) 
1I'eiA'Yk ( 211i ) 'I, 

F(k) = a r'(1 + k) 1- e-'niA e-'n<k. 

I It is easy to verify that this function is regular in the 
same region as function (30) of [5J, inasmuch as I g I 
< 11/2. By virtue of the linearity and homogeneity of 
(2.16), the constant QI in (2.17) is arbitrary. 

To calculate the reflection coefficient r and the active 
part of the surface impedance Re Z (see formulas (16), 
(18), and (19) of[ 5J), we calculate the asymptotic form of 
f(x) at A/a » I ~ I »1, ~ < 0: 

1m =a['6+1nn+3C+i(nI2+g)] 

(C = 0.577 ... is the Euler constant), from which we ob­
tain in accordance with [5J 

wa [ 11 ] r(H)=1-2-c- g+T- i(3C+lnn+L) , 

Re Z (H) = 4:~w ( ~ + g) . 
Just as without the magnetic field, the depth of penetra­
tion of the wave into the plasma is of the order of a, 
which is the reciprocal of the argument of the exponen­
tial. 

Let us trace the variation of the surface impedance 
of the plasma with increaSing magnetic field. In the ab­
sence of a magnetic field we have 

ReZ(O) = 2n'awI c', lI=O. 
~ 

(2.18) 

In a weak magnetic field, when the Larmor frequency 
is small in comparison with the effective number of 
collisions, the surface impedance differs from its value 
without the magnetic field by an exponentially small os­
Cillating increment 

ReZ(H)=ReZ(O) [1- ~ e-'""eff/Osin 2~W], Q<l::Veff. 

With increaSing magnetic field, in the region 

Q~Ul :'toVeff 

the surface resistance of the plasma is a periOdic func­
tion of the frequency w, and the function Re Z(H)/w is 
closer to rectangular in shape the better the inequality 
51 »v eff is satisfied. The abrupt jumps of the imped­
ance at 

(J) = nQ, n = 1, 2, 3, ... , (2.19) 

are connected with the Azbel' -Kaner cyclotron reson­
ance (see [6J and Secs. 35 and 36 of [3J ). Under the con­
dition (2.19), one period of motion of the electron corre­
sponds to an integer number of periods of the electro­
magnetic field. On entering the skin layer, the electron 
has after each revolution the same phase as the field, 
and the interaction between them is resonant. 

If 

Ul=(n+l/z)Q, n=O,1,2, ... ,· (2.20) 

then one revolution of the electron along a finite trajec­
tory corresponds to an odd number of half-periods of 
the electromagnetic field. After each revolution, the 
phase difference between the electron and the field in the 
skin layer is exactly reversed, i.e., the electron does 
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not interact resonantly with the field under the condition 
(2.20). This is manifest in the Re Z(H) dependence as 
jumps of the surface resistance, under the condition 
(2.20), in a direction opposite to that for (2.19). It is 
natural to call the resonant non-interaction of the elec­
tron with electromagnetic under the conditio.n (2.20) 
"cyclotron antiresonance." The dependence of the sur­
face impedance on win at certain values of veff/n is 
shown in Fig. 3. 

In the region of stronger magnetic fields 

vla:'to Q:'to w 

the surface resistance does not depend on the magnetic 
field and is given by 

4naUl Veff 
Re Z = -c'- arctg -;;;- , ~:'to Q:'to Ul. 

a 

With further increase of the magnetic field, the dimen­
sions of the electron orbits in the x-axis direction be­
come smaller than the depth of penetration of the field 
into the plasma, and the condition under which the skin 
effect is strongly anomalous is violated. 

A few words concerning the possibility of experimen­
tally observing cyclotron antiresonance in a plasma with 
a diffuse boundary. The point is that the current in the 
plasma has a minimum under the condition (2.20). In 
metals with. an abrupt boundary, this minimum of the 
current is screened by the strong nonresonant surface 
current of the electrons that glide in the skin layer [7-9J . 
On the other hand, in a plasma with exponentially grow­
ing electron concentration, all the electrons in the reg­
ion of the effective interaction of the electromagnetic 
field with electrons are under the influence of the same 
uniform field Eo. Thus, in a plasma with a diffuse boun­
dary all the electrons have the same period of revolu­
tion' and the resonance conditions (2.20) are satisfied 
simultaneously for all the electrons. We note that the 
period of revolution for all the elec1£ons can be regarded 
as the same in both limiting cases, v/n »aL as well as 
v/n «aL. In the first case, the electron moves in a 
constant and homogeneous magnetic field H, and in the 
second case in crossed mutually perpendicular fields Eo 
and H. 

3. ANOMALOUS SKIN EFFECT IN A PLASMA 
LAYER WITH DIFFUSE BOUNDARIES. INFLUENCE 
OF THE LAYER THICKNESS 

In this section we investigate the penetration of an 
electromagnetic wave into a plasma layer with diffuse 
boundaries. In the absence of a magnetic field, the 
kinetic equation (2.1) takes the form 

aI, eE. aI, eEy al. 3 1) 
(iUl+v'eff)/,+v'-+--a =--a' ( . ax m V;e m Vy 

This equation was solved in[5] by the method of charac­
teristics for monotonic ne(x). For a plasma layer, ne(x) 
tends to zero as x - ± 00. We assume that ne(x) is mono­
tonic in the sections (-00, 0) and (0, + 00). Accordingly, 
cp (x) increases without limit as x - ± 00. Just as in a 

FIG. 3. Dependence of the 
quantity 11 I 2 + g on the magnetic 
field. The numbers at the curves de­
note the values of veff/n. 
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magnetic field, the motion of the electrons in the x-axis 
direction is finite. The classical turning points X:,2 are 
obtained from the equation 

ecp(x') = e. (3.2) 

The boundary conditions on the distribution function 
are given as before by relations (2.5). From the condi­
tion (2.5) we obtain a unique solution of (3.1) and then, 
calculating the current denSity ji(x), we obtain an in­
tegral equation for the electromagnetic field in the 
plasma 
d'E (x) . r +~ 

-do, =-1-, [S Eo(x')G(x,x')dx' + S E,(x')G(x',X)dX'], 1.>15, 
x 15 0 _~ r (3.3) 

with a kernel 
G(x' X)=2S~ chlD(x,',x)chlD(x"x') exp(-elkT,)dvr 

, 0 shlD(x,',x,) (v;+2elcp(x)-<p(x')llm)'" . 

(3.4) 
A kernel of symmetric form is obtained in (3.3) by 
putting 

8 = m;; + -i- [<p(x)+ <p(x')+ Icp(x)- cp (x') I]. 

The arguments of the hyperbolic functions are given by 
(2.8), with 

Vr(x") = (2[8 - e<p (XII) ] 1m) 'I,. 

A kernel of the type (3.4) goes over into a kernel of 
the type (14) of[S] if Re <I>(xt, xi} ~ 1. This condition 
can be transformed into 

(3.5) 

where /:1 is the effective thickness of the plasma layer 
and depends on the frequency of the electromagnetic 
wave, on the temperature, and on the concrete function 
of the function ne(x). In the general case it is natural 
to assume that the plasma layer is of the form ne(x) 
~ ne at 0 ;:; x ;:; d and that the electron concentration 
decreases at x < 0 and x > d, tending to zero as Ixl 
- 00. Figure 4 shows a plot of the potential cp(x) against 
the coordinate. We assume that the alternating electro­
magnetic field practically does not penetrate into the 
region x > 0 (with constant electron concentration), and 
is essentially attenuated already at 

Ixl-aL>a, (3.6) 

where a is the characteristic distance over which the 
electron density decreases appreciably, i.e., ne(x) is a 
function of the dimensionless quantity x la. In addition, 
we shall consider the extremely anomalous skin effect: 

l> 15, a. (3.7) 

From Boltzmann's formula (1.1) and from the condition 
(3.6) it follows that 

e<p(-aL) > kT,. (3.8) 

Just as in Sec. 2, the conditions (3.6) and (3.7) enable us 
to use relations (2.11) and (2.12). Then 

, S~ ..) exp (- e!kT,) (3 9) 
G(x ,x)=2 0 cthlD(x"x, (vr'+2el<p(x)-<p(x') 11m)'" dvr • • 

If 
d>aL 

the motion of the electron from one turning point to the 
other occurs mainly in the region of constant concentra­
tion. In this case we have 
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FIG. 4. ""pMdon" ofth' porno· \1:----.- ~~~---------­
tial 'P on the coordinate. i\ 

By virtue of (3.8), we can put 
(iro + verdd 

lD(x,',x,)- (e[cp(x)+<p(x')+ Icp(x)-<p(x') I]lm)'" (3.10) 

Substituting (3.10) in (3.9) and integrating, we get 

{ 
(iro + Verr) d } 

G(x',x)=cth (e[cp(x)+<p(x')+ Icp(x) <p(x')I]lm)'" 

xexp { - 2k~. [<p(x)+cp(x')] }Ko( 2:T. l<p(x)-<p(x')I ) 

Eq. (3.3) now takes the form 

d'E,(x) _ . i +S~G(' )E ( ')d ' ----- X,x 11 X x. 
dx' 150 ' _~ 

(3.11) 

As follows from (3.6), it suffices to know the potential 
cp(x) only on the "tail" of ne(x), i.e., at -x ~ aL. Assume 
that the electron concentration decreases exponentially 
as x _-00, 

n,(x) =noer1a, Ixl ;;'aL, X<O, a=kT,leEo. 

If we make the substitution x = a( ~ - L) in (3.11), then it 
is easy to note that we can put x = x' = -aL in the argu­
ment of the hyperbolic cotangent, since ~ ~ 1 and 
L ~ 1. In the region of low electron concentrations, it 
is mainly the fast particles that penetrate. Therefore 
the distances x ~ -aL are reached by electrons of 
velocity v ~ (2ecp(-aL)/m)112 ~ 'ifL, which is much 
larger than the thermal velocity. Equation (3.11) takes 
the form 

d'E (x) i [ Ll ]+S- (x+ol:") ,(lx-x'l) , 
~=6'cth (iro+Veff)~ E.(x')exp ~ Eo -'2a- dx,. 

o , _00 

/:1 = d IfL is the effective thickness of the plasma layer, 
with L ~ /:111. 

In terms of the dimensionless variables (2.15) we 
have 

d'f(s) = ie'/S" f(s')e(HI')/'K, (Is - 6'1) ds', 
ds' _~ 2 

(3.12) 

where now 
sin(2roMv) 

g=-arctg . 
sh(2veff Mv ) 

The quantity L is determined from the transcendental 
equation 

L=lnl::,cth[ (iro+veff)v~JI' ~ >L>1, (3.13) 

which is obtained when the dimensionless quantities are 
introduced. Equation (3.12) differs from (3.16) in that n 
is replaced by ;V//:1. The reflection coefficient and the 
surface resistance are given by 

roa [ n ] r(d)=1-2-Z- g+T- i (3C+Inn+L) • (3.14) 

4nroa ( n ) ReZ(d)=-- -+ g . 
c' 2 

(3.15) 

In the limiting case of a small mean free path (3.5), 
we obtain from (3.13) 

L = In (a'i 15,'), 

so that 
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[ 4 ( 2Veffd) 
ReZ(d)=ReZ(oo) 1--;exp - v(1~(a'16o'»'h 

Xsin ( 2CJ)d )] ~< d 
v (In(a'16o'» 'I. ' veff (In(a'16o'))''' 

In the oPPOsite case of small effective thickness of the 
plasma layer, 

v I veff » L'l. (3.16) 

the surface resistance is given by the formula 

4nCJ)a [ 2VeffL'l. / 2CJ)ll. ] ReZ(d)=--arctg -_.- sin-_- , 
c2. v v 

(3.17) 

from which we see that the plasma layer is, generally 
speaking, a higher conductivity than a plasma occupying 
a half-space (see formula (2.18». Indeed, in a plasma 
bounded on one side, the electron reflected from the 
turning point will move in the interior of the plasma 
until it collides with another particle. In the presence of 
two boundaries, the electron will "travel" many times, 
by virtue of the condition (3.16), between the turning 
point xi' and xt, and during the time between two colli­
sions it visits the skin layer approximately v/2vefft.. 
times. As seen from (3.17), this is precisely the factor 
by which the surface resistance is decreased if it is as­
sumed that sin(2wt../v) ~ 1. It is seen from Fig. (3.17) 
that the size effect becomes manifest also in that Re Z(d) 
is not a monotonic function of the frequency in the reg­
ion w ~ v/(d) »veff' 

Let us assume that the mean free path is large: 

I» ll.. (3.18) 

Then the surface resistance does not depend on t..: 
4nCJ)a Veff 

Re Z (d) = ~ arctg --;;;- , (3.19) 

and the reflection coefficient is equal to 

2CJ)a [ Veff ( a'l )] r= 1+- -arctg-+i 3C+ln- . 
c CJ) 6o'd 

\\(3.20) 

The condition for the applicability of these formulas is 

d a'i (d') ->>In->>max -,1 . 
. a d6o' I' 

The quantity L depends in this case on the electron 
mean free path. From this dependence it follows, in 
prinCiple, that at a sufficiently large mean free path 
(In (l/d) »1) the high-frequency field attenuates in the 
region of the exponential "tail," even if a ~ <'i()o 

We consider now a thin plasma layer, such that 

dla<L. (3.21) 

The motion of the electrons between the classical turn­
ing points takes place in the region where an appreciable 
change takes place in the electron density. In this case, 
to calculate the phase cI>(xi, xt) it is necessary to know 
the potential cp(x) in the entire region of electron motion. 
Neglecting the small region of order d near x F::l 0, we 
assume that the potential depends on x linearly: 

<jl (x) = kT • .!:.!., d < Ixl Co. La. 
e a 

Taking (3.6), (3.8), (3.15), and (3.31) into account, we 
obtain 

<1>(x,',x;) =4(iCJ) +veff)aiLlv. 

The effective layer thickness t.. is now equal to t.. = 4a-IL. 
The equation for the field takes the form (3.12), and L 
is the root of the equation 
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I a' [4(iCJ)+Veff) "-]·1' L=ln -cth a,L , 
f\ 3 11 

L» 1, MI. 

The reflection coefficient in the surface resistance is 
obtained from formulas (3.14), and (3.15). In particular, 
under the condition (3.18), the surface resistance is 
given by formula (3.19), and in expression (3.20) for the 
reflection coefficients it is necessary to replace 
In (a3l/o~d) by In (la2/4o~). The region of applicability of 
these formulas now takes the form 

I' la' d ~»ln-»max (-,1). 
a2 ; 603 a 

4. ANOMALOUS SKIN EFFECT IN A PLASMA 
IN WHICH THE ELECTRON DENSITY IS A 
POWER-LAW FUNCTION OF THE COORDINATE 

In this section we consider the anomalous skin effect 
in a plasma in which the electron density decreases in 
power-law fashion as x - - 00. 

Let the electron density tend to a constant value no as 
x - + 00 (inside the plasma) and decreases like Ix I-P as 
x - - 00. We assume that the damping of the electro­
magnetic wave in the region with the maximum concen­
tration is so large that it suffices to consider the pene­
tration of the field only in the region where the electron 
density decreases in power-law fashion. This means 
that the penetration depth <'i of the field into the plasma 
should be much larger than the anomalous penetration 
depth <'i 0 at the denSity no: 

(4.1) 

If ne(x) becomes of the, lrder of no at Ixl ~ b (see Fig. 5), 
then as x - 00 we can e~ 9ress the electron density in the 
form 

n.(x)=no(bllxl)p, Ixl»b, x<O. (4.2) 

The potential cp(x) of the field leading to the concentra­
tion (4.2) is given by 

kT. Ixl 
<jl(x) = p-e-ln-b-: 

In the case of the extremely anomalous skin effect, when 
the electron mean free path is large 

1»6, (4.3) 

the expression given in [5J for the kernel (see (20» takes 
the form 

( Ixx'i )_,/2 (PI x I) 
G(x,x')= /;2 Ko "2 1n7 . (4.4) 

Substituting (4.4) in the integral equation and changing 
over to the dimensionless variables 

s=-x/6, I(s) =E.(-6s), 6=b(bI6o)'/(P-", 

we arrive at the equation 

d'im =is- !(6')Ko(plln(6'/s) 1/2) ds' (4.5) 
ds' 0 (SS,),I' . . 

We assume that p f. 3, for otherwise Eq. (4.5) has a 
unique trivial solution f( ~) := O. 

Assume that, just as in [5J, the current denSity outside 
the plasma decreases to zero rapidly enough to be able 
to neglect the integral term in (4.5) as ~ - + 00. Then 
fll(O = 0 and f(O ~ a~ as ~ - + 00. We shall show that 
this asymptotic relation holds true at p > 4. Let the 
mixed higher term take the form ~ 1-n as ~ - + 00, with 
n > 0, i.e., 

1m = a(s + ~s'-n), 
n> 0, S -+ +00. 
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'1------ FIG. 5. Dependence of the elec­

tron concentration of the coordinates 
in the case of a power-law fall-off. 

~~ ____ -L _________ x 

We substitute this asymptotic relation in (4.5). We then 
obta,in on the left a{3(l - n)(-nH-n - 1 , and in the right 
the highest-order term in the form 

ias'-P J u1-pl'K.(plin ul/2)du . 
(we have put e = u O. This integral converges at p > 2. 
Comparing the exponents of ~ on the left and on the 
right, we obtain p - 3 = n > O. Thus, at 4 > p > 3 the 
asymptotic form of f( ~) is 

1m = a(s + ~6'-P), 3 < P < 4, 

from which we see that in this region we cannot neglect 
the current as ~ - + 00, since this asymptotic form does 
not follow from the equation f" ( ~) = O. At P > 4 we have 

1m =a(6+~). (4.6) 

Thus, the current density outside the plasma (as ~ - + (0) 
can be neglected only if p > 4. 

To solve (4.5) we use the Mellin transformation [10J 

~ 

F(k)= J l(m·- 1 d6, c=Rek. (4.7) 
• 

We choose the real number c inside the region where 
the function F(k) is regular. Just as in the case of an 
exponential dependence of the electron density on the 
coordinate, we note that the integral 

j S' -'-pl'K. (-E.lln-.-r Dds' = S-(·+.I'-1) _:t (4.8) 
• 2 s }'1-kl'k-1+p 

converges in the band 1 - p < Re k < 1. When the root 
is extracted, the principal value is always chosen here 
as the regular branch. Substituting (4.7) in (4.5) and 
taking (4.8) into account, we obtain 
1 c:+ioo c+ioo - J k(k+1)F(k)S-'-'dk=_i_J 6-(H.-1) nF(k)dk _.(4.9) 
2ni ,_ioo 2ni,_;00 l'1- k l'k -1 + P 

From this we get a functional equation for F(x), by shift­
ing the integration contour in the left-hand side of (4.9) 
by an amount 

n=p-3 (4.10) 

(see Fig. 6). The sought function F(k) is such that 
k(k + l)F(k) is regular on the shift strip. The functional 
equation takes the form 

(k + n) (k + n + 1)F(k + n) = inF(k) I 1'1- k1'k + n + 2, (4.11) 

and its general solution is 

F(k) = ( :;) 'In qJ(k) r-' (k :n) r-' ( k+: + 1 ) r-r. (k: 1) 
X r-'I, ( k + nn+ 2). (4.12) 

Here cp(k) is an arbitrary analytic periodiC function with 
period n. 

Let us examine the analytic properties of the func­
tion (4.12). It follows from (4.6) that F(k) should have 
first-order poles at the points k = -1 and k = O. This is 
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FIG. 6. Positions of the integration contour before and after the 
shift: • - first-order poles, X - second-order branch points. 

obtained by a suitable choice of the function cp(k). R is 
necessary here to get rid also of the branch points 
k = 1, 1 - n, 1 - 2n, •.. , which is essential to be able to 
shift the contour through a distance n(Fig. 6). In addi­
tion to the poles at the points k = -1 and 0, the function 
(4.12) will have first-order poles at all the points 
k = n, 2n, 3n, ... and k = -1 + n, -1 + 2n, ... . This fol­
lows from the periodicity of the function cp(k). (The poles 
at the points k = -n, -2n, -3n, ... and k = -l-n, -1 . 
-2n, ... are "erased" by the zeroes of the functions 
r-l((k + n)/n), r-l((k + n + 1)/n)). 

Figure 6 shows all the Singularities of the function 
F(k), and also the positions of the integration contour 
before and after the shift by n. The value of c must be 
chosen here in the interval-n -2 < c < -1. Using also 
the condition that the function (4.12) be regular at infin­
ity, we easily obtain the function cp (k), apart from a con­
stant factor 

(k) = e-'''''';'' ( 2ni ) 'I. (1- e-'-'''In) -'(1- e-''''(·+I);,,)-'. 
cp 1- e lb\l(k-·Oj" 

As a result we get 

F(k) = (~) kI"e_''';>ln ( 2ni )'1. r-' ( k + n ) r-I ( k + n + 1 ) 
n:l 1 _ e 2nl(k 1 )/11 n n 

X r--' ( k: 1 ) r-'I, ( k +: + 2 ) (1- e-,"ikln) -. (1- e-,"i(k+l)lnt~:i3) 

The function f(O is obtained from (4.7). We have 
already proved that the function f( ~) obtained in this 
manner has the asymptotic form (4.6) only if n > 1. As 
n - 1, the poles at zero and at the point -1 + n coalesce 
to form a second-order pole. This gives rise to the 
logarithmic asymptotic form 

1m =a(s + ~lln 6 + ~.), n = 1, s .... +00. (4.14) 

At 0 < n < 1 the asymptotic form of f(~) as ~ - +00 re­
ceives contributions not only from the poles at the points 
o and -1, but also from the poles -1 + n, -1 + 2n, ... , 
which lie between 0 and -1. At n > 1 we have 

I(£)=a[£-..":..(~)'/" :tenil'n J 
2 n' r(1In)r(21n)sin(nln) ' 

s .... + 00 (4.15) 

hence 
n ( n ) lin n . 

~ = -2 -;; r(1In)r(2/n)sin(nln) e"'i'n. 

A detailed investigation shows that the asymptotic form 
of (4.15) holds true at n - 1 >>(In (Z/O))-I. In addition, it 
must be remembered that the plasma parameters Z, n 
= p - 3, b, and 00 are connected by conditions (4.1) and 
(4.3), which can be expressed in the form of the inequal­
ity 

l::!>b(bI8.)'ln:H,.. (4.16) 

From formulas (18) and (19) of[5J , recognizing that 
in our case B = -0{3, we obtain the reflection coefficient 

r=1+ bUJ - nn (b'n)>/n[i(sin~)-'_(cos"":::')-I] 
2c r(1In)f(2!n) {j,'n' 2n 2n' 

n-1::!>(ln~rl , 

and the surface resistance 
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ReZ= n'n Ul b (_nb' ) lIn 
r(1In)r(2In)cos(n/2n) c' n'6o' , n-l~(ln+rl 

(4.17) 
We now consider specially the case n = 1. It is easily 

seen that in this case if a first-order pole exists at the 
point k = -1, then a second-order pole must exist at the 
point k = O. The function (4.13) is continuous at n = 1. 
We obtain the function f(~) from formula (4.7). As 
~ - +00 we have 

1(5)= a [5 -~+ in (ln~+~c -2.)] 
4 2 5 2 4 

in agreement with (4.14). 

We have obtained a logarithmically distorted asymp­
totic form (4.6). "Cutting off" the logarithm at values 
~ ~ I/O, we obtain formulas that are valid at In - 11 
« (In (1/0))-1: 

r=l+n-1I --In-co (In l ) 
c 2 6' 

Ul I 
. ReZ=2n'-lIln-, 

c' II 

We now find an asymptotic expression for the func­
tion f (~) as ~ - O. The main contribution to the integral 
(4.7) is made in this case by a small vicinity of the 
branch point k =-n -2. The presence of this branch 
point follows from the recurrence formula (4.11) and is 
not connected with the behavior of the function f( q as 
~ - + 00. Deforming the contour in the manner shown in 
Fig. 7, we obtain 

e'"(I-l/n)/2 ( n' ) lIn [ 3n + 9 (1) (2) (3)] '1. S'H 
/(6)=a - --1' - r - r - --,-.' 

nn n 2nn n nn IInsl/. 

(4.18) 
at b/o « ~ « 1. For this formula to be valid, it suffices 
to satisfy only the condition (4.16), since f(~) is continu­
ous at n = 1. The effective depth of penetration of the 
field into the plaf'jma, as follows from (4.17), is of the 
order of b(b/Oo)3/n. It follows therefor~ that the effective 
depth of penetration increases like wl/n when the fre­
quency of the field is increased. This peculiar depen­
dence on the frequency is directly connected with the 
power-law dependence of the electron density on the co­
ordinate2). The electromagnetic field likewise depends 
in this case on the coordinate mainly in power-law 
fashion (and not exponentially.). It is clear from this 
that the quantity 0 = b(b/o o)37n does not have the same 
simple meaning as the quantity 0 = a for a plasma with 
an electron density having an exponential dependence on 
x. In the case of the power-law dependence, 0 is the dis­
tance from the origin to the place in the plasma where 
the electromagnetic wave differs already substantially 
from the wave in free space. It is natural to write the 
condition that the plasma attenuate in the region of the 
plasma tail in the form 

6>b, (4.19) 
where b characterizes thE scale of variation of the po­
tential (just as the quantity a does in Sec. 3). Now let 
the plasma, with a power-law decrease of ne(x), be 
situated in a magnetic field. If the Larmor radius is 
large in comparison with the depth of penetration and 
with the dimensions of the transition layer, then the 

___ : rmk 

___ 3 ~ 

FIG. 7. Contour along which the integral is taken to calculate f(~) 
as ~ --> 0; the branch point is k = - n - 2. 
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quantity 4>(xi, x:) is practically independent of the elec­
tron velOCity. In a magnetic field, the condition (4.19) 
for the fast damping of the wave takes the form 

(bI6o)3Icthn~1 ~ 1. 

The equation for the electromagnetic-wave wave differs 
in this case from (4.5) by a factor coth(1TJ3) in front of the 
integral. From this we obtain directly the reflection co­
efficient and the surface resistance: 

r= 1 + i Ul . b in--cthn~ , = ~)~ 
c rOln)r(21n)sin(nln) ( n'6o' 

(4.20) 

, ReZ n . ~ b _"_ Im(lcthn~)t/n, 2 'n •.• (~b') II· 

r(lln)r(21n)sin(nln) c' n'6o' (4.21) 

n=p-3, n-l~(ln(116))-t. 

These formulas are valid if 

l, vfQ~b(bI6o)'/nlcthn~ll/n:> b. 

We write out the solutions for n = 1: 

r=1+ln; IIcthn~[; +g+iln(~lthn~I)]. (4.22) 

ReZ= 2~'2W <'I [(; +g) Im(cthnM+Re(cthn~)In(+lthn~I)], 
6 = b(bl<'lo)', g = 1m In (cthn~), In (1Ithn~1/6) :> 1. (4.23) 

Cyclotron resonance may be observed in the frequency 
region w ~ 0 ~ /Jeff' The cyclotron-resonance line 
shapes for exponents n and for different values of the 
parameter /Jeff /0 are shown in Fig. 8. At n = 1 the line 
shape is almost symmetrical and differs significantly 
from the case of an exponential ne(x) dependence. The 
dependence pf Re Z on wlo is contained in the factor 
n Icoth 1TJ3Il/n sin [(1T/2) + g)/n], which goes over into 1T/2 
+ g as n - 00, as is the case for an exponential ne(x) de­
pendence (see Fig. 3). At small n, the cyclotron anti­
resonances produce no Singularities in Re Z. With 
increasing n, the antiresonance become manifest more 
and more clearly (see Fig. 8c), and in the limit of large 
n (just as for the exponential behavior) it leads to jumps 
of Re Z of the same magnitude as in the case of reson­
ance. 

In the case of a plasma layer with a power-law de-

J 

0.,5 

0. 25 0..5 9.75 1 1,1J 
w/Sl-m 

FIG. 8. Dependence of the quantity 1m (i coth 1T (3) lin on the mag­
netic field: a) n = I, b) n = 3 (the numbers at the curves indicate the 
values of veff/il); c) the values of n are indicated at the curves and the 
astefisk marks the limiting curve as n --> 00, veff/il = 0.0 I. 
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crease of ne(x), we obtain at x - ± 00 and d »0 the same 
formulas (4.20)-(4.23), in which now 1f{3 = (iw + v ff)6/V, 
6 = d/(pln (O/b)) 112, and 0 is the root of the trans~enden­
tal equation 

6=b - cth .~~ ( b) 3/n I (iw + 'V ) di lin 

6, v (pln(6lb»'I. • 

The final formulas are valid if 

b <f::. 6 <f::.d, l. 

The authors thank P. L. Kapitza, L. A. Yai'nshteln, 
I. M. Lifshitz, and L. P. Pitaevskilfor a discussion of 
the work. 

I)The case when ne(x) decreases in power-law fashion as x -+ 00 is con­
sidered in Sec. 4. 

2Yrhis, of course, does not mean that the wave field penetrates better 
into the plasma with increasing frequency. The thickness of the skin 
layer increases, and the wave field decreases at each point in the plasma, 
as is seen, for example, from (4.18) by substituting ~ = lxi/ii. 
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