
Nonlinear oscillations of an unstable plasma 

E. Abu-Asali, B. A. AI'terkop, and A. A. Rukhadze 
P. N. Lebedev Physics Institute, USSR Academy of Sciences 
(Submitted December 15, 1972). 
Zh. Eksp. Teor. Fiz. 64, 1621-1626 (May 1973) 

The nonlinear frequency shift and nonlinear damping of an unstable wave in a plasma due 
to the generation of its higher stable harmonics are considered as mechanisms for the 
stabilization of the wave. The time evolution of the amplitude of the unstable wave is 
studied up to the saturation stage. An example of the stabilization of an instability in the 
hot beam-cold plasma system is considered. 

1. In the study of the behavior of an unstable plasma 
there naturally arises the problem of finding an effec­
tive mechanism for the stabilization of the growing os­
cillations. Under conditions when a sufficiently broad 
spectrum of oscillations is excited the solution of this 
problem is prOvided by the theory of the weakly turbu­
lent plasma 1,2]. On the other hand, the existence of an 
excitation threshold and, if the supercriticality of the 
system is small, the buildup of a narrow spectrum of 
oscillations are characteristic of many instabilities, 
especially of a collision plasma, and this allows us to 
consider such a regime as a single-mode regime. It 
turns out that in this case the stabilization of the growth 
of the amplitude of the unstable mode can be achieved 
owing to the nonlinear frequency shift and nonlinear 
damping of the mode due to the generation of its higher 
stable harmonics and the analogous dissipation of energy 
during the turbulent motion of the fluid [3]. 

The effect of these factors has been investigated, in 
particular, in [4 ,5] in the solution of the problem of the 
saturation of the drift-dissipative instability, and in [6-8] 

in the analysis of the ion-sound instability of a noniso­
thermal, current-carrying plasma. The results ob­
tained in these papers allow us to establish some gen­
eral relations characterizing the effectiveness of the 
indicated stabilization mechanism and determining the 
main characteristics of the unstable wave in the steady 
state. The analysis of these relations is the object of 
the present paper. 

It should also be noted that the generation of higher 
harmonics plays an important role in nonlinear optics [9], 

and that the stabilizing action of the nonlinear frequency 
shift was recently investigated in the analysis of the 
parametric interaction of waves in a plasma [10, 11] and 
in the problem of the nonlinear Landau damping[12]. 

2. In order not to complicate the problem and to ex­
pose the effect in its pure form, we shall assume that 
the nonlinear effects due to the resonant interaction of 
the particles and waves are suppressed by particle col­
lisions, and thereby restrict ourselves to the considera­
tion of the hydrodynamic nonlinear plasma oscillations. 
In the single-mode regime all the quantities character­
izing the perturbed state of the plasma can be considered 
as functions of two variables: ~ = k . r - wt and the 
time t, the explicit dependence on the time being as­
sumed to be weak. In the expression for ~ the quantity 
k corresponds to the wave vector of the mode with the 
maximum linear increment and w is an unknown real 
frequency. If we go over to the Fourier representation 
in the variable ~, then the dynamical equation determin­
ing the nonlinear evolution of the wave will, in the 
general case, have the form 
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(1 ) 

where an and r n are the complex amplitude and incre­
ment (decrement) of the n-th harmonic of the excitable 
mode with r 1 > 0 in the instability region; Cnm and 
Cnml are the interaction matrix elements for the har­
monics; .:In is a quantity proportional to He E( nk, nw), 
where E(k, w) is the permittivity of the plasma. Notice 
that in the general case, because of the nonlinearity of 
the dispersion law, .:In ~ n.:l1 and rn ~ r 1(nw, nk). 

The system of equations (1) is similar to the dynami­
cal equations that describe the interaction between the 
natural oscillations of the plasma [1,2], but differs from 
the latter in that it describes the interaction between 
the fundamental harmonic of the unstable mode and its 
overtones, which are forced and, in the general case, 
not natural oscillations of the system. Notice also that 
the resonance conditions with respect to the frequencies 
and wave vectors in (1) clearly are identically fulfilled. 

For a small supercriticality of a system in the 
single-mode regime, we can, as usual, assume that the 
main contribution to the profile of a finite-amplitude 
wave is made by a few harmonics. Limiting ourselves 
to the first two harmonics, we obtain from (1) 

ida,; dt = (-I\., + irda, + V,a,'a, + V,la,I'a" 

ida,; dt = (-I\., + ir,)a, + V,a,', 

V, = C12 + C,_" V, = Cu , + Cu -, + C'-l1 + C,_,_" V, = C", (2) 

where the star denotes complex conjugation. Under 
conditions, when the dissipative processes are weak 
and determine only the linear growth rate of the insta­
bility, we can neglect the contribution of the dissipative 
terms to the matrix elements and assume them to be 
real, as obtains in conservative systems. The last 
circumstance allows us to establish, in particular, some 
properties of the matrix elements V 1 and V 3. 

To show this, let us neglect in (2) dissipation and 
cubic nonlinearities: 

ida, ; dt = -I\.,a, + V,a(a2, ida,; dt = -I\.,a, + V,a,'. (2') 

These equations have the integral 

I ad' ; v, + I a,l' ; v, = canst, (3 ) 

It follows from (3), when energy conservation in the 
conservative system is taken into account, that VI and 
V3 have the same Sign, Le., 

V,V,>O. (4) 

The same property can be obtained by transforming 
Eqs. (2') to the Hamiltonian form. In fact, let us set 

(5) 
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where a j can, without loss of generality, be assumed 
to be real quantities, Substituting (5) into (2'), we can 
easily establish that only when the condition 

(6) 

is fulfilled will Eqs. (2') assume the Hamiltonian form 
(in the interaction representation): 

idbJl dt = aH / abt, 

H = W exp[i(L\, - 2L\,)tj b,b," + c.c. (7 ) 

From (6) follows 

V, / V, = 2a,' / a,' > 0, 

which agrees with (4). 

If the overtones are natural oscillations of the sys­
tem (linear dispersion law), then the time-averaged 
intensity of the wave can be expressed in the form of a 
sum of the squares of the moduli of the amplitudes of 
the individual harmonics[3]. Then, it follows from (3) 
that for a linear dispersion law we must have 

V, = v,. (8) 

In particular, this relation is valid for long-wave drift 
and ion-sound plasma oscillations [4-7], as well as for 
sound vibrations in a solid (see, for example, [9], p. 147). 
Let us also note that the sign rule (4) and the equality 
(8) correspond to symmetry conditions for the matrix 
elements of the three-wave interaction of the natural 
oscillations of a plasma [2]. 

Let us now return to the system (2). Assuming that 
the condition 1 -I:. 2 + ir 21 » r 1 (r 1 is proportional to 
the supercriticality, which we assume to be small) is 
fulfilled, we easily derive from (2) the equations de­
scribing the time evolution of the amplitude and of the 
frequency shift of the unstable mode: 

(9 ) 

(10) 

Here T = rlt, A 1(T) = la11 2, 1:. 1= I:. = w - n(k), where 
n(k) is the system's natural frequency corresponding 
to the unstable harmonic. 

The solution of Eq. (9) is well known: 

A ,(,) =AooAoe"/[Aoo+Ao(e"-1)], (11) 

wher~ Ao = Al (T = 0), while the steady-state value of 
the square of the amplitude of the unstable mode will be 

Aoo =- f,f, [1+ (.~,' )']. 
V,V, I, (12) 

Taking (4) and the instability condition r 1 > 0 into ac­
count, we obtain from (12) the necessary condition for 
the stabilization of the unstable mode: 

f2<0, (13 ) 

which amounts to the requirement that the second har­
monic be damped, and is physically perfectly natural. 
The condition (13), like (4), is a consequence of the 
energy conservation law. 

Notice that when (13) is fulfilled the conditions we 
are considering correspond to a regime of self-oscilla­
tions: energy pumping occurs in the oscillations with a 
wave vector satisfying the linear buildup condition, 
while on a smaller scale energy is dissipated. The 
solution (11) also shows that the condition (13) is suf­
ficient, since the steady-state value (12) is attained for 
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any (nonvanishing) initial value of the amplitude 1) . It 
also follows from (11) that the characteristic time of 
emergence to the steady state ~r:i\ the steady-state 
value of the amplitude being proportional to the square 
root of the increment, which, in turn, is proportional 
to the supercriticality of the system. It is also easy to 
deri ve from the Eqs. (2) that 

la,l' - A,' < A,. 

It can be shown that the square of the amplitude of the 
n-th harmonic An ~ En (E « 1 is the supercriticality 
of the system), which justifies the neglect of the contri­
bution of the higher harmonics. 

From Eq. (10) we obtain for the stationary-wave 
frequency shift 

r. r V" 'J A=-- L\.+--(L\, +f,) . 
f, V,V, 

(14) 

It can be seen that the frequency shift is determined by 
the dispersion of the natural plasma oscillation and the 
cubic nonlinearity of the dynamical equations. In the 
particular case of the linear dispersion law, when 
n (nk) = nn (k) and the harmonics are natural oscilla­
tions of the system, we have 

L\, = 2L\, (15) 

and from (14) and (12) 

L\ = V,Aoo 
1 + 2f';f, . 

(16) 

Hence it follows, in particular, that in the approxima­
tion being considered there is no frequency shift for 
waves with a linear dispersion law under conditions 
when the cubic nonlinearity can be neglected. In this 
case the stabilization of the instability is completely 
due to the transfer of energy from the unstable mode to 
its damped higher harmonics [4-7]. 

It also follows from (12) and (14) that for 11:.21 
» 1 r 21 the steady-state value of the wave amplitude is 
essentially determined by the frequency shift. Such a 
situation is realized, for example, in the instability of a 
current-carrying plasma executing ion Langmuir oscil­
lations [8]. 

3. Let us illustrate the effectiveness of the obtained 
relations on a concrete example. 

Let us consider the instability of a beam-plasma 
system in the case of a tenuous and hot (with a larger 
velocity spread) beam (b) and a cold plasma (p): 

Here u is the directed velocity of the beam electrons, 
vTb and lib are their thermal velocity and collision 
rate, wp is the Langmuir frequency of the plasma elec­
trons, and vTp and lip are their thermal velocity and 
collision rate. The potential oscillations of such a sys­
tem can be described on the basis of the hydrodynamics 
equations 

aVplat + (vp V)v p = - ~E - VpVp, 
m 

eE + To V No / No + mvovo = 0, 

aN.lat + div N.v. = 0, div E = 4n 1:, e.N.. (18) 

Here Na and va are the density and hydrodynamic 
velocity (a = p, b) and E is the oscillation field. In the 
linear approximation, we obtain from (18) for perturba­
tions of the form exp ( -iwt + ik . r) the following oscilla­
tion spectrum (w - w +iY): 
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(19) 

It is not difficult to determine from (19) the excitation 
threshold for a beam of Langmuir plasma oscillations: 

U'=~VTb(3~NoP)'I' k.=~~ (20) 
3 Vb NOb' 3 u. ' 

the maximum increment corresponding to the perturba­
tions that propagate in the direction of motion of the 
beam. The increment can be expressed with the aid of 
(20) in terms of the supercriticality E: 

y=2vp e, e=u/u.-1. (21 ) 

Let us now consider the nonlinear phase of the de­
velopment of the instability. For a low-density beam it 
is sufficient to take into account in (18) only the non­
linearities due to the perturbations in the plasma. 
Moreover, near the threshold ( E « 1) we can restrict 
ourselves to the analysis of the mode with the maximum 
increment and go over to the one-dimensional case. The 
system of equations (18) then reduces to a Single non­
linear equation for the perturbation of the hydrodynamic 
velocity of the plasma electrons: 

D' {D'V av 1 I)'v' a 2v v I)'V'} -- --+W 'v+v -+---+v--+---
I)x' I)t' p P I)t 2 I)t I)x I)t ax 2 I)x' 

_ VbWb' (~+u~)~=o 
vT ,' I)t I)x I)t' . 

Let us seek near the instability threshold, where 
o < E « 1, the solution of Eq. (22) in the form 

v = VI (t) exp[i (k.x - wt) I + v, (t) exp[2i (k.x - wt) I + R.C., 

(22) 

where Vl,Z(t) is a slowly varying amplitude and w is a 
real frequency, for the determination of which we de­
rive a system of equations of the type (2) with the coef­
ficients 

fl = 2vp e, f2 = -'/,vp , [1, = 3/,wp, 

VI = 3k., V, = - k.' I Wp, V, = 'I,k •. 
(23) 

It can be seen from (23) that r z < 0, Le., the condition 
(13) for the existence of a stationary wave is fulfilled 
and, moreover, IA21 » I Tzi, Le., the value of the 
steady-state amplitude is determined by the nonlinear 
frequency shift. Using the definitions (12) and (14), we 
find the characteristics of the stationary wave: 

I v.I' = 3/,u.'e, w = wp (1 + '/,e). 

The time dependence of the amplitude of the unstable 
wave is described by the expression (11). 

822 Sov. Phys.·JETP, Vol. 37, No.5, November 1973 

(24) 

In conclusion, let us note that there arises in the 
wave field an averaged motion of the plasma with 
velocity Vo = -%Ewp/k*. The solution found above has 
been written in the moving coordinate system and the 
obtained frequency shift is due to the Doppler effect; in 
the stationary coordinate system the frequency is equal 
to w' = w + k*vo = wp[14 1• 

I)The condition (13) corresponds to a soft excitation regime. If it is not 
fulfilled (the soft regime), then an additional analysis of the nonlineari· 
ties of the dynamical equations is needed [13). 
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