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The stability of a homogeneous plasma which consists of electrons and of two types of ions 
and which is located in an alternating electric field with a frequency of the order of the ion 
cyclotron frequency is investigated. The relative velocity of the ions in the field in the 
direction perpendicular to the magnetic field is assumed to be smaller than or of the order 
of the ion thermal velocity. Parametric excitation of longitudinal oscillations moving 
almost perpendicular to the magnetic field is considered. Oscillation excitation is due to 
relative motion of the ions. The oscillation increments are determined for the frequencies 
of ion-ion hybrid resonance, ion cyclotron oscillations and ion-ion sound. 

1. INTRODUCTION 

If a plasma contains two sorts of ions, new low­
frequency oscillation modes appear [1-4J . The excitation 
of these modes of electromagnetic waves in a dense 
plasma with large dimensions can be quite effective [5J , 
and these modes can be used successfully for high-fre­
quency heating of the plasma. We refer to experi­
ments[6,7J in which effective high-frequency heating 
was produced in a- plasma containing a mixture of ions 
of two sorts, using electromagnetic waves with frequen­
cies on the order of the cyclotron frequencies of the 
ions. In these experiments, the absorption of the waves 
and the rate of plasma heating were large in a wide 
range of variation of the constant magnetic field, and 
had a maximum corresponding to the frequency of the 
ion-ion hybrid resonance. 

The relative motion of the particles in the field of a 
low-frequency electromagnetic wave can be the cause 
of numerous short-wave instabilities of the two-stream 
and parametric type [8, 9J. If the growth inc rement of 
these oscillations is much larger than the pump fre­
quency Wo, then the adiabatic approximation is valid, 
and in this case the instability has a pure two-stream 
character. An important feature[loJ of such instabilities 
is that the turbulence level can be very high, since the 
role of the nonlinear terms in the equations of motion of 
the electrons is small for such oscillations. This leads 
to a very rapid damping of the pump wave and to turbu­
lent heating of the plasma. If the relative velocity of the 
ions of the two sorts exceeds a certain critical value on 
the order of the thermal velocity of the ions, then the 
growth increment of the oscillations is of the order of 
the lower hybrid frequency or the ion Langmuir fre­
quency. On the other hand, if the relative velocity of the 
ions is smaller than the thermal velocity, then the growth 
increments of the oscillations become smaller than the 
cyclotron frequency of the ions. In this case the adia­
batic approximation cannot be used, and the resultant 
instabilities are parametric. However, as before, the 
level of the oscillations in the turbulent state, when ion­
cyclotron parametriC instabilities develop, is much 
higher than the level of the oscillations of the low­
frequency instabilities in a plasma consisting of elec­
trons and of ions of a single sort. 

In the present paper we study parametric instabilities 
of a plasma contaiiling ions of two sorts in a homogene­
ous alternating electric field, when the frequency Wo of 
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the pump wave is of the order of the ion cyclotron fre­
quency. It is assumed that the relative velocity of the 
ions is smaller than the thermal velocities, and that the 
wavelength of the developing oscillations is much smaller 
than the characteristic distances over which the electric 
field of the pump wave and the plasma density vary. The 
plasma pressure is assumed to be small in comparison 
with the magnetic pressure. In this case, the considered 
oscillations can be regarded as potential. 

2. DISPERSION EQUATION 

The development of potential oscillations in a plasma 
situated in a constant homogeneous magnetic field Bo 
and an alternating electric field E = Eo sin wot is des­
cribed by the equation [12J 

'1'(00)+ ~ ~ J.+ m (aE.)Jm (aE.)e-i.('.+n'/)e.(oo + mOOo)'I'(oo-sooo)=Q; 
0: S,m=_oo 

where cp(w) is the Laplace transform of the oscillation 
potential: 

'1'(00)= f 'I'(t)ei·'dt, (2.2) 

Q(W) is a quantity proportional to the initial perturbation 
of the particle distribution function, Jm is a Bessel func­
tion 

The contribution of the particles of sort 0' to the 
longitudinal dielectric constant is determined by the 
usual expression 

/)e.(~)=~[1+dnzoa ~ A,(x.)W(Z,a)] (2.4) 
k 2uTa 2 ~ 

where 

k is the wave vector of the oscillations, kll = k cos (), 
k = k sin (), and () is the angle between k and Bo. The 
sdbscript 0' = e denotes electrons, and the subscript 
0' = i = 1, 2 denotes ions of the first and second sorts 
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with charges el and e2, respectively, and with masses ml 
and m2' 

We shall consider oscillations for which e R< 7T/2 and 
the frequency of the oscillations is much lower than the 
electron cyclotron frequency. We confine ourselves 
below to oscillations in two cases. 

A. Hydrodynamic approximation for the electrons. 
If IZne I » 1 and kP e « 1, then . , 

Equation (2.13) will be investigated subsequently in a 
number of special cases. 

3. "COLD" IONS (LONG-WAVE OSCILLATIONS) 

We consider first parametriC excitation of oscilla­
tions for which the ions can be regarded as "cold", i.e., 
kPi « 1, 

Zn' = (00 - nOl.,) I Y2k ll vT':> 1 (n = 0, ±1). 

l)Be=~-~cos2e. 
(OB/ (OZ 

(2.5) In this case 

We assume that the term (w~e/w2)cos2e in (2.5) is 
small in comparison with 15Ei' owing to the smallness of 
cos2 e. This case corresponds to "cold" electrons, the 
role of which reduces to polarization of the plasma 
under the influence of the electric field of the oscilla­
tions propagating perpendicular to the external magnetic 
field. 

B. "Hot" electrons (small phase velocities or short 
waves). ]f IZOel « 1 or kPe »,1, then 

(2.6) 

In this case the role of the electrons reducesto Debye 
screening of the space charge of the oscillations. 

In either case, 15 Ee does not depend on the frequency, 
so that in the term with QI = e of Eq. (2.1) we can sum 
over sand m, and this yields the term 15 Ee<P (w): 

(2.7) 
',m 

Taking (2.7) into account, we can easily transform (2.1) 
into 

[1 + 68. + 6e, (Ol)]<I> (00) + 1>.(00) <I> (00- nOl.) = Q(Ol), 

where 

(2.8) 

<I>(Ol)=exP{i :. (6+n)} EJ.(a.,)e-"",+nl<p(Ol-sOl.), (2.9) 
'=_00 

(2.10) 

and the quantities a E and 15 are given by 

aE={[.E (-1)'~( kIE:" + k~EOJ. , )]' 
. mi (00 (i)o - (OBi 

i=I,2 

+ [ ~ (_1)' e,Ol., B'B[koEo] ]'}'" 
~ m,wo(mo2 -Wn/') 
i=I,2 

(2.11) 

ctg6= ~ (_1),(kll~01l + ~.LEOJ.,) 
£...J ffio Wo - O}ni 
i=1,2 

(2.12) 

We note that (2.8) contains only the relative velocity u of 
the ions of the two sorts (aE = ku/wo). The motion of the 
electrons relative to the ions does not enter in the funda­
mental equation (2.8) in the considered approximation. 
Replacing w in (2.8) by w - vWo (v = 0, ± 1, ±2, ... ), we 
obtain an infinite system of difference equations for the 
quantities <p(w - nwo). Equating the determinant of this 
system to zero, we obtain a dispersion equation that de­
termines the complex frequency of the considered os­
cillations: 

Det Ila", nil = 0, (2.13) 
where 
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(3.1) 

We assume that in the general case the ion masses and 
densities are comparable in order of magnitude. We 
confine oureselves to oscillations for which aE « 1. 
We then obtain from (2.13) the following approximate 
dispersion equation: 

e(Ol)e(Ol- 000) - '/4aE'[6e,(0l- 00.) - 6e,(0l)]' =0, (3.2) 

where 

dOl) =1+68.+0e,(0l) +6e,(Ol). 

In the zeroth approximation (aE = 0), the solution of 
the dispersion equation E(W) = 0 determines the natural 
frequencies of the longitudinal plasma oscillations with 
"cold" ions w = w QI' where 

00. (k) = ±Ol± (k), 

Ol±' = '12 (00.,' + OlB,' + 00,' + 00,') ± 'id (00.,' + 00.,' + 00,' + 00,')' (3.3) 
- 4 «(OB12 OOB22 + (OBI 2(:'>2 2 + (OBZ2fi)t 2 ) ]"1. 

For the frequencies WI and W2 we have in case A 

(3.4) 

and in case B 

(3.5) 

where 

V., = (T, / m,) "', rD. = (T, / 4ne'n.) 'I. = VT. /00.,. (3.6) 

In case A, the frequency w+ is the frequency of the 
second (lower) hybrid resonance, and w- is the frequency 
of the third (non-ionic) hybrid resonance [1,2]. Usually 
Wpi »wBi' and then the expressions for the frequencies 
of the lower hybrid resonance and of the ion-ion hybrid 
resonance simplify: 

(3.7) 

(3.8) 

In the case B, the frequency w+ corresponds to fast ion 
sound in a magnetized plasma containing ions of a single 
sort. We note that W+ > max (wB1, "-'B2)' In the region 
of sufficiently large wave vectors in a dense plasma, 
when W~l + W~2 »wIW the expression for the fre­
quency W+ coincides with the frequency of the ion-sound 
oscillations in a nonmagnetized plasma containing ions 
of two sorts: 

(3.9) 

In the region where W~l + w~2 « WEi' we have w+ 
= max (WB1' wB2)' The frequency w_ corresponds to a 
new branch, which appears when the ions of the second 
sort are added. In the region of large wave numbers, 
where w~l = W~2 »wEi' we have w_ = wJJ. In the re-
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gion of long waves, where W~l + w~2 « wiw we have w_ 
= min(wB1' wB2)' 

The term ~ aE in (3.2) becomes significant under 
parametric -resonance conditions, when 

w.-Nwo""'w~ (N=±1) (3.10) 

where W (lI and W f3 are the natural frequencies defined by 
formula (3.5). Putting 

w=W.+e,6=1i2(W.-Nwo-w,), 

we obtain from (3.2) 

e=-6± (6'-'Ym')'/" (3.11) 

where 
2 1 ,[68,(w.)-68,(w~n' 

'Y" =-TaE e'(W.)B'(W~) , (3.12) 

'("1 2wwp,' 
e' (00) = "'" \00' _ 00",') " (3.13) 

We see therefore that in~t~bility can set in if Y~ > O. 
To this end, it is necessary that wa and wf3 have opposite 
signs and belong to different branches, i.e., in the case 
of instability we have 

IW,(k) 1 + 100,(.11:) 1 ""000, (3.14) 

The maximum value of the growth increment Y = Ym 
is reached at Ii = O. If nl ~ n2 and ml ~ m2, then we ob­
tain at WI ~ W2 ~ WBi ~ Wo the order-of-magnitude esti­
mate 

(3.15) 

If WI »W2 (WI »WLH »W2 ~ wJJ or WI ~ Ws »W2 

~ wJJ)' then 

(3.16) 

i.e., 
'Ym ~ku(1+wp,,'1 WB;)'/' (00, ""'WLH"'" 000), 

'Ym - ku{1 + 1 I k'rD")'/' (00, "" 00, "" 000)' 

However, if the pump frequency is large in comparison 
with W_, Eq. (3.2) no longer holds. In this case the dis­
persion equation can be represented in the form 

1+ aE ' 68,(00)68,(00) [ 1 + 1 ·1 =0 (3 17) 
4 e(w) 8(00-000) 8(00+000) .• 

Recognizing that WI ~ W o , we seek the solution of this 
equation under the assumption that W « Woo We then ob­
tain 

or 

where 

00' =i--[ (000 - 00,)' + w,']±H [(00,- 000)' - 00,']' 

00' / 00,' = 1/,(1 + x') ± 1/.[ (1- x')' - 41]x]"', 

000 - Wi 
x=---, 

00, 

The instability sets in if 

x, < x < X2 (x, < 1 < x,), 

where x = Xl,2 are the roots of the equation 

(1 - x')' - 41]x = 0, 

and also in the region 

-1]<x<O. 
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(3.18 ) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

In the region (3.21), the maximum increment is equal to 

'Ym = 1/200,11 + x' - 2l'x(x + 1]) I"', 

where x is determined from the equation 

4x(x + 1]) (x' - 1) = 1]'. 

(3.24) 

(3.25) 

In the limiting cases we obtain from (3.25) and (3.24) 

"tm::::::: J/2W :!.11'1z, 11« 1, 

'Y m "" 2-'hy3ffi'I1'!', 1] > 1. 

(3.26) 

(3.27) 

In the region (3.23), the maximum value of the increment 
is 

'Ym=W,[ 2Ixl(x+1]) ]'(', 
x' + 1 +l'(x' -1)' - 4nx 

where x is determined from the equation 

2x' + 2x + 1] = O. 

(3.28) 

(3.29) 

In the limiting cases we obtain from (3.28) and (3,29) 

'Ym "" 1/21]00" 1] ~ 1, 

1m"" 2-'/'1]';'00" 1] > 1. 
(3.30) 
(3.31) 

A comparison of expressions (3,15) with (3.27) and 
(3.31) shows that at WI ~ Wo »W_ ~ wJJ' the growth 
increment can increase strongly. It should be noted, 
however, that under these conditions parametric excita­
tion of other low-frequency oscillation modes is pOSSi­
ble, with growth increments on the order of 

(3.32) 

if aE ~ kue/wo ~ 1. The principal role in the excitation 
of these oscillations is played by the motion of the elec­
trons relative to the ions. If Wo » wBi' then the ampli­
tude ue of the oscillations of the electron velocity in the 
alternating electric field of the pump wave is much lar­
ger than the amplitude of the relative velocity of the ions 

u, - cEo I Bo - uWo I WEi > U. 

If, for example, Wo ~ wLH ~ (w BewBi)1/2, then 

u, - (m, I me) ';'u. 

Comparing (3.32) with (3.27) and (3.31), we obtain 

'Y' l'Ym - (U"IU)'/,- (0001 WB,)'I,> 1. 

(3.33) 

(3.34) 

(3.35) 

It is obvious that under these conditions the principal 
role is played by the electron-ion parametric instabili­
ties investigated in [11-14]. InCidentally, for a final 
answer to this question it is necessary to investigate the 
nonlinear stage of development of the oscillations. 

Unlike the case Wo »wBi, if the pumping is by waves 
of frequency Wo ~ wBi> the relative velocity of the elec­
trons is of the order of the relative velocity of the ions. 
In this case the growth increments of the parametric 
instabilities, an important role in the onset of which is 
played by the oscillations of the electrons relative to the 
ions, turn out to be of the same order of magnitude as 
the growth increments (3.15) of the ion-ion parametric 
instabilities. The role of the latter, however, is more 
important during the nonlinear stage, since, as noted 
earlier, the turbulence level for them is much higher 
than for electron-ion parametric instabilities. 

4. EXCITATION OF CYCLOTRON WAVES 

For cyclotron waves we have IZsi 1 »1, and Ii "i 
takes the form 

6B,(w) = Q.'[ 1- ~ A.(k'p,') _00 __ ], 
,'~ o)-SffiBi 
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(4.1) 

The zeroth-approximation (aE = 0) dispersion equation, 
E(W) = 0 determines the frequency W = wa(k) of the 
plasma cyclotron oscillations [8J , which are modified 
somewhat because of the presence of ions of two sorts. 

At kPi « 1, the frequency W is close to 
QrA.(k'p,') 

III = Sill., [1 + 1+6e.+Q,'+Q,']· (4.2) 

If the condition Sl wB1 = s2WB2 is satisfied for certain 
values s = Sl and S2' then we obtain in place of (4.2) 

_ [ Q,'A,,(k'p.') + Q,'A., (k'p,') ] 
III - S,IIl., 1 + 1 + 6e,"'- Q,' + Q,' . (4.3) 

At kPi « 1, the frequency w is close either to w~ or 
to sWBi: , 

III = Sill •• [ 1 + Q,'A. (k'p,') ( t + 6e, - ,~.. , 
S (OBi - WDt 

, .. ' ) -'] ~ .. 
(4.4) 

If the condition sl'.<!B1 = s2wB2 is satisfied, then we have 
in place of (4.4) 

00 = s,oo., [ 1 + (Q,'A., (k'p.') + Q,'A., (k'p,')) 

( 00' ) -, ] 
X 1+68.- 2 zP( 2 • .E 81 WBt - (i)Bi 

(4.5) 

1=1,2 

Formulas (4.2)-(4.5) do not hold when the frequency 
sWBi is close to one of the frequencies W+. In this case 
W = W;t +ow, where -

600 = 1/2 (soo., - oo~) ± 1M (soo., - 00",)' + Q / e' (00",) P'; 

where 0 = w+ - Wo and 

aE' Q,'Q,'[1-Ao(k'p.') 1 [1-Ao(k'p,') 1 
Ym = 2e' (00",) 

1 + 6e, + .EQ,'[1-Ao(k 2p.') 1 
(4.13) 

1=1,2 

The instability sets in at 0 < O. The growth increment 
reaches the maximum value Y = Ym at 0 = -Ym' In 
order of magnitude, we have for the increment (4.13) the 
estimate 

(4.14) 

We note that in the considered case (wo » wEi) the 
velocity of the electrons in the field of the pwnp wave is 
much larger than the relative velocity of the ions and, as 
indicated in the preceding section, an important role is 
assumed by electron -ion parametric instabilities with a 
growth increment much larger than (4.14). 

5. EXCITATION OF OSCILLATIONS BY 
RESONANT IONS 

We shall assume that either the concentration of the 
ions of the second sort is small (n2 « nl) or that their 
temperature is much higher than the temperature of the 
ions of the first sort (T2 »Tl). Then IOEll » IOE21 
(here OEi is defined by expressions (4.1) and the ions of 
the second sort exert little influence on the dispersion 
of the cyclotron waves. The dispersion equation, which 
takes into account the presence of the particles of the 
second sort, is 

1+6e,+68,(00) +ao(lIl) =0, (5.1) 

Q = Q,'soo.,A. (k'p,') , s,oo., =1= S200." (4.6) where 
Q = s,oo.,Q,2A" (k'p,') + S,00B2Q,'A.2(k'p,') , S,IIl., = S200.,. 

At a pump frequency Wo ~ wBi and at aE « 1, we can 
use the approximate dispersion equation (3.2), from 
which we find that at resonance W a - Wo ~ Ws the value 
of E = W - W is determined by formulas (3.11) and 
(3.12), wherg OEi is given by (4.1) and 

(4.7) 

The instability sets in when wa and w{3 have opposite 
signs, i.e., IWal + IW{3i = Woo The order of magnitude of 
the maximum growth increment is 

w u. 
y-aE-k --Ill (kp,>1, 00 ""soo.,), (4.8) 

Pi VTi 

y - aE (kp,) "Ill (kp, < 1, III "" sOO'" S;;;. 2). (4.9) 

If kPi « 1 and W ~ w±' then Ym is given by (3.16). 
From a comparison of (3.16) and (4.9) with (4.8) it fol­
lows that the growth increment of the cyclotron oscilla­
tions at kPi »1 greatly exceeds the growth increment 
of the long-wave oscillations (kP i « 1). 

In the case of a high pump frequency (wo » wBi)' the 
expressions obtained in this section for the growth 
increment are no longer valid, since the dispersion 
equation (3.2) no longer holds. In this case we can use 
the dispersion equation (3.17). Recognizing that Wo 
» wBi and assuming Iwi « Wo, we obtain, using (4.1), 

e(1Il±lIlo)=1+6e,-~ ( oop,2) , 
~ W±Wo 2 
i=I,2 

oe, ('u) = Q.' [1 - Ao (k2p.')]. 

Substituting (4.10) and (4.11) in (3.17), we get 
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(4.10) 

(4.11) 

(4.12) 

ao(00)=Q,'+Q2'iY-;.E 1m2 (aE) (z,,+m1;)w(z,,+m1;)A,(k'P2') (5.2) 
S>1..=_~ 

and!; = wo/J2""k11vT' In the zeroth approximation we ob-
2 

tain from the equation 1 + OEe + OEI = 0 the frequencies 
W = W q(k) of the cyclotron oscillations in the absence of 
ions of the second sort. If the resonance conditions 

(5.3) 

are satisfied for certain values m = mo and s = So in the 
sum (5.2), then retaining only the resonant term in (5.1) 
and assuming that Y « k11vTi, we obtain for the growth 
increment the expression 

Y it SOIll.2 (5 4) y =·-Q,'--~--=-lm.'(aE)A .. (k2p,')exp{-(z"2+m1;)'}, • 
6e,' (roo) Y2 kllvn 

where OE~(W) is given by the term in the right-hand side 
of (4.7) with i = 1. 

It follows from (5.1) that the instability sets in at 
So < 0 (and mo < 0). If Tl ~ T2 ~ Te, wB1 ~ wB2 ~ wo, 
Imol ~ Isol ~ 1, and wpe ~ wBe' then it is easy to ob­
tain the following estimates for the maximum values of 
the growth increment (5.1): 

where I = Imol at Imol = 1 and 2 and I = 3 at Imol 2: 3. 

The maximwn values (5.5)-(5.8) of the quantities 
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(5.4) are attained at y ~ kllvT' The largest value of 
a 

these quantities is of the order of 

'Ym .. -min {(m.lm,)"', (n,/n;)"'}ffiBi. (5.9) 

6. COHERENT EXC,TATION OF OSCILLATIONS 
BY IONS 

We shall assume, just as in the preceding section, 
that na « nlTa /T1• Unlike in the preceding section, how­
ever, we assume y ~ kllvTa• Then the quantity OEa(W) 
takes the form (4.1). In this case we can use the dis­
persion equation (5.1), in which 

We note that if the parametric resonance (7.1) is real­
ized on one branch of the oscillations (wa Rl NWj3/2), 
then no instability occurs at odd N, since a_n(-w) 
= (-l)nan(w) and A'(-W) = -A'(W). 

The instability does take place is PN,a P-N,j3 < O. 
The maximum growth increment is 

I aN (ffi«) I (7.6) 
1 = [~'(ffi«)I.'(ffi,) l''' . 

In order of magnitude, at 

- + we have 
ao(ffi)=Q,'-Q,' ~ 1m' (aE) ffi mffio A.(k'p,'). (6.1) 

~ m+mOOO-SCJ)S2 
',m=_oo 

If the resonance condition wa(k) Rl soWB2 - moWo is 
satisfied for certain values s = So and m = mo, with 
wo/wB2 j:. p/q, where p/q is an irreducible fraction 
(p and q are of the order of unity) and wa - Nwo j:. wfj' 
then the quantity E = W - wa is determined by formula 
(3.11), in which 0 = (wa - sowB2 + moWo)/2 and 

(6.2) 

Obviously, the instability can occur only at So < O. For 
the maximum value of Ym defined by (6.2) we can use 
the order-of-magnitude estimate (5.5)-(5.8). 

If WO/wB2 = p/q, then it is necessary to take a large 
number of resonant terms into account in expression 
(6.1) for ao(w). In this case yk is equal to 

1m' = - Q,,~(B' ) ~ (so + pr)J!,,+q, (aE)A,"H,(k'p,'). (6.3) 
bel ilia ~ 

r=_OD 

The growth increments determined by formulas (6.2) 
and (6.3) are of equal order of magnitude. 

7. EXCITATION OF CYCLOTRON OSCILLATIONS 
BY IONS UNDER CONDITIONS OF 
PARAMETRIC RESONANCE 

Let us consider, at nl »n2T1/T2 and at arbitrary 
values of aE' the coherent excitation of cyclotron oscilla­
tions by the ions of the second sort under the parametric­
resonance conditions 

ffi.-Nffio""Ul" N=±1, ±2, ... (7.1) 

We have put here 

n, u 
"(max""--WBi. 

nl UTi 
(7.7) 

We note that if we put n2 ~ nl in the estimate (7.7), then 
it coincides with the estimate (4.8) provided we put in 
the latter aE - 1. 

The growth increment given by (7.6) and (7.7) is 
smaller by a factor of (nl/na)ll2 than the maximum growth 
increment (6.2), i.e., under the conditions of parametriC 
resonance (7.1) the excitation of the oscillations is much 
weaker than at resonance wa = sowB2 - mow()o 

The expressions obtained in this section are not valid 
if the parametric resonance condition (7.1) is satisfied 
Simultaneously with the condition (5.3): wa ~ s~B2 
= moWo. We assume that in this case the difference 
W - N'wo, where N' j:. N, is not close to any natural 
f/~quency. We then easily obtain from (7.2) for the quan­
tity E = W - wa the equation 

de + 26) (e + L'1) + epN(ffi.) + (e + 2<5) poem,) = 0, (7.8) 

where 

In the particular case 0 = 0 we obtain from (7.8) 

e = -112L'1 ± [1/4L'1' - pN(m.) - poem,) J"'. 

The growth increments determined by (7.8) agree in 
order of magnitude with the growth increment (6.2). 

(7.9) 

Here w a ,j3 is the solution of the dispersion equation A(W) Expressions (7.4) were obtained in the case when the 
= 1 + OEe + OE1(W) = O. Assuming that y »k11vT and excitation of the oscillations by the ions of the second 

a 
using expression (4.1) for OEa(W), we represent the dis- sort is coherent, and y ~ kllvT . If the temperature Ta 
persion equation in the form and the value of cos () are large 2enough, then the in-

['()+ (»)['( N)+ ( N») (.) ( N) - ° equalityy ~kllvT is not satisfied. The oscillation ex-
"" 0) ao (J) "" (t) - Wo ao co - Wo - aN co a-N ffi - ffio - , 2 

(7.2) citation then takes place with participation of the reson-

where 

From (7.2) we find the following expression for E 
=W-W a 

+ ']'" _ po.. po" ± [ (_ + po" - po,.) + p P 
e=-u---2-. u, 2 N,a.-N,Ilo, 

where 
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ant ions of the second sort. Assuming y « kllvT2' we 
find that in this case E is determined as before by form­
ula (7.4), in which the quantity an (w) (n = ± N) must be 
set equal to 

an(ffi) = - E Q,'lm (aE) lm+n (aE) ih(Z02 + m~) w(z" + m~)A.(k'p,'), 
',m=-~ (7.10) 

(7.4) where ~ = WO/~kIlVT2' 

(7.5) 

The growth increments determined by expressions 
(7.4) and (7.10) are not valid if condition (5.3) is satisfied 
together with the parametric-resonance condition (7.1). 
In the case of such a double resonance at y «kllvT2' it 
is necessary to take into account a large number of 
resonant terms in the expression for an(w), which is 
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defined by (7.10) and which enters in the dispersion 
equation (7.4). The quantity E at kp2 » 1 is determined 
in this case by the formula 

(7.11) 

where 
Wo / WB' = P / q = 2so / (N + mol, 

_ ,r;: n' wo, 1 
'YO-V-~~2 , 

2 k ll vT2 lie.' (w a )l'2n kp, 

The growth increment determined by formulas (7.11) 
and (5.4) are of the same order of magnitude. 

8. EXCITATION OF ION-'ION SOOND 

In a plasma with a small admixture of "cold" ions 
there exists a branch of oscillations that can be called 
ion-ion sound [10] . For these oscillations we have 
W »wBi' w/kllvT »1, and vT «w/k« vT ' as e 2 1 

well as ~m2 /me) cos2 /I «fi2 /no, so that we can put 0 Ee 
= w~e/wBe and OE1(W) = nUl + iv'iTZ1W(Zl)], 

(8.1) 

When aE = 0, the dispersion equation 1 + OEe + OE1 
+ 0 E2 = 0 determines the frequency w(k) = Re wand the 
damping decrement Yo = -1m W of the ion-ion sound 

(B.2) 

(8.3) 

If aE differs from zero, then at Wo » w the dispersion 
equation takes the form 

1 (up,' ~ 1m' (ag) 0 
-~m~oo1+lIe,+Q"[1+il'n(z,+m~)w(z,+m~)]-= , (8.4) 

where l; = wo/v'2kvT . Assuming that w « kvT ' we ob-
~n 1 1 

{ f. J~ (aE)[1 + 8ee + Qi [1 - Vii m~v (m~))] '} 'i, 
W (k) = ±Wp , mf:i~ [1 + 8e, + Q; (1- V" m\;v (m\;»]' + [V:rt m\;. m'b'Q~]' 

)( (1- 2m'~')[ 1- nm'1;'g'l U1(m~) I'] + 4m'~' [g - 1'-; m~v (m~) g'], (8.9) 
[(1-1'n m~v(m~)g]' +(1'n m1;e-m't'g)']' ' 

g = Q,'(1 + lie, + Q,')-'. 

The considered ion-ion instability arises only at l; :G 1, 
when u :G vT . On the other hand, if u «vT (l; « 1), 

1 1 
then the unstable oscillations with frequency (8.2) can 
arise under the parametric-resonance conditions w(k) 
R: woo In this case, however, the dispersion equation 
(8.4) does not hold, since it was derived under the as­
sumption w « Wo, and it is necessary to use the exact 
dispersion equation (2.13). Substituting the expression 
for OEQI(W) in (2.13) and taking into account the smallness 
of the quantities Zl « 1 and l; « 1, we obtain from 
(2.13) the approximate dispersion equation 

[ A, (w) ~, a(2" )] [ A, (w - 2wo) - _a_,' _] - a,' = 0, (8.10) 
1'., w A,(2wo) 

where 

From (8.10) we obtain the following expression for the 
quantities E = W - w(k): 

e=-II-i'Yo± [(6+L1)'-'Ym']''', (8.11) 

where yo is determined by (8.3), 0 = w(k) - WI» 

~=(~aE)' w3(k)~,Z [1-"::'(1+Q'-'+Q,-' WP':) -']; 
2WP2 3 W He 

(8.12) 

'Ym = '/. (~aE) 'w' (k) Q,' / w.,'. (8.13) 

We have in order of magnitude 

w (k) ~ (nd n,),"kvT " 

'Yo ~ (71, / n,) "'w, 'Ym ~ '/, (u / vT ,) 'w. 
(8.14) 

where 

(8.5) Obviously, instability can set in if Ym > Yo, and then 
we have in order of magnitude y ~ y m' 

2 • 
v(z) = 1m w(z) = -=-e-" S e" dt. 

l' n. 0 

Expression (8.5) determines the growth increment of 
the aperiodic instability. This instability arises if the 
expression in the curly brackets in (8.5) is smaller than 
zero. To this end it is necessary to satisfy the inequality 

(8.6) 

where 11 = max [ v'iTzv(z) - 1] R: 0.28. In order of magni­
tude, we obtain for the growth increment at l; ~ 1, aE 
~ 1 (u ~ VT2 »vT), and Wo ;:; wLH 

(8.7) 

Formulas (8.5) and (8.7) are valid if vT2 « y/k «vT1' 
Taking (8.7) into account, we represent these inequalities 
in the form 

(8.8) 

If the expression in the curly brackets in (8.5) is 
positive, then at l; ~ 1 the instability can be due to 
small terms proportional to Zl. Putting w = w(k) + ~w, 
where w(k) is determined by formulas (8.5), we obtain 
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We note that when u < VT 1 the parametric excitation 
of the ion-ion sound is due to the resonant particles. 

9. CONCLUSION 

The foregoing analysis shows that an alternating elec­
tric field of frequency Wo ~ wBi leads to excitation of 
different ion-cyclotron oscillations in a plasma with a 
mixture of ions of two sorts. The cause of the instabil­
ity is the relative motion of the ions in the field of the 
pump wave. The characteristic value of the growth in­
crement of the ion-cyclotron oscillations is given by 

(9.1) 
where u is the relative velocity of the ions in the direc­
tion perpendicular to the magnetic field and vT. is their 

1 

thermal velocity (u «vT.)' For unstable oscillations, 
1 

the saturation level is much higher than the saturation 
level of the electron-ion parametric instabilities, which 
have at Wo ~ wBi a growth increment of the same order 
of magnitude. One can therefore expect the considered 
instabilities to be the cause of strong absorption of 
waves with frequency Wo ~ wEi. It is possible that the 
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effects observed in [7J, namely the heating of a plasma 
containing a mixture of hydrogen and deuterium ions, by 
electromagnetic waves of frequency Wo ~ wB1,2 were 
due to the considered instabilities. We note that the 
strong smearing of the distribution function of an 
almost-monoenergetic ion beam injected into the plasma 
across the magnetic field, a smearing due to the rapid 
development of ion-ion two-stream instability analogous 
to tit\) parametric instabilities considered in Sec. 3, with 
the growth increments (3.27) and (3.31), was observed 
experimentally[15J and was confirmed also by numerical 
experiments [16, 17J. 

*[kEol =k XEo. 
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