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The possibility of radial focusing of a relativistic electron beam in a plasma under con­
tions of beam instability caused by the reaction of the electromagnetic radiation on the 
beam is demonstrated. The radius of a focused "cold" beam and of a beam with a 
Maxwellian momentum distribution function is found from the radial-energy equilibrium 
condition. 

1. INTRODUCTION 

The idea of the possibility of using the electromag­
netic self-fields of charged-particle beams for the 
realization of radial focusing of high-power relativistic 
election streams was first put forward by Budker[1]. In 
the method of the self-stabilized beam discovered by him 
the radial pinching of a relativistic electron-ion stream 
occurs under the action of the radiative reaction force 
that acts on electrons oscillating in the radial potential 
well of an uncompensated ionic charge, while the energy 
of the transverse oscillations is continually replenished 
as a result of the electron-ion scattering processes 
which change the longitudinal motion of the electrons 
into transverse motion. Since the energy of the magnetic 
field ariSing in the electron-ion beam pinched under 
conditions of magnetic focusing attains a significant 
value, the radiative reaction force acting on the elec­
trons leads to a radial compression of the beam into a 
thin filament. As was shown by Budker[1], an equili­
brium state of the beam exists in which the longitudinal 
momentum acquired by the beam in the external electric 
field is lost in consequence of the collisions with ions, 
while the energy gained from the field is carried away 
by the radial energy flux of the radiation field of the 
beam. 

In order to reduce the beam -focusing time, which is 
determined by the reciprocal of the electron -ion binary 
collision rate and which turns out to be quite substantial 
(of the order of a second and more [1J), Ya. B. Falnberg 
proposed the use of the coherent radiation of electrons 
for the radial pinching of beams (see[Z]). There arises 
at the same time the possibility of realizing a self-sta­
bilized regime at considerably weaker currents in the 
beams. computations carried out in[Z-4] confirmed the 
possibility in principle of radial beam focusing in a 
plasma under the conditions of a beam -plasma instabil­
ity. In this case the radial focusing force arises as a 
result of the reaction on the beam of the inhomogeneous 
field of the plasma waves excited by the beam, and the 
radius of the pinched beam is determined by the ratio of 
the wavelength of the plasma wave to the dimensionless 
increment of the instability: 

(Vo is the directed beam velocity and wp is the plasma 
frequency). 

(1) 

However, in the cases considered in[Z-4], when the 
beam excited charge-density waves (potential oscilla­
tions) in the plasma, the energy of the field is accumula­
ted in the bulk of the beam (the beam-plasma system is 
a conservative system), and there develop weakly damped 
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nonlinear radial oscillations (with frequency of the order 
of the increment of the instability, i.e., wr ~ J.J., and with 
decrement 6 ~ J.J.zlwp) in which the beam radius period­
ically varies within the limits of from r min to the initial 
value1). 

The process of radial constriction of a beam under 
the conditions of a beam -plasma instability can be made 
irreversible if radiation "removal" from the beam is 
provided for by creating conditions for the propagation 
of the "slow" electromagnetic wave out of the beam. The 
radial field-energy flux leaving the beam then carries 
away the transverse momentum of the electrons and 
damps out the transverse oscillations in the beam and in 
the plasma. The equilibrium beam radius is determined 
from the condition 

-s (jb+jp)EdV=_c_ rh [EHjdf , 4n j (2)* 

(jb is the current density in the beam, lp is the plasma­
electron current density, and E and H are the compon­
ents of the self-consistent field), according to which the 
energy lost by the beam in the excitation of the plasma 
waves is carried away by the field-energy flux through 
the beam boundary. It is clear that such an equilibrium 
state in the beam can exist only in the presence of an 
external accelerating field that compensates the energy 
lost by the beam on radiation. 

Below we shall assume that the electromagnetic radi­
radiation of the beam is ensured by an external deceler­
ating system of effective dielectric constant Ee > 1. The 
pinching of the beam and the radial equilibrium occur 
when f3~Ee > 1, while the equilibrium radius of the beam 
is determined by the formula 

a~-e, ~o'e,-1)-' - , Vo ( 'I ( 00.) 
OOp ~ (3) 

i.e., by the ratio of the wavelength of the radiation to the 
dimensionless increment. It should be noted that in the 
case of a relativistic beam (f3o R! 1), a gas with dielectric 
constant Ee ::G 1 can be used as the decelerating system; 
the deceleration efficiency of such a system increases if 
the radiation-wave frequency (the plasma frequency) will 
be close to one of the natural frequencies of the gas. 

2. THE DISPERSION EQUATION I 
Let the radially constricted relativistic electron 

beam move along the axis of the plasma cylinder (the 
plasma and beam radii coincide). The basic system of 
equations that describes the beam -plasma interaction 
consists of the kinetic equation for the electron distribu­
tion function and the Maxwell equations for E and H, the 
components of the self-consistent field. Assuming that 
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the dependence of the wave field on the time t and the 
z coordinate has the form exp(iwt - ikz) and restricting 
ourselves to axially symmetric perturbations, we repre­
sent the self-consistent system of equations in the form 

i(Cil-kv,)t, +~~(rt,)+e (E+~[VH])~=O, 
r ar c ap 

ia Cil 4nes --a (rH.)=i-eE,+- v,f,dp, 
r r c c 

Cil 4ne S ikH.=i-eE,+- v,t,dp, 
c c 

(4) 

aE, Cil 
ikE, + -a,:- = i -;; H., 

where fo(r, p) is the equilibrium distribution function, 
f1(r, p) is the amplitude of the oscillating correction to 
it, E == l-w~/w2, w~ = 41Te2nplm is the plasma frequency, 
and Vo and p are the electron velocity and momentum. 

The solution of the kinetic equation can be represented 
in the form of the following series[2]: 

E- v: a' {( 1 ) at,} rt,=e i'+'-- r E+-[vH] - , !1=Cil-kv" 
!1'+' ar' c ap (5) 

.~, 

which is an expansion of the function fl in powers of the 
parameter 1/ = v/D.r. Assuming 1/ « 1 and retaining 
only terms with s = 0 and s = 1, we find the components 
of the beam current: 

. 'S{. at, v, a [ at,]} dp ],=e tE'-a ---;- r(E,-~,H.)- v,-, 
p, !1r ur ap,!1 

. . 'S( af, dp ],=te E,-~,H.)v,--. 
ap, !1 (6) 

The system of equations (4) for the field can, with 
allowance for the currents (6), be reduced to the Bessel 
equation for the field component Ez : 

~~ (r dE')+a,2E,=0. 
r dr dr 

where 

a,'=-k2(e+ 4ne'Sv,~~)(1_~.'e_ 4ne' Sv,!!3.. dP ) 
Cil ap,!1 c2k' ap, 

[ af dP ]-' x e+4ne2Sv,(1-~.'e)-'- , 
ap, L'1' 

~. = Cil / ck, ~, = v, / c. 

The solution of Eq. (7) in the region r ~ a (a is the 
beam radius) which is finite at the point r = 0 has the 
form 

E/=AJ,(a,r), 

(7) 

(8) 

while the E~ and H~ components are given in terms of 
Ez by the formulas 

E ' a, p, 
,'=-i-A-l,(ar), 

k P, 
, a p, 

H.'=-i-A-1o(ar); 
k P, 

.c -1 +4ne2 sot, dp 
""- - ~zVr--, 

ck ap, !1 

n> 1 ' 4ne'S' at, ",,= -~.e-- v,-dp 
c'li' op,' 

4ne's aj, dp 
p,=~.e+- V,~-. 

ck ap, !1 

(9) 

Correspondingly, the fields in the region outside the 
beam and plasma, i.e., in the region r > a, filled with a 
dielectric of dielectric constant Ee, are given by the 
formulas (7)-(9) in which we should set fo = 0 and E = Ee: 
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k 
E,'=BK,(crr), E(=-iB-K,(crr), 

cr 
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(10) 

where (12 = k\l- JYcpEe). 

Substituting the fields from the formulas (8)-(10) 
into the boundary conditions 

E/(a) =E:(a), 

H '() p, . .. a + p, E,'(a)=H:(a), 

P. = 4ne'S (1- e~,~.) ~,v, ~!!!..., 
ap, !1' 

we obtain the dispersion equation 

a, l,(aa) = _~ (e + 4ne' Sv,~..!!!..) K,(cra) 
. J, (aa) e, Cil' ap,!1 K, (cra) , 

(11) 

(12) 

describing the dependence of the frequency w on the 
wave vector k and on the beam and plasma parameters. 

Under the conditions of a plasma resonance, I E I ~ 1 
and the solution of Eq. (12) can be represented in the 
form of an expansion in powers of this parameter. Tak­
ing note of thiS, we set 

(13) 

Substituting (13) into (12), we find 

A~I) = _~( e + 4ne' S v,~ dP ) K,(cra) . 
I.pe, Cil op,!1 K,(cra) (14) 

Further, from the formulas (13) and (7) follows 

( k,+E) e+4ne'S( i!:....v,!!.!+.!:L v, af,) dp =0. (15) 
a' Cil op, a'!1 op,!1 

This relation is an approximate relation, valid up to 
terms ~ E2. 

Because of the anisotropy in the longitudinal and 
transverse masses, the last term in the dispersion equa­
tion (15) exceeds the second by a factor of y~ » 1 (yo is 
the relativistic factor) and, consequently, transverse 
oscillations are excited in the beam [6]. Since, more­
over, the increments of the harmonics with;\ »ka 
turn out to be the largest, then the relations 84) and (15) 
can be represented in the form 

B +4:rte' f v,.!!..!.2 dp =0, A~') =~ K,(cra) e. 
ap, L'1' Ape, K, (cra) (16) 

In the same approximation, the Ez and Hcp fields, as 
well as the jr and jz currents in the region r < a are 
equal to 

E, = LE .. 1,(apr)exp(icD.), cD. = Cilt - kz, 
'.P 

(17) 

. 'EAp S a/,dp . ],=e -k E .. v,--I,(apr)exp(tW.). 
a up, !1 ·.P 

The formula (17) will be used below in the computation 
of the beam-energy losses and the radial field-energy 
flux entering into (2). 

3. RADIAL EQUILIBRIUM IN THE BEAM 

As was noted in the Introduction, with the development 
of the instability is established an equilibrium state in 
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which the energy lost by the beam is carried away by the 
field-energy flux through the beam boundary. The equili­
brium radius of the beam is then determined by the 
formula (2). In the case of the infinitely long plasma 
being considered the radiation occurs through the side 
surface and the field-energy flux turns out to be equal to 

S,=~ReE.H", 
8:n; (18) 

We are interested in the value of the quantity Sr at the 
surface of the beam. Substituting the fields Er and Hep 
from the formula (17) into the expression (18) and 
setting r = a, we obtain2 ) 

S () _ cR' '\' aiel' K,(aa) 
a - -- e~ i..J-----~. 

, 8:n; • e,k K,(aa) • 

'\' f .. 
~. = i..J -I, ('An) I, ('Ap)E.pE .. •. 

'A. n.p 
(19) 

In deriving the formula (19) we set Jo(apa) = - A~l)JIUtp) 
in the formula for Ez and neglected the quantity A~l) in 
comparison with Ap in the expression for Hep' 

It is easy to see that in the absence of an external de­
celerating system (or for {3} Ee < 1), when a > 0 and the 
wave attenuates exponential~y in the region r > a outside 
the beam, the energy flux Sr(a) is equal to zero. There­
fore, let us set a = ik l' Then, using the relation 

Kn (ik.l.a) = -j ~ e-inn/2H~Z) (k.l.a). 

we find 

S,(a)=_C_,\,k.l._2_ lei' ~. 
8ne. i..J k :n;k.l.a 1,'(kJ.a)+N,'(k.l.a) , • 

(20) 

where I n and Nn are the Bessel and Neumann functions, 
Hri) = I n - iNn is the Hankel function, and Kn is the 
modified Hankel function. 

Estimates show that the equilibrium beam radius a 
considerably exceeds the wavelength, Le., k 1a » 1, and 
we can use the asymptotic forms of the Bessel functions 

I,'(k.l.a) + N,'(k.l.a) "" 2 / nk.l.a. 

Substituting (20) into (19), we obtain the following expres­
sion for the field-energy flux through the beam boundary: 

C r. k.l. S,(a)=- -18I'~ •. 
8ne. k (21) 

• 
The beam- and plasma-energy losses (per unit length) 

are determined by the expression 

W,.P = n Re J j,.pE'r dr. (22) 

Substituting into the formula (22) the expressions for the 
fields and currents from the formula (17) and carrying 
out the integration over the variable r, we obtain the fol­
lowing expression determining the beam-energy losses: 

ne2c 
W'=-2-~' 

~ n A 'Ap2 I I' '( J af, dp = } eO-k E. p I, 'Ap)Rei V,--. t7 ap,~' 

The current generated by the plasma electrons is 
equal to 

e'np L 'Ap (r ) j,p=--- -E.p/, 'Ap- exp(i<D.). 
In Ulka a 

h.p 

(23) 

In computing the quantity Wp from the formula (22), we 
set w = wp + iJ-Lkp (1llkpl <R: wp) and determine J-Lkp from 
the dispersion equation (15): 
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. 2' J a/, dp 
~!thp = - ne Ul p v, ap, ~. 

The kinetic energy imparted to the plasma electrons is 
proportional to Ilkp and is equal to Wp = -%Wb' 

Equating, according to the formula (2), the quantities 
27TaSr (a) and - (Wb + Wp)' we find the equilibrium beam 
radius: 

a=-ne'8,~ IE k:181'~h' (24) 
• 

where ~ and ~k are respectively defined in (23) and (19). 

In order to get rid of the sums over the transverse 
wave numbers, let us assume that the amplitude of the 
initial perturbation does not depend on the variable r. 
Then the coefficients Ekn, which are the terms of a ser­
ies expansion of the function Ek in terms of the functions 
JO(Anr/a), are equal to 

2 
Ehn = 'Ani, ('An) Eh. (25) 

Substituting into the formula (24) the quantities Ekn from 
the formula (25) and performing the summation over n 
with the aid of the relation [ 7] : 

.'" 1 1 

E~=4' 
lI=t 

we arrive at the formula 
a = -4ne'e,A, / A" 

A =L~IE 12R'J of, dp , k II el v?,_-
it an .12 ' 

A2 = 1: kk-'-leI 2 IEhI 2 • (26) 
h 

The expression obtained for the beam radius in the 
form (26) can be used to compute the radius of the "cold" 
beam (see Sec. 4). However, in the case of a beam with 
a finite temperature it turns out to be more convenient 
to express the dielectric constant E in terms of the 
beam parameters from the dispersion equation (16). The 
formula (26) then assumes the form: 

ee A3 
a=--,,-, 

4:n;e- A .. 

A = r.~tIEhI2 Re iq., 
h.p 

A., = 1: k;!EkI 2IqhI 2• 
h,p 

(27) 

4. THE COLD BEAM 

As follows from the formulas (26) and (27), the equili­
brium beam radius is determined by the specific form 
of the electron distribution function. In the case when 
the longitudinal velocity of the electrons is sufficiently 
low 

(28) 

the oscillation spectrum turns out to be fairly narrow, 
so that practically only the regular wave is excited: 
Ak ~ Illvo «k. Substituting into the formulas (16) and 
(26) the distribution function in the form 

!,=nb6(p-p,) (29) 

and performing the integration over the momenta with 
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the aid of the 0 -function, we obtain 

e 00,' =0 
"(o(oo-kvo)' ' 

, 4ne'n, 
COb =-m-' 

a= oo,'e, Re----
kLlel' (00 - kvo)' . 

(30) 

(30') 

Solving the dispersion equation (30), we find the root 
corresponding to the solutions that increase in time: 

1 (n.)'I. -oo-kvo=-- - (1 + i1'3) 00., 
til np"(o 

oo p = kvo. (31) 

The dielectric constant £ of the plasma at the fre­
quency (31) of the instability turns out to be equal to 1 £1 2 
= 4(nb/2npYo)2i3, while from the formula (30') follows 
the expression for the beam radius: 

a= 1'3 2(2np"(o) 'I,. (32) 
4 kL n. 

According to the estimates of[4], during a time inter­
val of the order of the inverse increment J1.-1 
~ Wp1(~yo/nb)1/3 of the instability the energy density of 
the plasma oscillations attains the value (81Tf1E2 
~ (nb/npyo)1I3~mc2yo. Therefore to sustain the equili­
brium in the beam, we must compensate with the aid of 
an external field the energy losses due to radiation. 

5. BEAM WITH A FINITE TEMPERATURE 

To conclude the paper, let us find the equilibrium 
radius of a beam with the Maxwellian momentum distri­
bution function: 

f()- n • . [ p,'+(p,-po)'] 
o p - np,PL exp - PL' PT' ' (33) 

using for the computations the formula (27). 

It is convenient to represent the momentum integral 
figuring in the formula (27) in the form 

(34) 

Further, assuming that po »PT' we expand the integ­
rand in a series at the point Pz = Po: 

av, 1 dv, 
-"'- v,=vo+-(p,-Po) (35) 
ape my, dpo 

and introduce the integration variable x = Pz - po. After 
integrating with respect to the variable Pr the formula 
assumes the form 

a=k'3::2 
dpo 

(36) 
To evaluate the integral (36); let us use the relation' 

(00' - ax)-' = is exp[i(oo' - axHJd~, Imoo·<O. 
o 

Changing the order of integration and evaluating the in­
tegral over the variable x, we reduce the expression 
(36) to the following form: 

d ' 1 • 2 fij*,k1J'l' 

qk=-~-l-exp{- (~) }(il'n+2 S e"dz)] , (37) 
myovo dk kv, kVT 0 

where v T = prdv z /dpo. 
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The formula (27) determines together with (37) the 
equilibrium beam radius. Since the dominant contribu­
tion to the sums (27) is made by the resonant harmonics 
w*/kvT « 1, then, expanding the first part of the form­
ula in powers of this parameter and retaining the leading 
terms of the expansion, we find 

(38) 

Since we assume that the inequality 1 - {3 ~ « 1 is 
fulfilled, the k-spectrum of the oscillations is sufficiently 
narrow and, to estimate the sums in the formula (26), it 
is sufficient to set k ~ wplvo. Then, dividing the numer­
ator and denominator of the formula by the number of 
oscillations, we obtain (under the assumption that volvT 
» 1) 

(39) 

To compensate the energy losses of a kinetic (quasi­
linear) beam, an external electric field of energy density 
comparable with the energy density of the beam is neces­
sary. 

It should be noted that for the "skew" Langmuir os­
cillations (ka «A ) under consideration, the condition 
for the expansion Cf the kinetic equation in powers of the 
parameter 

is valid only when the longitudinal and transverse tem­
peratures of the beam are strongly anisotropic: 
vT »vl' 

*[EHJ=EXH. 

I) As has been shown by Ivanov and Rudakov [5], the magnetic-focusing 
effect in a plasma weakens to a considerable degree because of the ap­
pearance of a reverse current. 

2)The averaging is carried out over the spatial period in the case of the 
regular wave, and over the phases if there is a wide spectrum of oscil­
lations. 
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