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The attenuation in a plasma of a nonlinear standing wave, the amplitudes of whose spatial 
harmonics are coupled owing to nonlinearity, is considered under conditions of indepen­
dent damping of the individual harmonics. The attenuation of the nonlinear Langmuir 
waves excited by a homogeneous external electric field is discussed in detail for the case 
of weak spatial dispersion and weak nonlinearity. 

1. In experiments on the interaction of high-frequency 
radiation with a plasma (see, for example, [1]) that are 
performable at present, field-intensity values many times 
exceeding the thresholds for the various three-wave in­
stabilities are comparatively easily attained. Therefore, 
besides three-wave processes, four-wave self-action 
effects can also playa Significant role. A characteristic 
feature of these processes lies in the fact that they lead 
to the excitation of longitudinal virtual waves with the 
same frequency and large wave numbers. In their turn, 
these waves efficiently transfer their energy to the 
resonance particles, so that on the whole the leakage of 
energy from the large scale can be effective. 

In this paper we study forced one-dimensional non­
linear standing Langmuir oscillations of period ,\ = 21T/k 
«rd (rd is the Debye electron radius) and their colli­
sionless damping. It is assumed that these oscillations 
are sustained in the plasma by a high-frequency homo­
geneous electric field. For Simplicity, we present only 
the results obtained in the apprOXimation of weak spatial 
dispersion and weak nonlinearity1). The important ques­
tions connected with the manner in which the periOdic, 
stationary, one-dimensional, density distribution is pro­
duced from a distribution which is uniform just before 
the high-frequency field is switched on are not consid­
ered in the paper and, therefore, the rough estimate 
given in Sec. 4 for the time for such a redistribution 
should be regarded as a provisional value. 

Let us explain the general idea of the paper. We as­
sume that an inhomogeneous periodic density distribu­
tion (in the weak-nonlinearity approximation the depth 
AN of the density modulation is small compared to the 
unperturbed value N) has been produced in the plasma 
under the action of some nonlinear processes. The self­
consistent periodic field (nonlinear wave) corresponding 
to this distribution can be decomposed into a superposi­
tion of partial harmonics with amplitudes En 
(n = ±1, ±2, '" is the number of the harmonic). In the 
weak-nonlinearity approximation, AN/N « 1, and the 
attenuation of the individual spatial harmonics can be 
considered in the same way as in a homogeneous plasma. 
In particular, if the number of parti~les in resonance 
with the particular plasma wave Ene1(wt - nkx) (w is the 
frequency) is sufficiently small, so that the resonance 
regions in the particle-velocity space do not overlap, 
then the partial waves attenuate independently of each 
other (for the formal conditions of such an approxima­
tion, see Secs. 2 and 4). If the time for the establish­
ment of the steady-state spatial spectrum of the harmon­
ics is small compared to the damping time, then the 
amplitudes En can be computed with damping neglected. 
Then, since all the particles participate in the establish­
ment of the steady-state spectrum, while only the reson-
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ance particles participate in the damping, the conditions 
of such an approximation turn out to be comparatively 
weak (see Sec. 4) even for fairly large total damping 
constants of the nonlinear wave. 

2. Let us first of all derive some general relations 
for the damping constant of the nonlinear plasma wave. 
The smallness of the main parameter AN/N in the first 
approximation, in which the problem under consideration 
can be solved completely at present reduces, as is well 
known, to the requirement that the oscillation velocity of 
the electrons in the wave field be small compared to 
their thermal velocity: 

eE 
V_=~-<t: VT •• 

mw 

Here V Te is the thermal velocity of the electrons. 

(1) 

We shall for Simplicity solve the problem in the ap­
proximation of independent damping (of the individual 
harmonics). Since the width of the resonance region with 
the wave Enei(wt - nkx) in the velocity space (A Vn 
~ (eEn /mnk)li2) should in this case be sufficiently small: 

t. V. <t: wink - w I (n + 1) k - win' k, 

the required condition can be written in the form 

eE. I mw <t: w I n'k. (2) 

The constraint (2), which is, for A »rd, clearly more 
rigid than (1), can be removed if we use the well-known 
results of the quasi-linear theory [2J and consider the 
attenuation of the waves whose resonance regions over­
lap as the attenuation of a wave packet. 

When the conditions (1)- (2) for the given spectrum of 
amplitudes En are fulfilled, the damping constant y of 
the mean energy density of the nonlinear wave is deter­
mined by the expression 

1L, IE.I' = L, 1.IE.I'. (3) 

Since Y n monotonically increases with increasing In I, 
while IEnl2 decreases for a sufficiently strong nonlinear 
coupling (for a more precise statement on this, see Sec. 
3) of the spatial harmonics En' the damping constant can 
evidently be substantially larger than Yl. 

Below we carry out the computations for the concrete 
example of a nonlinear standing wave (E-n = En)' Then, 
in a number of interesting cases (see Sec. 3) 

E.=Aexp(-lnlln,) n=±l, ±2, ... , (4) 

where nl is a characteristic number of coupled harmon­
iCs, and the energy denSity of the plasma wave is given 
by 

~ \"l IE.I' = ~ [exp (2.) - 1]. 
8n £..J 4n n, (5) 

1.+0 
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The damping constant of the I(-th partial wave 

"in = Qn{iEnl >'tnll, (6) 

where Y~ is the linear Landau-damping constant [3J and 
Qn is a factor that takes into account the effect of the 
quasi-linear relaxation [2J : 

Q "" 0 63. 10' (nkr )-'f, (r E er ) 'I, 
n· • IEnl' 

Here r = e2N 1/3/XT is the plasma constant and Ecr 
= [4w2m X (Te + Ti)Je2]1/2 is the characteristic plasma 
field for the strictional effects. 

(7) 

Let us give the upper limit, neglecting the quasilinear­
relaxation effects (Qn ~ 1). Let us set 

no=1lkr •. (8) 

From (3)- (8) it is easy to obtain 

"( = "(olD (no; n,), (9) 

lD(no; n,)= 2.t CJ exp [ - !~ -;;:: ](exp [:J -1) , (10) 
n_' 

where Yo = 121fWoo (woo is the characteristic plasma fre­
quency in the unperturbed plasma). 

Let us consider some limiting cases. The maximum 
value of the exponential function is attained at the point 

nm = (no'n, 12) 'f,. (11) 

If 

then, replacing the summation by integration, we obtain 

n 'I, [ ( n ) 'I, ] ( , 2 ] ) lD(no;n')""4.4~exp -2.37 n: eXPr;;;- -1 . 
(12) 

If, however, nm »1 and n~/3n~/3 ~ 1, then it is sufficient 
to consider the dominant term 

ID (no; n,) "" 4 :: exp [ -2.37 C:) 'J ( exp [ !, ] -1) . (13) 

For a weak coupling between the harmonics (nm ::;; 1), it 
is sufficient to limit ourselves to the first terms, i.e., 
the attenuation occurs only on the large scale. 

To roughly take the quasi-linear effects into account, 
it is sufficient to multiply the corresponding expression 
(11)- (13) by Qn for n = nm (11). 

Notice that we did not take into consideration above 
the influence of the effects of the periodic modulation of 
the plasma concentration on the expression for the damp­
ing constants. It can be shown that for a weak nonlinear­
ity the corrections connected with this influence are small 

3. Let us consider stationary, nonlinear, periodic, 
plasma waves excited in a plasma by a homogeneous 
electric field of induction D and frequency w close to the 
unperturbed plasma frequency. Specifically, we can con­
sider a plasma layer located between the plates of a 
parallel-plate capacitor, etc. The equation describing 
the forced nonlinear plasma oscillations in the weak non­
linearity and weak spatial dispersion approximation, but 
with allowance for linear damping, can, according to 
Gurevich and Pitaevskir [4J , be written in the form 

,d'E lEI' . 
3r. -+ (e +--) E=D+/8(x), 

dx' Eer' 
(14) 

where E = 1 - W~/W2, Woo being the plasma frequency of 
the unperturbed plasma 2) . 
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The energy diSSipated by the plasma wave is given by 
the function 

1 +- I 

8(x)= --s G(~) E(x-x')dx', 
w"", rd 

G () 1'2n (o)~ ~s cos pu ( 1) 
u =--- ---exp -- dp. (15) 

rd 0 p3 p2 

As long as the damping is weak (for greater detail see 
Sec. 4), it can be determined according to (2) by substi­
tuting the amplitudes of the individual harmonics found 
without allowance for losses. 

The solution of Eq. (14) for a real field (II = 0) is 
determined by the two parameters E and D. We shall 
discuss only two important cases: E < 0, D = Dcr 
= (4/27lI2IElskEcr' when there are two equilibrium 
states and the phase plane (E, dE/dx) is divided into two 
connected regions by a separatrix and the periodic so­
lutions are characterized by strogg coupling and, 
secondly, E > -(27/4)1 Is (D/Ecr)2 S. when there is ac­
cordingly only one equilibrium state of the "center" 
type. 

In the first case the solution Ec corresponding to the 
separatrix has the form 

lel'f'Eer 4 ) 
E,(x)=~(1+'I.lelx'lrl 1. (16) 

From the exact solution near the separatrix (it can be 
written in terms of the elliptic function) we can deter­
mine the wave number 

k=~=V2 ~(1'3W)'I' 
').. 3 rd p}Ec/ ' 

(17) 

dE z 1 E' 
W~3r"(~) +eE'+----2DE+const, ax 2 Ee,' 

where W is the integral of Eq. (14) with II = 0 (W = 0 on 
the separatrix), 

n = (~) -'''( 1'3W) -'I. n =_1 =_1 .( 1'3W) -'I. 
o 3 e'Eer'" kL, 1'3 e'Eer' ,(18) 

where Lc = 3r d /(2 IE 1)112 is the characteristic scale of 
the separatrix. 

Notice that, knowing k (15), we can easily find the re­
lations (18) by representing the solution as a sequence 
of the bell-shaped pulses (14). In this case 

A = 41 ':.!'f. ( i3 W ) 'I, E er 
13 e'Ecr' 

(19) 

and, according to (11), 

nm = (~)'" (1'3W) -'I, 
41el e'Eer' . 

(20) 

For small W, according to (12), 

( l'3W)-'I'{ [ (1'3W)'I'] } lD(no;n,)=5.8exp(-3.95Iel-''') e'E 2 exp 3.5 e'E' -1 
cr cr 

(21) 
and in the limit as W - 0 

"(m "" 501 e 1-'1, exp[ -3.951 e I-'f'l'(o)~ (22) 

The relations (21) and (22) allow us to estimate the 
value of the dissipated energy for distributions whose 
phase trajectories are located near the separatrix. In 
using them we must remember that they have been der­
ived under the assumptions of weak spatial dispersion 
(no» 1) and suffiCiently strong coupl~ng (nl > 1). 
Therefore, they can be used when IE 11 2 « 1 (for greater 
detail, see Sec. 4). Since the quasi-linear effects were 
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not taken into account in the derivation of (22), this rela­
tion, (22), is valid only for distributions whose trajector­
ies are slightly removed from the separatrix, such that 
the independent damping condition (2), (32), is fulfilled. 
Also, since the dependence on the quantity W in (21) is 
weak, the relation (22) correctly estimates the value of 
the maximum damping constant. 

In the other limiting case, in the vicinity of equili­
brium states of the "center" type Eo, the equation u(x) 
= E(x) - Eo for the deviation from the equilibrium state 
assumes the form 

d'u ( Eo' ) Eo 3r/--+ 8+3-- u+3--U'+U3~0, 
dx' Eer' Eer' 

where Eo is found from the equation 

(8 + Eo' I Eer')Eo ~ D. 

(23) 

(24) 

Let us estimate the quantities nl and no in terms of 
the amplitude El of the first harmonic. It is not difficult 
to show that for small El and Eo the general solution of 
(23) has the form 

u(x) ~ E,cn(kx, q){[ 1 + ~cn(kx, q) 1 + O(~', q')} + Uo, (25) 

where cn(kx, q) is the elliptic cosine with modulus 
q «1, 

R- EoE, R ~1' k-k (1+ q') 
~ - 4Ee«8 + 3Eo'iE er)'~' , - 0 -;:, 

k' 8 + 3Eo'1Eer' 'E 
o = 3ri ,Uo ........ q 0 

Here ko is the wave number with allowance for the non­
linear correction. 

The "nonlinear" period of the wave is easily found 
up to quantities of the order of EUE~r (see, for exam­
ple/sJ ), in which case 

'2. E t '2./Ecrz 

q ~ 8 + 3Eo'/ Eer' 
(26) 

Using further the Fourier-series expansion of the ellip­
tic functions, we find 

16 13 ~ 1 ~ -'- ~ . E '~-E' 
n, In q" no (8 + 3Eo'IEo;) 'I, , I n I 2' . 

. n+O 

In particular, for E « 3EVE~r « 1, we obtain from 
(24)- (27) 

(27) 

(28) 

The cited relations show that in the case of weak coup­
ling (nl « 1) the growth of the damping constant of the 
nonlinear wave may turn out to be substantial. 

4. Let us discuss the conditions of applicability of the 
above-obtained relations. 

First, these limitations are connected with the fact 
that we did not consider the establishment processes. 
We can distinguish two characteristic time scales: the 
time Tk required for the establishment of the equilibrium 
density distribution (Le., the time for the establishment 
of the nonlinearity as a whole) and the time TC required 
for the establishment of the steady-state spatial spec­
trum of the harmonics (Le., the time for energy trans­
fer across the spectrum). In other wordS, T c is the 
steady-state distribution establishment time for small 
perturbations, while Tk is the corresponding time for 
large perturbations. The specific value of Tk is deter­
mined by the nonlinearity-relaxation mechanism. Thus, 
in the considered model for the striction nonlinearity in 
an isothermal plasma, Tk can, in order of magnitude, be 
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estimated as the time an ion takes to travel the spatial 
period of the wave: 

"tk~_1_( M) "'_1_. 
w~ m kr. 

(29) 

Whereas Tk is inversely proportional to the ion-sound 
velocity, T c is evidently determined by the group velocity 
v of the plasma wave. According to the linear theory, 
f8r a weak coupling between the spatial harmonics, 

i.. 2n 1 
'tc~-~-----

Vg 3wo (kr.)'· (30) 

As the coupling increases, T c increases. In the con­
sidered case of the nonlinear standing plasma wave, the 
quantity 

v g "" IIw I Ilk IIEI 

is easily found from the nonlinear dispersion relation. 
Let us multiply (14) by E (x) and averaging the resulting 
expression over the period of the standing wave. Then, 
performing a variational calculation at a fixed value of 
the nonlinear -wave amplitude, we easily obtain that v g 
~ 3woord/Lc and, consequently 

2n 1 L, 
"t,~--- (31) 

3w~ kr. rd 

tends to infinity as we approach the separatrix. 

Thus, the ion-density redistribution takes place within 
the time interval Llt ;;;: Tk' and our analysis is hence­
forth valid under the condition that the energy-dissipa­
tion characteristic time l/y is long compared to the 
equilibrium-spectrum establishment time TC' Since, ac­
cording to (30) and (31), 1/T c is a comparatively large 
quantity, this condition is easily met. 

Another limitation consists in the conditions under 
which the apprOximation for the given field can be used. 
The formal criterion is not difficult to derive, if we con­
sider the damping in (14) as a perturbation. Seeking the 
solution in the form El + iE2, we obtain for the imaginary 
part of the amplitude of the harmonic with the number nm 
in which the main damping occurs the estimate 

E _ 1"., E'nm 
'nm - -; 3(nm' -1) (kr.) , (32) 

Consequently, according to (19), in the vicinity of the 
separatrix, even under conditions of strong coupling, it 
is sufficient for 

(33) 

which can easily be fulfilled when nl «no. 

The most rigid condition of applicability of the rela­
tions in the strong-coupling case turns out to be the re­
quirement (2) of independent damping of the harmonics. 
For the fundamental (in the damping process) harmonic 
with the number n = nm , (11), this condition has the form 

E 'IE' exp (2noln,) '/, 
t cr <: 6 z • 

no n 1 

(34) 

Under conditions of weak coupling (nl « 1), we have 
no, nm »1, and the condition (34) can easily be fulfilled 
because of the presence of the exponential function. 
Under conditions of strong coupling, we can, according 
to (17)- (20), write 

n, ~ 2181-'1, exp (0.3181-'1,) (35) 

The last inequality determines the maximum value of nl, 
(18), at which the independent-damping requirement is 
still fulfilled. For example, for E = -0.1, nl ~ 12. 
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5. The comparatively large value of the damping con­
stant allows us to expect a Significant manifestation of 
the considered mechanism, even at a low plasma-oscilla­
tion density, in experiments on the interaction between 
an opaque plasma and microwave electromagnetic-field 
pulses of duration longer than Tk (29). In contrast to the 
decay and induced-scattering processes, the enrichment 
of the spatial spectrum in this case occurs in the direc­
tion of increasing plasma-oscillation wave numbers, 
Owing to the excitation of higher spatial harmonics. For 
such a pumping direction, the problem of large-scale 
energy absorption is solved without the inclusion of the 
additional processes, owing to the presence of an effec­
tive, collisionless, damping mechanism. 

The main restrictions on the application of the rela­
tions obtained are determined by the requirements of: 
1) weak spatial dispersion (IEr1 /2 » 1), since in the 
oppOSite case damping on the large scale is already so 
strong that the effects of the nonlinear coupling are in­
significant; 2) small quasi-linear effects of the distribu­
tion-function relaxation in the region of considerable 
damping. 

The author is grateful to V. B. Gel'denburg and A. G. 
Litvak for interest to the work and numerous discussions. 

!)We note that by weak nonlinearity we mean here only that lIN/N 4; I 
(N is the concentration of the unperturbed plasma and liN is its per­
turbation by the field of the nonlinear wave). In particular, our analysis 
includes the case lIN/N - (krd)2. 

2)We note that such an expression for € is, as is well known, valid only in 
the case when the particles are expelled from the strong-field region in 
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the process of its establishment. It is clear how everything must be 
changed in the case when such a redistribution is not realized. In the 
weak-nonlinearity approximation, it is sufficient to replace € every­
where by €oo - iEP /E~r' where €oo is the unperturbed value and rEP is 
the square of the field averaged over the period of the wave. In partic­
ular, the magnitude of the field averaged over the spatial period is, in 
contrast to (24), found from the equation 

(e~ + (E_E)2 / E'cr)E = D. 
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