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An exact formula for the probability of quantum transitions, incuded by an external elec­
tromagnetic wave of arbitrary intensity, of an electron in a homogeneous magnetic field 
is derived and investigated. The case of a monochromatic electromagnetic wave and the 
case of a "pulse" of electromagnetic radiation of finite duration are both considered. 
The criterion for the validity of an expansion of the transition matrix element in powers 
of the perturbation causing the transition is obtained. 

A characteristic feature of the behavior of an electron 
in an external electromagnetic wave and in a homogene­
ous magnetic field is the appearance of cyclotron reson­
ance at W = wH (wand wH denote, respectively, the fre­
quency of the electromagnetic wave and the electron 
cyclotron frequency); the electron is therefore strongly 
affected by the external field and may gain considerable 
energy. (1-3] The interaction of the electron with an elec­
tromagnetic wave may turn out to be so strong under the 
conditions for cyclotron resonance that it becomes neces­
sary to go outside the framework of perturbation theory 
to investigate physical phenomena in this region. (4,5] In 
this connection an exact calculation of the interaction 
with the external field, based on the exact solution of the 
Dirac equation in the presence of an electromagnetic 
wave and a homogeneous magnetic field, [8,7] is of special 
interest. The existence of this solution has permitted us 
to clarify the mechanism for the interaction of an elec­
tron with an electromagnetic wave and to predict a num­
ber of new physical effects, which appear under the con­
ditions of cyclotron resonance. [4,8] 

In the present article we consider the quantum transi­
tion of an electron in a homogeneous magnetic field from 
one Landau level to another, the transition being caused 
by a plane electromagnetic wave propagating along the 
direction of the magnetic field. If the electron energies 
are small in the initial and final states, then the proba­
bility for this process is determined by the parameter 

\; = (CJlH/ m)"'leA(CJlH) I 

(e and m denote the electron charge and mass, and A(w) 
is the Fourier transform of the vector potential of the 
electromagnetic field). For I; « 1 it is the transition 
from a given level to the nearest neighboring Landau 
level which occurs with the maximum probability; how­
ever, in the opposite limiting case (I; »1) the probabil­
ity for the transition n - n I (n and n' label the Landau 
levels) has its maximum value for In - n'l ~ 1;2/2 » 1. 

The characteristic feature of the scattering process 
under consideration is the fact that its probability is de­
termined only by the component of the electromagnetic 
wave corresponding to the cyclotron frequency wH, and 
according to the exact formula which we have derived, 
in the monochromatic limit (A(w) - 15 (w - wo), where Wo 
is the frequency of the wave) the probability of the tran­
sition n - n' vanishes for any finite value of n - n/. This 
result cannot be derived within the framework of pertur­
bation theory, since the criterion for the applicability of 
the latter to the present case is the inequality /; « 1, 
whereas in the monochromatic limit I; - 00. 

Let us consider the quantum transition of an electron 

784 Sov. Phys.-JETP, Vol. 37, No.5, November 1973 

in a static external field A1 (r) from one energy level to 
another, the transition being due to an external electro­
magnetic field A2 (r, t). As usual we assume that at the 
initial moment of time (t - - 00) and at the moment of 
observation of the scattering process (t - +00) the tran­
sition-inducing field Aa(r, t) is absent and the system is 
described by a zero-order Hamiltonian which includes 
the interaction with the field A1 (r). As the static external 
field let us consider a homogeneous magnetic field of 
intensity H directed along the z axis: 

Ai (r) = (-yH, 0, 0), (1) 

and as the field caUSing the transition we assume a plane 
electromagnetic wave 

A,(-r) = (0, A (-r), 0) (T = t - z). (2) 

Here A(T) is an arbitrary function satisfying the condi­
tion A(T) = 0 for T - ±oo. 

The amplitude for the electron's transition Px, Pz, n, a 
- p~, p~, n/, a' (in what follows we shall denote the set 
of variables Px' Pz' n, a briefly by P) under the influence 
of the electromagnetic field (2) is given by the formula 

M(px,p"n,(J --+- p/,p/,n',(J')~M(P --+- P') 

(3) 
S [ (+) (+) 

= dr XP' (r, t) 1 + 'l' p (r, t) (t --+- + 00), 

where iI~) (r, t) (x~~ (r, t)) denotes the solution of the 
Dirac equation in the presence of the field Al + A2 , which 
goes over into the wave function for a stationary state of 
the electron in the magnetic field (1) at the initial mo­
ment of time (at the moment of observation). The wave 
functions +~) (r, t) and X~) (r, t) have the follOwing 
form: 

(4) 

Here the wave functions given in [4J (see formula (3)) are 
denoted by </i~)(r, tlTo), in which the functions Np(T) and 
gp(T) are defined by the expressions 

Np(-r)= J-S' dT'eA(T')siIl-t-,(T-T'), 
np np 

" (5) 

gp(T)=J-S' dT' eA(T')cOSt--(T-T'). 
np np 

" 

and np = Po - pz. 

By using the wave functions (4) we obtain (j, k = ±) 
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X exp {i(p,' - Po)t} J drexp {-i(p/ - px)x- i(p/ - p,)z} 

,K;,,,'(T,yIT,') [2iiiP :. +p,'-p,'+(np) (np') ] 

X K p " (" y I '0) (To -+ - 00, To' -+ + 00); 

, < s ' 
K p,,(" y 1 To) "" eXP{iyNp(') - ---'::---- S dt Rp(t) - +}lfn(Sp), 

2np 2 
'. 

(the functions Rp(t) and ~p are defined in[4J , and Hn(~p) 
is the Hermite polynomial). 

In order to evaluate the integral appearing on the 
right hand side of expression (6), it is convenient to use 
the relation 

S 
2i (np) (np') 

drexp{-i(p,'-p,)x} , 
np-np 

X ~[exp {-i(p/ - p,)z} K~,,,, (T, Y 1 To')Kp,,(., Y 1 '0) 1 
dz 

= S dr exp {-i(p,' - p,)x - i(p,' - p,)z} K;,,,, (T, y 1 .0') 

,[2inp :. +Po'-p,' + (np)(iiP')] Kp,,(T,yl.o), (7) 

which one can easily prove by taking the Hermitian na­
ture of the operator Py = -iO/ay and the equation 

d {)' 
(2iiiP d. + ~(2n + 1)-(px + ~y)' - (-i iJy - eA(T») J Kp,,(T, yITo)= 0, 

into consideration. 

On the basis of relations (6) and (7) we find (L is a 
quantity of the order of the linear size of the system) 

S (') + U) ,(n)'/' dr[xp, (r, t) 1 '¥ p (r, t) = 8m ~ Cp '"'' Cpno 

, ,(np) (np') 
X Ii", Ii (p, - px)exp {i(po - Po)t} ...0-:---'."':""':_ 

np-np' 

(8) 

It is not difficult to verify that, for np - np' -10, the sub­
stitution that enters in (8) is effectively equal to zero 
for L - +00: it reduces to a sum of terms of the type 
eiaL (a -10), and every integral, whose integrand con­
tains such a function multiplied by smooth functions, 
vanishes as L - +00. Since np > 0 for the electron 
states, and np < 0 for the positron states, hence follows 
the equation 

S dr[x;~) (r, t) 1 + '¥ ;,+) (r, t) = 0, 

which means that the field Al + A2 does not create elec­
tron-positron pairs-a conclusion which was reached 
earlier in [4J on the basis of other considerations. 

By using the foregoing relations we obtain the follow­
ing formula for the matrix element (3): 

M(P -+ P') = (2n)'Ii"'1i (p,' - p,)1i (p,' - p, - :p (n' - n) ) M",,' (rip), 

1 ( 2'" nl ) '/, 
M",,'(np)~-(po+ po') (Popo')-'" --', 

2 2" n'! 

",-,,( ~ I -( ~ )1'][ ~'I' (~ "'-,, xL" --, eA - --eA -)] 
2 (iip) , np 2iip iip 

x exp {i'l> (iip) _ -~-I eA (-!-) 12} , 
4(np)' np 

<+) I (+) 
po = cpncr, po = ep'n'cr', (9) 

where ~'- n (x) is the generalize d Laguerre polynomial, 
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<'00 

eJf(w)= S dH'w'eA(T), 

1 1 J w' iD(iip)= ---P dwleJf(w) 1'---,----,-_..,...,.-
4n iip w'-(~/np)' 

(the symbol P denotes the principal value of the integral). 
Th . ( (±)' (±) ) e equabon Po = Epna' Po = Ep'n'a 

, 2~(n' - n) np - iip' 
p, -p,-' , =-_--_-, (po+Po'), 

np + np np + rtp 

was taken into consideration in deriving formula (9). 

The probability of the quantum transition n, a - n', a', 
summed over the final state momenta of the electron, is 
determined by the formula 

W""_n,,,(np)"" (2n)' SdPx'dP,'IM«P-+)2P') I' =1i",IM"",(np) I'. (10) 
L,L, 2n 

According to expression (9), for n' -I n an electron 
transition occurs only if there is a component with fre­
quency w = J3/llp in the Fourier expansion of the potential 
A(T), and it does not depend on the components with other 
frequencies (the phase factor exp {i <11 (np) } is not essen­
tial in connection with the investigation of transitions 
between stationary states). In other wordS, only the 
component of the electromagnetic field which is in 
resonance with the electron cyclotron frequency gives 
any contribution to the probability for the scattering 
process. The law of energy conservation, 

e;:'",;,,-e;:]=w(n'-n) (w=~/np), 

is satisfied in the scattering process, from which we 
conclude that the transition from the n-th Landau level 
to the n-th level is the result of an (n' - n)-quantum 
process with the quantum of energy equal to J3/np. 

We note that if we set 

A (.) = e-"" a cos Wo' (a = const, w, =; const, e > 0), 

then in the monochromatic limit E - +0 the matrix ele­
ment (9) vanishes for any finite value of n' - n. This fact 
deserves a more detailed discussion. Let us present the 
first term of the expansion of formula (9) in powers of 
eA(w): 

M(O (P-+ P') = (2n)' ~';' (2'" n'!) 'I, eJf ( '-,- ) 
(Pop,' 2n n!) 'I, po po 

x Ii (p: - Px) 8 (iip' - iip) (- -} Iin',"+1 + n8""n_l) Ii"" 
(11) 

The last expression coincides with the corresponding 
term of the expansion of the transition amplitude (3) ac­
cording to perturbation theory. In the monochromatic 
limit eA(p~ - Po) ~ Ii (p~ - po ± wo). If we now calculate 
the transition probability W(1) = IM(l)1 2 by the standard 
method, then it turns out to be proportional to the time 
(the duration of the scattering process). In actual fact, 
however, according to formula (9) expression (11) in the 
monochromatic limit would not be correct in any ap­
proximation (with the exception of the trivial case a = 0). 
According to (9), the criterion whereby we can confine 
our attention to the first few terms of the expansion is 
given by the inequality 

I ~'I' (~) I ~(iip)"" -_-eJf -_- ~ 1, 
np np (12) 

which is clearly not satisfied in the case of a mono­
chromatic electromagnetic wave. Formally the crux of 
the matter is that in the monochromatic limit the per­
turbation-theory series has a zero radius of conver­
gence. It should be emphasized that the above-indicated 
property of the expansion of the matrix element (3) is 
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not in any way unexpected: it is a consequence of a 
radical realignment of the electron's energy spectrum in 
the field of the monochromatic electromagnetic wave and 
in a homogeneous magnetic field. [4,7J 

For simplicity we confine the investigation to transi­
tions of the electron from the Landau level n = O. Ac­
cording to (9), the probability that the electron remains 
in its initial state is close to unity for' == '(np)« 1. 
The probability for a transition to the level n' is propor­
tional to !; 2n' and, therefore, falls off rapidly with in­
creaSing values of n'. The situation changes for' »1: 
the transition to the level nt R; ,2/2 occurs with maximum 
probability (in the case of a weak dependence of up on n). 

As an example let us consider the quantum transitions 
of an electron under the influence of a "pulse" of elec­
tromagnetic radiation of the following form: 

Then 

A Cr) = a exp {-'t' / 'to'} cos roo't 

(a = const, roo = const, 'to = const). 
(13) 

1; = l'n I=a l (roHm)'" roo'to [exp{-~(ro+roo)'}+e){p{-~(ro-roo)'}] 
2 np roo 4 4 

(WH = Ie IH/m, W = tl/up). It is natural to assume that the 
condition WoTo » 1 is satisfied (the duration of the 
"pulse" is large in comparison with the period of the 
monochromatic wave a cos WoT). In this case the param­
eter , is exponentially small for W - Wo ~ WOo The 
maximum value of this parameter is reached for 
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ITo(wo- w)l ~ 1, that is, in the cyclotron resonance 
region. In the frequency region of electromagnetic waves 
satisfying the condition Wo »wH, the cyclotron reson­
ance and consequently the maximum value of the param­
eter {; as well are reached only for relativistic electrons 
having momenta Pz R; mWo/2wH »m. In conclusion, we 
note that according to formulas (9), (10), and (13) the p 
probability of the process depends on the duration of the 
pulse To in a very complicated manner. 
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