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An exact definition and calculation of all singular points (in the sense of qualitative theory 
of differential equations) are presented for tlie Einstein equations in a homogeneous cos­
mological model of the Bianchi IX type, as well as their separatrices. This makes possi­
ble an exact statement and solution of the problem regarding the initial states of the Uni­
verse at early stages of evolution which are ''typical'' for the sign of time corresponding 
to expansion (in contrast to contraction, for which the typical states have been found by 
Belinskil, Lifshitz, and Khalatnikov and the analytically complex structure of the cosmo­
logical singularity has been elucidated). The initial typical states for Universe expansion 
indicated in the paper correspond asymptotically to power-law solutions with three types 
of time-factor asymptotics: that of the Friedman quasiisotropic type, that of the Taub 
type and a previously unknown type. 

INTRODUCTION 

The general anisotropic Bianchi IX model was first 
investigated by Belinskil, Lifshitz, and Khalatnikov 
(BLKh) in[1,2], and later by Misner[3,4], by Doroshkevich, 
Lukash, and I. Novikov[Sl, and by others, who were 
initially interested mainly in the asymptotic properties 
of the components of the spatial metric and the trajec­
tories of light rays when the universe contracts to a 
point. Another problem, namely the expansion away 
from the singularity (up to the instant of the maximum 
expansion) was first considered for the Bianchi IX model 
only recently (see[6-8]). In each of these problems, it is 
important to know the ''typical'' states in which the 
components of the spatial metric can be situated near 
the Singularity (what is the definition of these typical 
states, and how does it depend on the Sign of the time). 
For the process of contraction to a point, typical states 
were already indicated in the language of "Kasner ex­
ponents," which resulted from the piecewise approxima­
tion of the time dependence of the components of the 
spatial metric by means of power-law functions, an ap­
proximation that turned out to be very successful 
(see[2]). For the sign of the time on the expansion side, 
this problem has not been solved. Moreover, there was 
no exact definition of the concept of the "typical" state 
during the earlier stages of the evolution near the singu­
larity. 

In the present paper we use the method of investigat­
ing homogeneous models from the point of view of the 
qualitative theory of ordinary equations with algebraic 
right-hand sides, namely, it is necessary in principle 
to determine and to investigate the singular points of 
these equations and of their separatrix. It is then neces­
sary to draw the diagram of the transitions along the 
separatrix and to assess from this diagram the asymp­
totic behavior and the typical states. However, even the 
very definition of the Singular points for Einstein's 
equations is far from a trivial matter, since there are 
no singular points in the region where the metric is 
positive. Owing to the leeway in the choice of the co­
ordinates and the time, the continuation of the system to 
the boundary of this region is highly ambiguous and, as 
a rule, gives singularities that are so degenerate that 
they cannot be used to assess the asymptotic behavior. 

747 Sov. Phys . .JETP, Vol. 37, No.5, November 1973 

These difficulties can be overcome. We present a 
correct definition of the singular points and, using 
certain simple algebraic procedures, supplement 
physical region with a boundary on which the geometry 
of the dynamic system becomes perfectly understand­
able. In particular, the BLKh results[2] in the contrac­
tion direction turn out to be a formal consequence of the 
separatrix diagram of this system (see Sec. 5). By way 
of another consequence, we present a list of the possible 
power-law asymptotics near the singularity; for the 
particular case of the Bianchi IX model with axial sym­
metry, there are no other asymptotic forms at all (this 
model admits of exact integration only for zero matter 
(see Sec. 3)). As a third consequence, we indicate 
typical initial data (from the point of view of a separa­
trix diagram on the boundary) on the expansion side 
(see Sec. 5). 

In conclusion, the authors wish to note that the prob­
lems and the results of Secs. 1 and 2 belong to S. P. 
Novikov, whereas the results of Secs. 3 and 4 were ob­
tained mainly by O. 1. BogoyavlenskiL The results of 
Sec. 5 were obtained by the authors jointly. 

1. SINGULARITIES OF THE EINSTEIN EQUATIONS 
WHERE THE SPATIAL METRIC IS NOT FULLY 
DEGENERATE 

In four-dimensional space-time, there acts on the 
right a three-parameter group G (with three-dimen­
sional orbits) of one of the nine Bianchi types (Type IX 
is SU 2 or SO 3); the Einstein metric is assumed to be 
right-invariant, the orbits of the group are assumed to 
be spacelike. We choose four right-invariant vector 
fields Xo, Xl, X2, and X 3, where the fields Xl, X2, and 
X3 are tangent to the orbits of the group G. Their com­
mutators, by definition, are of the form 

[Xo• x.] ~ 0, [x., x,J ~ c.~·x., (1.1) 

where a, f3, .5 = 1, 2, 3; cg f3 are the structure constants 
of the group G. Then the scalar products 

gi; ~ <Xi, X,>, i, j ~ 0, 1,2,3, (1.2) 

depend only on the time gij(t), where the time lines go 
along the field Xo• 
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We assume that the trajectories of the field Xo are 
geodesics. If goO! = 0, then the reference frame is syn­
chronous; if goo = 0, then we call the reference frame 
"light-like." For simplicity we assume that the equa­
tion of state takes the form 

T; = (p + e)UkU' - p6.', Ui = 6;', P = ke. (1.3) 

The Einstein equations in the synchronous frame have 
been written out in[2], Starting with the region where 
the spatial matrix ga{3 is positive, we should like to 
determine the behavior of the system near the instant 
of its degeneracy (cosmological singularity). 

The singular points or the rest points are determined 
for a system of ordinary first-order differential equa­
tions with smooth time-independent right-hand sides 
(containing no poles or discontinuities). At these points, 
all the right-hand sides are equal to zero. If we have a 
system of equations of order n, then it is necessary to 
reduce it, by the usual means, to a first-order system 
of the form Xl = fi (x); only then can we determine the 
singular points. If the right-hand sides have poles, then 
all the right-hand sides must be multiplied, prior to the 
determination of the singular points, by a common 
(minimal) factor such that the right-hand sides no 
longer have poles; only then can we equate all the right­
hand sides to zero (this is equivalent to a change of the 
time in the system). It is then necessary to determine 
the eigenvalues of the matrix I afi / aXj I at the singular 
points and the separatrices corresponding to the non­
zero eigenvalues (see[9,1O]). 

It is easily shown for the Einstein equations in the 
homogeneous models that there are no singular pOints 
at all in the region where the spatial metric ga{3 is 
positive. All the singular points lie on a surface where 
the metric ~{3 becomes degenerate. By virtue of the 
chosen form of the energy-momentum tensor (1.3), we 
can use a time-independent substitution in the synchro­
nous reference frame to make the metric ~{3 diagonal 
at all t; the singular points therefore appear on hyper­
surfaces of the type (gaa = 0), for example at a = 1. 
However, the synchronous reference frame itself be­
comes degenerate on this surface; Einstein's equations 
lose their physical meaning on this surface. 

To determine the singular points we make use of the 
fact that the light-like reference frame, unlike the syn­
chronous frame, retains a phYSical meaning on the sur­
face. Let the metric be of the form 

/0 1 0 0) . 
gu = l~ g~l 0 0 , n, m = 2,3. 

gnm 
o 0 

(1.4) , 

In Taub's particular case, the transition to a light-like 
reference frame makes Einstein's metric in empty 
space analytic at gll = 0 and without singularities in the 
four-dimensional sense[ll]. 

The situation is different in the general Bianchi IX 
model. As shown in[I], Taub's solutions are unstable in 
a general model of type IX, in spite of its regularity. 
The reason lies in the singular points in the sense of 
the theory of differential equations ([8]). The Ricci ten­
sor in the system (1.4) takes the form 

R 1 ( ).. 1 1 
00=21ng --zg+"4XmnXn'", 

1(d g). 1 
RIO=~ -+- g,,+~(x.'-x,'), 

2dt 2g 2' 
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1 (d g). g" g" 
R,,=~ _+_ (g"g,,+g,,-g,,)- __ 

2 dt 2g 2g 

(1.5) 

1 (d g ). gil g" g" 
R" = 2: at + 2i (gil g .. + 2g,,) -~ + 1-2: X,'XII 

_ (g"x,' _ g"x,'). 

All the remaining Rij vanish identically; we denote by 
g the determinant g = II gnm II, 

dgnm 
Xnm =-;u-; l, m, n = 2,3. 

Einstein's equation (for empty space) takes the form 

R,,=O. (1.6) 

The system (1.6) has two integrals: 

1 ~ 1 
ll=R II -gIIR IO =1-zg- ~ gnm'-2:g,,(x,'-x,'), 

n,m_',' (1. 7) 

We are interested in this system only at the levels of 
the integrals 11 = 0 and h = O. 

After making the time change 

dT / dt = 11 gil 

we obtain, after calculations, a two-dimensional mani­
fold of singular points, which correspond exactly to the 
limits of Taub's solution in empty space on the surface 
gll=O: 

g" = g .. , v" = v", g" = 0, v" = 0, VuV" = -2, Vi! = dg,; / dt. (1.8) 

Their nonzero eigenvalues are of the form 

AI = v" < 0, A, = X, = -v" + 4i, AI = - vu, (1.9) 

and an eigenvalue that is negative on the contraction 
side corresponds to a Taub solution that enters the 
singular point in empty space. All the singular points 
lie at the level 11 = 0,12 = 0; if gu = 0 then g '" O. They 
correspond, by virtue of (1.8), to the limits of the so­
called "Taub solutions in empty space" (g22 == g 33, g23 
= g32 == 0). The surface gll = 0 is an invariant manifold 
or aggregate of the emerging separatrices of this set of 
singular points. 

Simple calculation with the system (1.5) shows, fol­
lowing the substitution 

dTI / dT = 11 g, 

that on the surface gIl = 0 there are no Singular points 
other than the Taub singularities (1.8), except for the 
case when all gaa = O. This is the most degenerate 
singularity, which cannot be conveniently investigated 
in the light-like reference frame. Since the light-like 
reference frame has retained a phYSical meaning on the 
surface gll = 0, the obtained Singularities are correctly 
defined. On the basis of the results we shall subse­
quently subject the chosen coordinate system to the re­
quirement that it yield on the surface gll = 0 the same 
singularities as the light-like reference frame. It turns 
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out that this can be done even in the synchronous refer­
ence frame by using the Hamiltonian formalism and by 
correctly choosing the phase coordinates. 

2. HAMILTONIAN FORMALISM. POWER-LAW 
ASYMPTOTICS IN THE BIANCHI IX MODEL 

The first question we shall consider in the investiga­
tion of a strongly degenerate manifold of singular points, 
where the entire spatial metric is degenerate, is that of 
the power-law asymptotic expressions in t (in synchro­
nous time t) for an equation of state (1.3). We already 
know in this case the asymptotic solutions of Fried­
mann 1) and Taub 

uvac -+ -3AeO 'm .. < O. 

We now derive the asymptotic form (2.3) on the con­
tractor side (in the coordinates (2.6)-(2.8)). We ad­
vance the following hypotheses: 

p, - po ~ Bp «: P2 + p, ~ p or B «: 1; x, ~ l' «: 1, x, ~ l' «: 1. 
(2.10) 

From (2.7) we readily see that 
dxo dx, 
~<O, Ts<O, 

1 
W~--, ~1, 

(x,x3 ) 

3 ~ av ( 1 ) "2 "'-' xm -n -~ -12+ 0 -'I, ' 
UXm W 

m=1 

(2.11) 

qa. Z = ga.a. - Ca.t'/3{1+Ja), Ca. = con~t, 

q~' ~ g~~ - Cit'. gpp = g" = const. 

if I B I < 1/3. (2.1) I 

(2.2) We introduce a new time q such that 

As shown by one of US[8], there is one other possible 
power-law asymptotic form: 

q~' = go~ - C~t('-') I ('+'>' qp' = gpp - Cpt(Hk) / '(1+Al, qv' = g." (2.3) 
- C,t('+')/'(t+k); a. =1= ~ =1= 1. 

The asymptotic form (2.2) appears even in empty 
space, while (2.1) and (2.3) appear only in the presence 
of matter (we shall show subsequently that there are no 
other asymptotic forms). 

The Hamiltonian formalism in homogeneous models 
was developed by Misner[3,4] and finally systematized 
in the most convenient form in[7]. For the equation of 
state (1.3), the Hamiltonian takes the form 

H= 2( 1 )'_' (U(P~)+V(q~',», 
qlg,q, 

dp~ aH dq~ aH 
--a.) = - aq: , d;]= ap:" 

(2.4) 

where PO! = PO!~' O! = 1, 2, 3, and PO! and % are the 
momenta and coordinates. 

The time 1) and the polynomial 'IT are such that 

U(P~)=2P,P,+2P,P,+2P,P,-P.'-P,'-P.'. ddt = (q,q.,q,)k, (2.5) 
1] . 

and the potential V depends on the group G. 

For the Bianchi IX model, the functions 'IT and V 
have the same form. The kinetic energy is indefinite, 
and the motion is allowed at the levels 2H = A 2: 0, with 
the case A = 0 corresponding to empty space. 

Using the scale group (the homogeneity of this Ham­
iltonian) we can make the substitution 

(2.6) 

under the condition F(yO!) = 1, where F(AYO!) 
= AmF(yO!). We then obtain an equation with energy if 
and friction 

dp. all 
-=-x.-±2p., 

ds ax. 
dx. all 
-=Xn.-. 
ds ap. 

d'A 
dS'='A; 

lI= (4(p,'-p,p,-p.') +3V(x" x,) +3Ae-~8)'/ = Ib, + b,+ b,l; 

n = 2 and 3, O! = 3k + 1 (plus on the contraction side, 
minus on the expansion side), where 

(2.7) 

F(1~)=1'1'"t,=1, "t,=x" 1'=X" p,=b,-b" p,=b,-b;; A>O 
(2.8) 

We have in the system two monotonic functions 

U vac = 4(p,' - P,Pi + p,') + 3V, U = lI' 

d'A -, = ~ U'I. dw = 8p, ~ _ 2pU'" _ 12. 
dq w 'dq dq w (2.12) 

. It is easy to show that if the growth of p( q) is faster than 
linear, then the matter has no influence, for in this case 
we arrive at the exponential regime p(q), where I B I 
~ 5 1/ 2, and by the same token the condition (2.11) will 
sooner or later be violated. 

If p( q) grows linearly, then the following hypotheses 
must be made for the influence of matter (at k = 0): 

'A-'-~p', w-ap'; a>O, ~>O. (2.13) 

In the region where these hypotheses hold, we have 

~: _ !z -12; z=(1+3B'+3a+3A~)'''; 

dw -2ap(~-12), d'A-'_2~P(~_12)_~P~. (2.14) 
dq a dq a. a. 

This yields 

z=4, a='/" 16=1+3B2+3a+3A~; dp/dq-12. (2.15) 

If P2 ~ P3 (or B"" 0) at aU times, then we arrive at the 
answer 

p - 12g + const; Xo = Dog-'I., Do = const; a = 2,3. (2.16) 

Returning to the synchronous time, we obtain formu­
las (2.3), where k = 0 (dust). For 0 < k < 1 the situation 
is analogous, but (2.13) must be replaced by the hypothe­
sis 

).. -"-I _ ~p'. 

3. ASYMPTOTIC FORM OF THE TAUB MODEL 
WITH MATTER NEAR THE SINGULARITY q2=q3 

We investigate first the simple singular case when 
q2 = q3, P 2 = P 3, and the Hamiltonian (2.4) takes the 
form 

H 1 (2P - P , 4 " ') = ( ')'-' ,P,-, + qlg, -g, , 
ql q. 

P,=2P,. (3.1) 

We introduce formally new variables (without discussing 
their meaning): 

and the time T, where 

g,g, 
U=-

2P, 
(3.2) 

(3.3) 

In terms of the new variables, we obtain the equations 
1) U ~ +00 (on the contraction side) 

duvac / ds ~ 0; 
du dg, 

(2.9) ~= v(-k-(1-k) (u-1)'-(1-k)w'-4ku'), --;;:;-= q,(u-1), 

2) U ~ +0 (on the expansion side) .!:!!...= -2w'+(2u-1)Ho+4v'-4uu, dw = w(2(u-l)+' 2Ho-4v'), 
d. d. 
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Ho = 1/,(1- k) (1- (u - 1)' - w' + 4v'), 

H,;;;'O, 
1 dv 
--~O, 

v dr: 
w~o, ~>o 

dt 

(3.4) 

(H = 0 for empty space). 

When the singularity is approached, we find that the 
asymptotic forms are all determined by the system 
(3.4), which is correctly defined in the semicircle 

v = 0, H, ;;;. 0, W ,,;;; ° (3.5) 

(the plane v = 0 did not appear in the physical region). 
The singular points and ttfeir eigenvalues take the form 
(in terms of the variables"(u, w»: 

1) u=O, w=O (H,=O), AI=-(1-k), 1.,=-2 
(node);1 

2) u= II., w=O, H, ='I.(1-k), AI ='/.(1_ k); 1.,=-'/.(1 +3k) 

(saddle); , 
3+k 1· Ho __ 2(1-k) 

3) u= 5-k' W=- 5-k «1-k)(1+3k»"', 5-k 

2 ( (( 1 - k ) ) 'f,) A", = 5=k" 1 -.k ± i -2- (3 + 16k - 3k') 
(3.6) 

(focus); , 
4) u=2, w=o, Ho=O, AI=-3(1-k), 1. 2 =2 

(saddle). 

The phase diagram takes the form shown in Fig. 1. 

It is easy to show that the "whiskers" (or separa­
trices) of the singular point 1), which come from the 
region v < 0, are of the Taub type (2.1), those of singu­
lar point 2) are of the Friedmann type (2.2), and those 
of Singular point 3) are of the type (2.3). The whiskers 
of the Singular point 4) come from the unphysical region 
ql'" O. 

This investigation provides rigorous proof that no 
other power-law asymptotic forms are possible in this 
model. At 0:5 k:5 13 + a, where a > 0, it can be shown 
additionally that the system (3.4) has no limit cycles in 
the region (3.5). It follows directly from this that in 
Taub's model with matter this interval in k contains no 
asymptotics at all other than (2.1), (2.2), (2.3). (There 
are probably no limit cycles at all k < 1 either.) 

Let us prove that the system (3.4) has no limit 
cycles for 0 :5 k:5 Y3: we consider a function R such 
that 

dR 
R=(u-1)'+w', ""'d.'=(1-k) (1-R)[2R+(u-1)]. (3.7) 

Obviously dR/dT reverses sign inside'the unit circle 
only on the circle dR/dT = 0 on which R:5 )It. There­
fore the cycle, if it does exist, lies in the region 
R:5 )It,' which contains the ci~cle dR/dT = O. The 
di vergences of the right-hand sides of the system (3.4) 
are given by 

divt=(1-k) [2-4R+ ~~~(U-1)l. 
For the interval 0 :5 k:5 )13, the region lying inside the 
circle div f = 0 contains an internal subregion R:5 )It. 
Therefore in the region R :5 it, according to the 
Bendixson criterion, there are no limit cycles. 

The phase diagram indicated in Fig. 1 at v = 0 leads 
to the following conclusions: on going towards the 
singularity in Taub's model with matter, we "almost 
always" obtain (on the contraction side) an asymptotic 
form (2.1) of the Taub type in empty space; to the con­
trary, on moving away from the Singularity on the ex­
pansion side during the earlier stages of development, 
the ''typical'' state is near the singular point of type 3) 
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FIG, I. Trajectories of the system (3.4) 
in the semicircle H,Q ;;;;. 0, W <;;; ° on the plane 
v=OatO<;;;k<;;;lr3. 

u 

(see (3.6», since time reverses sign and the singular 
point of type 3) becomes a tightening point with respect 
to the variables (u, w) so long as the entire action takes 
place close to the singularity. 

It is important that the coordinate change (3.2) is 
regular outside the singularity, where the entire spatial 
metric is equal to zero. The substitution (3.2) replaces 
the singular point in phase space, in terms of the new 
coordinates, by an entire two-dimensional manifold 
v = 0 that is "glued in" in the phase space with the 
dynamic system (3.4) on ito This system, under the 
conditions (3.5), produces a "boundary" that encloses 
the phYSical region completely. 

Note. When the Taub model with matter is imbedded 
in the general Bianchi IX model, the mapping on the 
boundary becomes multiple-valued; the point F blows 
up into a segment on the triangle .0" the point T goes 
over into a point F(l with a half-line T~ together with 
the ends T~ and T~, and the point C goes over into Ca 
and the middle of the segment AEa (see Fig. 3 and the 
start of Sec. 5). 

4. GENERAL BIANCHI MODEL IX 

starting from the Hamiltonian H (2.4) with time 
17 (see (2.5», let us determine and investigate the singu­
lar points, especially where the entire spatial metric 
vanishes. We are interested in the region of nonnega-
ti ve matter and spatial metric. We make the time sub­
stitution 

tho 2 2 
~= (qtq2q3)1 It 1.3(1-.lr)· 

(4.1) 

We consider the phase coordinates 

(4.2) 

We then change over from them, using gauge invariance, 
to new coordinates in accordance with (2.6): 

Pm 
bB =-, F(1.)=1,=1, a=1.2,3; Q, 

Y'=l,'=Q.IQ" Y'=1.'=Q,IQ,; (4.3) 

u, = b" v, = b, + b" v. = b. - b.; dr:, I dr:. = Q,. 
In terms of the new coordinates and the time T 1 we ob­
tain the system 
,~ . ~ ~ 
-=-Q,(u,-v,), -=y,(2u,-v,-v,). -=y.(2u,-v,+v,), 
dr:, dr:, dr:, 

du, 
-= u,(u,-v,)-(y,+ y.-1)+H" (4.4) 
dr:, 

dv, 
-= v,(u,-v,)-Y2(1+ y,- y,)-y,(1 + y,- y,)+ 2H,. 
dr:, 

dv, 
- = v,(u, - v,) - y,(1- y,) + y,(1- y,); 
dr:, 

H, = '/.(1 - k) (2u,v,- u,' - vz' + 2y, + 2y. + 2y,y, - 1- yz' - y.'). 
(4.5) 

We note that in terms of these coordinates, the mono­
tonic function H (see (2.7» takes the form 

II u, +,v, -ll- _ 00 

- = (y,y.)"., 

(on the contraction side). 
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An essential fact is that v 1 is always less than zero. 
If -If < _B2, then 

• 
D,~-f'(B,v"v',v,)<O, L.v~'=1, q~=flV~, V~;;.O, (4.7) 

with the exception of points of the type (0, 2-1/2 , 2-1/2). 

The constant B in the inequality (4.7) is of the order of 
1. In addition 

I(B, V" V" v.) -+ 0, (4.8) 

if Ya - 0, Ya - 2-1/2, and YO - 2-1/2• This result will 
be important when it comes to proving that we have ob­
tained all the singularities (see the end of Sec. 4), and 
also to maintain monotonicity under the time change 
(4.12). 

Getting ahead of ourselves, we note that (4.7) and 
(4.8) can be derived from the inequalities (4.6) in terms 
of the coordinates (4.12), by using the fact that matter 
is positive, H2~0 (4.13). (Naturally, we shall use the 
coordinates (4.3) and (4.12) only in the region where Y 1 
> 0, and in other regions, such as Yz> 0 or 1'3> 0, we 
shall introduce analogous coordinates by making the 
corresponding permutations.) 

We now obtain the singular points of the system in 
terms of the coordinates (4.3). First, the system has 
three invariant manifolds: 
1) y, = y" v, = 0; 2) y, = 1, D, + D, = 2u,; 3) y, = 1, v, - V2 = 2u" 

(4.9 ) 
corresponding to the Taub model % == q[3' The simplest 
singular points of the system in terms of the coordinates 
(4.3) in a finite region are given by 

1) y, = 1, y, = 0, u, = v, = v,; 1)' Y3 = 1, y, = 0, u, = v, = -v,; 

(4.10) 
2) y,=O, Y3=0, u,(u,-1,)+1+H,=0; v,(u,-v,)+2II,=O. 

Obviously, singular points of types 1) and 1)' belong 
to the intersection of the Taub manifolds (4.9) with edge 
Yi = 0 and are equivalent under the permutation of q1, 
qz, and q3' Singular points of type 2) appear only in 
filled space, and the whiskers produced in them upon 
contraction yield the power-law asymptotic form (2.3). 
Calculating the characteristic polynol'[iial in the singular 
points 1) and 1)' from (4.10), we obtain the eigenvalues 

A,=2u" 1.2,3 = ±2i, A,=u,(1-k), 1.,=0, (4.11) 

where the parameter U1 defines a Singular point of type 
1) or 1)' in accordance with formulas (4.10). Singular 
points of these types form a Single-parameter family, 
where all the remaining eigenvalues are different from 
zero. These singular points coincide with those defined 
in Sec. 1 in the light-like reference frame; our coordi­
nate system is such that there are no "extra" Singular 
points in the region where not all the qi vanish (see the 
requirement at the end of Sec. 1). 

These eigenvalues contain a new one, not considered 
in (1.9), namely A4 = U1( 1 - k), which is due to the 
matter. The values il.z s = ± 2i correspond to the com­
plex-conjugate pair in '(1.9). We see that Re AZ,3 = 0 in 
formulas (4.11), unlike in the light-like reference 
frame; this is no more than a manifestation of the poor 
properties of the synchronous reference frame on the 
surface gll = O.Z) The extra positive eigenvalue con­
tained in (1.9) is due to the increase in the dimension­
ality of the phase space. 

It will be convenient to investigate the singular points 
of type 2)in (4.10) later on. 
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To investigate the singularity in V1 it is convenient, 
on the basis of (4.6) and (4.7), to introduce new coordi­
nates and time: 

Ut V2 u=-, vz=-, W=-, 
v, 

d-r:, 
--=-D,>O d-r:, . 

(4.12) 
V t VI 

We then obtain the system 

dQ, _ 
-=Q,(u-1), 

d-r:, 
..!:!..2.= y,(1 +v,-2u), 

d-r:, 
dy, (1 - 2-) --=Y3 -Vz- U, 
d'2 

du 
-- =(y, + y, -1)w' - uw'(y,(1 + Y. - y,)+y,(1 + y, - y,) )+(2u -1)H" 
d., 

dv, = w'(Y2(1- y,)_ y,(1- y,»- v,w'(y,(1 + y, - y,) 
d-r:, 

+ y,(1 + y, - y,»+ 2v 2H" 
dw 

(4.13 ) 

--= w(u-1- w'(y,(1 + y, - y,)+ y,(1+ y,- y,»+ 2H,) , 
d-r:, 

H, = '1,(1- k) (1- (u - 1)' - v,' + W'(2Y2 + 2y, 

+ 2y,y, - 1 - y,' - y,'». 

The condition that matter be positive delineates a 
circle on the infinitely remote plane Vi = 0: 

(u-1)'+v,'~1 (H,;;,O). (4.14) 

The region where Y2 and Y3 vanish takes, under the 
condition Hz ~ 0, the form 

(u _1)' + v,' + w' ~ 1, w ~ 0 (4.15) 

(the sign of w is given here for the contraction side; in 
the case of expansion w ~ 0). 

It is easily seen that in the region (4.15) the equations 
take the form 

du _, _ dw --' _ dv,_ 
~d =-w +(2u-1)H" -=w(u-1+2H,), --=2v,H" 

-r:, dT2 dT, (4.16) 

H, = '/,(1- k) (1- (Ii _1)' - v,' - iii'). 

It is seen from (4.16) that the plane vz = 0 is an invari­
ant submanifold. The singular points of the system (4.16) 
(at w" 0) are singular points of type 2) of (4.10): 

_ 3 + k _ 1 ( ( ) ( '/ _ 1 - k ( ) 
U= 5-k' w=- 5-k 1-k 1+3k» " v,=O, H'=5_k 4.17 

On the plane Vz = 0 this singular point is a repelling 
focus with eigenvalues 

1 - k i (( 1 - k) ) 'f, 
1.",= 5-k± 5-k -2- (3+16k-3k') ,0~k<1 (4.18) 

(see also Sec. 3). 

The remaining eigenvalues are given by 
2(1-k) 

A, = > 0 (variable 0,), 
5-k 

1 +3k 
A, =1., = - ;; _ Ie (variable y, y,), (4.19 ) 

2(1-k) 
1.6 = - (variables Q,). 

5-k 

This singular point is nondegenerate. From the form of 
the eigenvalues it follows that a three-dimensional 
manifold of solutions enters in this Singular point (on 
the contraction side). Calculation shows that these solu­
tions have power-law asymptotic forms of the type 
(2.3), whereas in Taub's model with matter only a two­
dimensional manifold of solutions entered in these 
singular points (see Sec. 3). 

The singular points at infinity (at w = 0) should be 
sought for the system (4.13), since matter is positive, 
only in the circle (4.14) under the condition that the 
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C 
I-~~-----tf~ii FIG. 2. Singular points (1/1, c<) (w = 0) 

spatial metric is nonnegative. Direct calculation in the 
circle (4.14) yields for w = 0 the following (see Fig. 2): 

1) Y2 and Y3 arbitrary, V2 = 0, U = 12 (point 0 at 
fixed Y2 and Y3); 

2) y, * 0 arbitrary, y, = 0, u = 1, v, = 1 (point B); 

2)' y, * 0 arbitrary y, = 0, u = 'I"~ v, = 'I. (point' A); 

3) y, * 0 arbitrary, y, = 0, U = 1, v, = -1 (point D); (4.20) 

3)' y, * 0 arbitrary, y, =0 U = 'I"~ v, = -'I, (point E); 

4) y, = 0, y, = 0, (u - 1)' + v,' = 1 (boundary of circle). 

We consider the singular pOints of type 1) in (4.20). 
This is a two-dimensional manifold, since Y2 and Y3 
are arbitrary. Their eigenvalues are given by 

A, =A,=O (variables y"y,), 

A,='/.(1-k) {variable u),' 

A, = '/.(1 - k) (variable' v,), 
A, = -'/2 + '/,(1 - k) (variable wi, 

A, = -'/, (variable Q.). 

(4.21) 

This manifold of singular points includes (in contrac­
tion) a four-dimensional family of solutions of power­
law form, with all the exponents equal (see (2.2». This 
is a generalization of Friedmann's solutions. 

The singular points of types 2), 2)', 3), and 3)' are 
the most degenerate; it is easy to show that "whiskers" 
of minimal dimensionality enter in these points (on 
either side of the time). Singular points of type 4) of 
(4.20) have eigenvalues whose signs depend on their 
location in the circle. These signs are given by the 
matrix 

EA AB BD DE A B D E 

Aw + 0 0 

Au. + + + 0 o . (4.22 ) 
Av, + + 0 0 + 
AQ, + 0 0 

The missing eigenvalues correspond to variables in 
the (u, V2) plane: one of them is equal to zero, and the 
other is negative. The singular points A, B, D, and E 
are degenerate. 

Before we proceed to integrate the separatrices of 
the Singular points obtained by us, and then to draw 
conclusions, it is natural to raise the following question: 
did we find all the Singular pOints? To answer this ques­
tion we shall show that the ''boundary'' which we at­
tached during the course of change of coordinates to the 
physical region S, where H ~ 0 and qO! ~ 0, makes 
this physical region S together with the boundary r 
(after taking gauge invariance into account) a compact 
manifold with an edge (apart from three exclusive 
points); our system is correctly defined and continuous, 
including the boundary, and the boundary is an invariant 
manifold of the system. The monotonic functions con­
tained in the system press the phase point towards the 
boundary, and by the same token the asymptotic form in 
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contraction is determined by the behavior of this system 
on the boundary (analogously, the behavior of the system 
during the earlier stages of expansion). 

Let us describe this manifold S. By virtue of the 
! gauge invariance of Eqs. (2.4), we can normalize the 
components of the metric by the condition , 

q·=ItV., L,v.'=1, v.;;;'O, (4.23) 

and this yields the spherical triangle A. By virtue of 
(4.7), we can use the variables (u, V2, w). At iii = 0 we 
have the circle (4.14), and at all w < 0 satisfying (4.7) 
we obtain a compact region in (u, V2, w) (with the excep­
tion of the exclusive points Ya = Y{3' YO = 0, O! "" i3 "" 0), 
as follows from the form of the function H2 and from 
the inequalities (4.7) and (4.8). We use the coordinates 
(4.3) in that part of A where Yl"" O. In the remaining 
regiOns we use analogous coordinates, replacing Yl by 
yO!. Thus, the constructed manifold with the boundary is 
compact after closure by the Taub limits at the three 
exclusi ve points on the triangle A. 

The boundary r of this manifold has corners Y 1, Y2 , 

and Y 3. At the corner Y 1, the coordinates Yl, Y2, and 
Y3 run along the sides of A, while u and V2 belong to 
the circle (4.14) and Vi = 0; at the corner at Y2 the co­
ordinates Yl, Y2, and Y3 are arbitrary, iT and \72 belong 
to the boundary of the circle (4.14), and w = 0; at the 
corner Y 3 we have yO! = 1, YO = Y{3 = 0 (vertex of A), 
while U, V2, and w belong to the sphere (4.15). These 
corners and their intersections Y 12, Y 23, and Y 13 are 
invariant manifolds of the system. 

5. SEPARATRIX DIAGRAM OF THE 
SINGULARITIES AND ITS APPLICATIONS 

We use the following notation for the singular points: 
cf>t,Kh, where Y is an internal point of the spherical tri­
angle A (type 1) from (4.20), where YO! > 0). cf>LKh lies 
on the boundary r away from the corners; 

cf>~y, where Y is on the boundary of A, Ya = 0, Y{3 
> 0, YO > 0 (type 1) from (4.20». cf>gy lies in the corner 
Y1 ; 

cf>~o-angles of the triangle (type 1) from (4.20 », lies 
in the intersection of the corners Y 31; 

T~-type 1) from (4.10), where Ul = 0, yO! = 0 (ex­
clusive point, arbitrarily assumed to belong to S); 

T~I-type 1) from (4.10), lies on r, where yO! = 0, 
-oo<Ul<O; 

T~ -type 1) of (4.10), lies in the corner Y 12, YO! = 0, 
Ul = _00 (w = 0, iT = 1). 

NO!-type 2) of (4.10) is located in'the corner Y3, yO! 
= 1; (lji, O!)-type 4) of (4.20), where U - 1 = cos lji, V2 
= sin lji, 0 ~ lji ~ 21T, lies in the intersection Y 23 = Y 123. 

BDO!-point of segment BD over the side of A: yO! 
= 0 (type 2)-3) of (4.20)); lIDa lies in the corner Y12 ; 

AEO!-points of segment AE over the side of A : YO! 
= 0 (type 2)'-3)' of (4.20»; AEO! lies in the corner Y12 • 

The singular points are shown in Fig. 3. 

The power-law asymptotics yield whiskers that 
emerge from the physical region S, where ~ > 0, to 
the boundary (see (2.1)-(2.3», into singular points of 
the type cf>LKh' NO!, and T~I: 

<Dv 
ra'<-s( LKh (5.1) 

Nn 
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I 

FIG. 3. General arrangement of the singular points of the dynam­
ical system of the Bianchi IX model after taking into account scale in­
variance and adding a boundary to the physical region. 
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FIG. 4. Separatrix diagram on the contraction side. 

The remaining singular points have no separatrices 
that emerge from S-all their separatrices lie on the 
boundary r (we recall that the important singular 
points (I/J, a) lie on the corner of the edge Y 123 of our 
manifold). 

The separatrices lead from each singular point to 
another. Their integration is quite laborious but 
straightforward; omitting the calculations, we obtain the 
separatrix diagram shown in Fig. 4. The following nota­
tion is used in the diagram: 

a) A filled square denotes a separatrix that goes on 
the contraction side from one set of singular points in 
the upper row to another set in the column; the number 
in it denotes the dimensionality of this separatrix, and 
an empty square means absence of a separatrix. 

b) The question mark denotes that the corresponding 
separatrix has not been fully integrated or that the cor­
responding set of singularities has zero eigenvalues 
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whose number exceeds its dimensionality. 

c) On the singular points of type (I/J, a) from the 
three circles Y 123, the transitions in the diagram to 
other singular points of the same type are given by the 
mappings indicated in the squares: 

i+v 
T(u v )=(UO vOl· uo= 2 

, 2 , 2, 1 _ V2 + 2u 
i-v,-2it (5.2) V20 = . 
i-v,+2u' 

S(u, v,) = (2 - Ii, v,); T' = 1, S' = 1. (5.3) 

Using the monotonic function (4.6) contained in the 
system, we can justify the separatrix approximation on 
moving towards the singularity. We shall express the 
motion near the singularity by means of the sequence of 
singular points and separatrices near which this trajec­
tory passes. 

Properties of the separatrix diagram on the contrac­
tion side. Comparison with the BLKh model. From the 
diagram (Fig. 4) we see that when moving on the con­
traction side, sufficiently close to the cosmological 
singularity, we can confine ourselves to consideration 
of only singular points of the type (I/J, a), since they and 
their separatrices form (on this side of the time) a 
closed system (together with the segments BDa). Thus, 
we have trajectories of the type 

(1jJo, ao) ..... (1jJ" a,) ..... (1jJ" a,) ..... ... , (5.4) 

where a = 1, 2, 3. 

According to the diagram of Fig. 4, (I/Js+l> a s+1) is 
a single-valued function of (I/Js' as), if I/Js is on the arc 

ACE; if I/Js lies on the arc EPA, then the transition to 
(I/Js+l> as+1)is ambiguous: 

~ II ~ I ~ 
(DE, a, +2) ,-(FA, a,) --., (BC, a, + 1), 

..--... II I 
(AB, a, + i) <-(EF, a,)-' (CD, a, -[2). 

(5.5) 

It follows from the diagram that in the next step, start­
ing from the results of path II, we arrive at the same 
result we obtained in one step on path I. 

We now compare the results of this separatrix dia­
gram with the combinatorial "model of Kasner expon­
ents" of Belinskil, Lifshitz, and Khalatnikov[21, which 
describes the regular regime in their sense and which 
has resulted from the idea of piecewise approximation 
of the components of the metric of the Bianchi IX model 
by the power-law functions 

which result from the Bianchi model I. 

We introduce the parameter K, where 1:'0: K < 00: 
-x i+x x(1+x) 

p,(x)= 1+x+x" p,(x)= 1+x+x" p,(x)= 1+x+x'· (5.6) 

We consider the "exponent alternation" transforma­
tion 

x ..... x - 1, if 2,,;; x < 00; 

1 (5.7) 
x·---+ x-1' 

The state is described by the pair 

( 123) (123) (123) 
(x, 0); 0 = i j k ' 0" = 2 1 3 ' 0,., = 1;)2 (5.8) 

where a is a permutation. 

The transformation ("oscillation" or "alternation of 
Kasner epochs") takes the following form in the BLKh 
model: 
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(X,0)~L~1 ,00,,(23 ) (1";;x,,;;2). (5.9) 

The sequence of states 

(5.10) 

codes the asymptotic of the typical trajectory in accord­
ance with BLKh[2]. 

When comparing this model with (5.5), we choose only 
path I in (5.5); we note that after one step path II gives 
the same result). By choosing path I, we obtain an un­
ambiguous model (the next state is determined by the 
preceding one): 

K 
(1jJ" a,) -, (¢H1, a'+l), 

r (TIjJ" a, + 1) 

R (¢" a,) = (~'H1' a'+1) = j (T'IjJ" a, + 2) 

I (81jJ" a,) 

(1jJ, in arc FB) 
(1jJ, in arc fiJi'), (5.11) 

(1jJ, in arc BcD) 
where T3 = 1 and e(1jJ) = 11 - 1jJ. 

We define the function 

1 + u+ 2iJ 
x(IjJ)= 1+v-2u (inarcFB), 

1 + u- 2[ 
x(ljJ) = (in arc DF), 

1-1: - 2u 
(5.12) 

x(lP) = x(n- ~l) (~lin arc BCD), 

where v = \72 = sin 1jJ~nd U - 1 = cos 1jJ. We can consider 
next only the arcs DFB, carrying out the transition in 
the model (5.11) in two steps at a time (along path I): 

~ _, { (flT1jl" a. + 1) (in arc FE) 
K=K(1jla)= ~ 

'" (8T'1jl" a, + 2) (in arc DF) 
(5.13 ) 

Identifying the points B, F, and D as a Single point, we 
obtain a smooth transformation K. Formulas (5.12) 
show the isomorphism of the model of (5.13) with the 
BLKh model (5.9). 

The presence of a path II such that 
1 

x .... x _ 1 + 1, 1,,;; x ,,;; 2 (5.14) 

is obtained in one step complicates the model somewhat 
in those places where, for example, the "long era" in 
the sense of BLKh terminates[2], Le., where 1 ~ K ~ 2. 

We note some properties of the isomorphic models 
(5.9) and (5.13). 

a) All the trajectories are repelled from one another. 

b) There is a denumerable everywhere-dense set of 
periodic points. 

c) I dT(1jl) I 
-- >1 on arc FB, 

dIP 

Under t1~se conditions, as is well known, the trans­
formation K will conserve a smooth measure and have 
the "coarseness" property in the sense of Andronov 
(the Anosov criterion), namely, each small perturbation 
of the transformation reduces to the transformation it­
self by a continuous change of variables (it is a require­
ment that the derivatives in the perturbation be small; 
it is assumed also that the degree of proximity of the 
perturbed transformation to the initial K improves suf­
ficiently rapidly on approach to the points D, F, and B 
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./ 1 

FIG. 5. Paths on the separatrix 
diagram on the expansion side prior 
to the departure from the singularity. 
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LKh 

on the semicircle). This property justifies to a certain 
degree the approximate application of combinatorial 
models (5.9) and (5.13), including their statistical prop­
erties, to the description of the behavior of true trajec­
tories. 

~onc1usions of separatrix diagram on the expansion 
side. On going to the problem of typical initial data near 
a cosmological singularity on the side of expansion of 
the Universe, it is necessary to reflect the diagram of 
Fig. 4 about the principal diagonal. We call attention to 
the fact that during the concluding stage, prior to the 
departure from the Singularity, the only paths that are 
possible in the separatrix diagrams are those shown in 
Fig. 5, where the arrow denotes the separatrix going 
from one set of singular points to another set, and the 
figure over the arrow denotes its dimensionality. The 
ellipsis stands for all possible singular points (1jJ, a), 
AEQ!, or lITh, and the wavy line shows a transition along 
the continuity as a result of the inclusion 

Thus, in the separatrix approximation, typical initial 
data are obtained in the vicinity of the singular points 
of the types 4>LKh, T~\ and Nao with singular points of 
the type 4>tKh running through a two-dimensional set 
(spherical triangle ~) and the singularities T~l through 
a one-dimensional set, while the three points Na are 
isolated. 

It is appropriate to stop and discuss here the ques­
tion of how "typical" initial data are generally defined 
and why they depend on the sign of the time. On the 
contraction side, this question does not arise by virtue 
of the BLKh results, namely, on approaching the cosmo­
logical singularity along practically any trajectory, the 
regular regime described by their combinatorial model 
will sooner or later become established. On the expan­
sion side, as already indicated, we regard as the typical 
initial state a sojourn near the last singularity along a 
given trajectory of the separatrix. This separatrix leads 
from the boundary r over to the physical region S. Of 
course, it is assumed here that the observer himself is 
far from the cosmological singularity, during the later 
stage of development. This definition of typical initial 
conditions is based on the following: The physical re­
gion of possible values of the components of the metric 
and their first derivatives, after taking the scale invari­
ance into account, reduces to a five-dimensional mani­
fold S with boundary r on which the spatial metric de­
generates, with a dynamic Einstein system on S_ One 
specifies initially the small parameter p, namely the 
distance from the random initial condition in the region 
S to the boundary r. The time is then started in the 
expansion direction. The trajectory moves for some 
time still in the vicinity of r, until it passes near a 
singular point of the type 4>tKh' T~\ or Na , and then 
starts to go off into the region S away from the bound­
ary r along the separatrix of one of these singular 
points. 
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By the same token, even close to the boundary r of 
the physical region S, random initial data accumulate in 
the vicinity of regimes that have power-law behavior in 
t «2.1), (2.2), (2.3», and correspond to separatrices of 
these singular points emerging from r into S.3) 

The three exclusive points T~, which should be as­
signed to S, form a special case. Several separatrices 
go into these points, which are limiting for r (see Fig. 
4). The special character of this point lies in the fact 
that a trajectory passing in their vicinity (on the expan­
sion side) remains in the vicinity of these points up to 
the instant of maximum expansion. 

Let us compare these results with the previously de­
veloped[7] friction formalism for the expansion process 
up to the instant of maximum expansion~ According to 
(2.6)-(2.9), we have 

I.' =e"=q,q,q, = (-g)"', "(, = ("(,,,(,)-,, 

U=H'=K+3V+3Aexp (-as), a=3k+1, ULKh=K+3V, 

" ~ dULKh 
K = 4 (Pi' - p,p, + p,'), V = - ~ "(a' + 2 I: "(a'''(,', ------a:;-= -4K.;; 0, 

o;=t a..p~ 

where K is the kinetic energy and 3V is the potential 
energy; the phase region Uvac < 0 is a trap in the 
terminology of[7]. 

After recalculating the asymptotic expressions (2.1)­
(2.3) in terms of the coordinates (2.6)-(2.9), we obtain 
the following: 

1. For quasiisotropic regimes <l>t.Kh 

/ "(a = qal.-' - Ca(C,C,C,)-'I, = B a, K - 0, 

where the constants CO! are arbitrary and positive; the 
kinetic energy is small here and the potential energy 
arbitrary. 

For the regime Nl we have 

where Y 1 is arbitrary but sufficiently small and the 
constants C and D are arbitrary and positive. The 
kinetic energy is here equal to one-third of the poten­
tial energy, and both are large. 

2. For the singular regime Tt both the kinetic en­
ergy K and the potential energy 3V are small in abso­
lute value, with 

We see that in the power-law regimes the kinetic en­
ergy is not large compared with the potential energy, 
and in the states <l>IKh it is very small. To the con-

trary, for the contraction process, by virtue of the 
BLKh results, in typical states the kinetic energy be­
comes periodically infinitely larger than the potential 
one. 

The statistical properties of the Bianchi IX model 
can be determined in this case by resorting to informa­
tion on the distribution of the probabilities among the 
typical initial data obtained in the present paper. We 
can then find the probable instant of falling into the 
trap Uvac < 0, and the distribution in this trap during 
the later development stage preceding the instant of 

, maximum expansion. 

The authors thank I. M. Khalatnikov for a valuable 
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discussion, particularly concerning the existence of 
characteristic transition times, which in some parts of 
the separatrix diagram turn out to be completely unde­
termined (see footnote 3). 

Note added in proof (March 1973). In a simpler homogeneous model 
(axially symmetrical, with group of motions of type II after Bianchi), an 
asymptotic form of the type (2.3) was obtained by Ellis and McCollum 
(Comm. Math. Physics 12, 108 (1969) as an exact solution. Collins 
(ibid. 23, 137 (1971) was the first to use the two dimensional qualitative 
Poincare-Bendixson theory for the study of axially-symmetrical models of 
Bianchi types II - VII. Not even the axially symetrical model of type IX 
reduces to the two-dimensional problem (see Sec. 3). Only on the bound­
ary v = 0, which we have "glued in," is the problem two-dimensional (see 
Fig. I). 

!)These asymptotic forms, which generalize the Friedmann solution, were 
first obtained by Lifshitz and Khalatnikov [12] and called "quasiiso­
tropic." 

2)The eigenvalues (4. I I) correspond to the picture obtained by Belinskii 
and Khalatnikov [I] in a different language in a study of small perturba­
tions of the Taub model in a synchronous reference frame in empty 
space. 

3)The time interval between the stay on one of the seperatrices of the 
BLKh model (the singular points Cl/I, a» and the establishment of a 
power-law asymptotic form of one of the three types (all this occurs 
near the boundary r) is divided into three parts: I) the passage from 
the separatrix of the BLKh model to a separatrix going from the singu­
lar points (l/I, a) into one of the singular points of the types <l>IKh' T~', 
or Na ; 2) the time of motion along this seperatrix to a fixed vicinity of 
the final points; 3) the passage to a separatrix going from r into S. It 
can be shown that the time 2) tends to zero with p, and that time 3) 
has a finite limit as p -+ 0. As to the time I), which can naturally be 
called the time of "turning on the matter," it can have many limits 
(from zero to 00) as p -+ 0, depending on the method of approaching 
the limit. This pertains also to the volume (_g)Yz = ql q2 q3, with one 
important exception, namely, the transition from a separatrix of the 
BLKh model to a separatrix of singular points of the type <I>'Y yields 

II f·· I Y: LKh a sma mite vo ume (-g) 2 as p -+ O. 
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