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It is shown that, in physical systems which have a vector order parameter cp and are 
invariant under uniform rotations of cp, a hydrodynamic instability causes the longitud­
inal susceptibility to become infinite. Strongly developed fluctuations arise, in which the 
modulus of the vector cp is conserved at each point in space. In principle, these fluctua­
tions prevent us from using the self-consistent field method to describe phenomena be­
low the phase -transition point when cP is sufficiently close to its spontaneous value CPs 
in the uniform medium. A general expression for the longitudinal susceptibility is found. 
A relation is established between the longitudinal and transverse correlators. It is shown 
that the thermodynamic potential <I> is a non-analytic function of cp at the point cp = CPs, 
and its form is found for cp close to CPs. The region of applicability of the Ginzburg­
Landau and Ginzburg-Pitaevskir equations is indicated. 

In isotropic ferromagnets at temperatures below the 
transition point, the transverse magnetic susceptibility 
Xl becomes infinite in zero magnetic field: 

Xl. =m/ h. (1 ) 

Here h is the absolute value of the magnetic field and m 
is the magnetization. The relation (1) follows from the 
fact that m depends only on the magnitude h of the mag­
netic field and not on its direction, while the direction 
of m coincides with the direction of h (see the figure). 
The fact that Xl becomes infinite when h = 0 means that 
a state with h = 0 is unstable against infinitesimal trans­
verse spatially uniform fluctuations oml of the moment. 

In the work of Vaks, Larkin and Pikin UJ , it was shown 
that the longitudinal susceptibility XII = 8m/8h also tends 
to infinity as h - 0, in accordance with the law h-1 / 2 • 

The proof presented inUJ was given for the Heisenberg 
model with long-range interaction. We shall show that 
the divergence of X II to infinity is not associated with a 
specific model and,is a very general consequence of a 
hydrodynamic instability intrinsic to a whole class of 
physical systems. We are referring to systems de­
scribable by a multi-component ordering field CPc/x) 
(u = 1, 2, .... , n). It is assumed that the Hamiltonian of 
the system is invariant under rotations in the n-dimen­
sional space (which are independent of the coordinates 
x in real space). An example is the Heisenberg ferro­
magnet, where the spin S plays the role of cpo Degenerate 
systems include superconductors, where the ordering 
field is the wavefunction ljJ of the superconducting elec­
trons that appears in the Ginzburg-Landau equation, and 
superfluid helium. In the latter case, the ordering field 
is a two-component field: ljJ = ljJl + iljJ2' 

We introduce the n-component field h, assuming the 
energy density of the interaction of the system with the 
field to be -h . cp. In the case of a ferromagnet, this is 
an ordinary magnetic field, while in other cases (super­
fluid liquid, superconductor) it is not physically real­
izable. Such a "field" was introduced by Bogolyubov(2) 
as an auxiliary research tool. For visualizability, in 
the following we shall speak of the moment and magnetic 
field. 

If the field h is equal to zero, the thermodynamiC 
potential <I> of the system depends only on the absolute 
magnitude cp of the vector cp, and not on its direction. A 
change from one direction of cp to another does not re­
quire the surmounting of an energy barrier, as it does 

733 SOy. Phys . .JETP, Vol. 37, No.4, October 1973 

m 

in the case of a non-degenerate system, e.g., the Ising 
ferromagnet. In degenerate systems, long-wavelength 
transverse fluctuations of the moment develop and lead 
to the instability described by formula (1). We shall 
show that such fluctuations are accompanied by a change 
of the longitudinal component of the moment. Although 
the longitudinal fluctuations are considerably weaker than 
the transverse ones, they are sufficiently strong for XII 
to become infinite. 

First we shall consider a system in a field h, with an 
average moment cp that is not equal to its equilibrium 
value. The thermodynamic potential <I> of such a system 
has the form 

11>=/{fjl') -hfjl. (2) 

The equilibrium value of cp is found by minimizing <1>: 

h = 2fjlt'{cp'). (3) 

Small deviations ocp from the equilibrium value of cp 
lead to a change 0<1> of the thermodynamic potential; this 
change can be represented by the positive-definite quad­
ratic form 

6<I> = 1/2X.~-16fjl.6cp~. (4) 

Here X~{3 is the tensor inverse to the susceptibility 
tensor 

We separate the longitudinal and transverse com­
ponents of the tensors: 

X.~ = Xlln.n~ + Xl. (6.~ - n.n~), 
-I 1 1 h (6) 

X.~ =-n.n~+-{/).~-n.n~), n=-h' 
XII Xl. 
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We thereby reduce the quadratic form 0<1> to diagonal 
form: 

1 ( 1 1) bl])=- -bq>.L'+-bq>II' . 
2 X.L XII 

The condition for stability of the state is that the quan­
tities x7 and x"it be positive. It is not difficult to relate 
the susceptibility to the function f appearing in (2): 

We have already cited arguments which entail that 

(8) 

(9) 

Xl » XII at small h. This means that 4(/f" » 2f' and, 
in place of (9), we can write approximately 

(10) 

The inequality Xl » X II' which lies at the basis of the 
calculation, is confirmed by the result. 

We shall consider the change 0<1> of the thermody­
namic potential (2) to greater accuracy: we shall retain 
powers of ocp 1 up to the fourth: 

1 1 bq>' , 
bl])=-bq>.L'+-(bq>II+--=-) . 

2X.L 2XII 2q> (11) 

In the derivation of (11) from (2), the equalities (3), (8) 
and (10) were used. Formula (11) shows that the small­
est increment 6<1> for a given magnitude 6cp 1 is given by 
a fluctuation in which cP does not change in magnitude, 
i.e., 

(12) 

Obviously, the equality (12) will also be fulfilled locally 
in non-uniform fluctuations with long wavelengths. The 
relation (12) is central to our discussions. Its physical 
content consists in the fact that, in long "spin" waves, 
the moment rotates as a whole without changing its 
length, as was assumed in the derivation of the equation 
of Landau and Lifshitz (cf., e.g.,c3]). Such a description 
has been called a hydrodynamic description (4] • 

The transverse fluctuations in the hydrodynamic ap­
proximation are described by the thermodynamic 
potential 

(13) 

in which the lowest power of the gradient is taken into 
account. A correction of higher order in ocp 1 contains 
also higher powers of the gradient. In fact, the modulus 
cP is assumed unchanged and the energy can depend only 
on the angles between the vectors cp at different points 
in space. In other words, only the derivatives of the 
vectors ·characterizing the direction of cp, and not these 
vectors themselves, can appear in the expression for 
0<1>1. Therefore, with asymptotic exactness, the long­
wavelength fluctuations do not interact. The constant c 
has the meaning of the "stiffness" of the system on a 
non-uniform rotation of cp. This stiffness arises only in 
the ordered phase. In the disordered phase, the direc­
tions of the ordering field cp at points separated by a 
distance greater than the correlation length are statis­
tically independent. Therefore, fixing certain definite 
directions at these points does not change the energy 
of the system. In the case of a superfluid liquid, cpc2 

coincides, to within a factor, with the density Ps of the 
superfluid component. 

The hydrodynamic approximation (13) makes it pos-
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sible to obtain the correlator of the transverse fluctua­
tions: 

<bq>.La(x)bq>H(X') > = (lla~-nan~)G.L(x,x'), 

GJ.(x,x')= T exp(-xlx-x'l) , x,=_l_=..!!.., 
4nc Ix -x'i CX.L q>c 

or, in the Fourier representation, 

T 1 
GJ.(q)=---. 

c q'+x' 

(14) 

(15) 

(16) 

The hydrodynamic approximation for G 1 (q) is well known 
and has been used repeatedly both in concrete calcu­
lations [5] and in the study of general questions (H] • 

Using the prinCiple (12) of conservation of the modulus, 
we can calculate the longitudinal susceptibility. Namely, 

il (1lq>1I) 1 a 
XII =-a-h-= - 2q>a/i<Ilq>.L'>· (17) 

Differentiating (15) with respect to h and then putting 
x = x' , we find 

XII = T / Bn(q>c)'/'l'h. (18) 

The result obtained is of a very general character and is 
valid for any degenerate system in three-dimensional 
space for suffiCiently small h (K~ « 1, where ~ is the 
"interatomic" distance). It follows from (18) and (7) 
that for h = 0 the degenerate system is in neutral equi­
librium not only with respect to transverse but also with 
respect to longitudinal fluctuations of the moment. From 
(18), we find by means of a simple integration of equa­
tion of state in the hydrodynamic approximation: 

h=A(q>-q>.)', A-'=T'/16n'(q>.c)', q>~q>.. (19) 

where CPs is the spontaneous moment. One further in­
tegration makes it possible to obtain the form of the 
function f(cp2) -the thermodynamic potential in the var­
iables cp (cf. formula (2)): 

A 
!(q>')=3(q>-q>,)'· (20) 

We cannot pass through into the region cp < CPs while 
considering only uniform ordering, since any non-zero 
field h creates cp> CPs. On the other hand, the function 
f(cp2) is defined also for cp < cps. It is immediately clear 
that the function f(cp2) is non-analytic at the point CPs. 
In fact, at this point f(cp2) should have a minimum, 
whereas the analytic continuation of f(cp2) from the side 
cp > CPs does not. 

In order to elucidate how the non-analyticity arises 
and to find f(cp2) for cp < CPs, we introduce small aniso­
tropy into the thermodynamic potential (2): 

1 ' 
1])=!(q>')-hq>+2 L>aq>a'. 

With no loss of generality we can put Al = O. We shall 
assume that A=' A2 = A3 > O. We direct the magnetic field 
along the axis 1. Then a small uniform change ocp 1 
causes a change of the potential <1>: 

1 1 (h ) 1l1])J.=f'(q>·)Ilq>J.'+2A1lq>J.'=Z -;p+A. IlcpJ.'. 

Going over to the variable cp, according to (19) we find 

1 A ( ) , 
01]) =-[ q>-<p +1..]. , J. 2 q> uq>.L . 

Thus, the quantity K occurring in (15) is an analytic 
function of cp at the point CPs for all A > 0: 

x=(A(q>;q>,), +1..)"', 
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and only in the limit A = 0 does non-analyticity appear. 
It is precisely this non-analyticity which appeared in the 
discussion of formula (20). N on-analyticities of this type 
arise at phase -transition points in the limit of infinite 
volume. The reason why <I> was found to be a non-analytic 
function of cP far from the critical point is that the line 
cP = CPs (h = 0) is simultaneously a phase-separation, 
curve (a line of first-order phase transitions) and the 
boundary of stability of the system (the spinodal). For 
non-degenerate systems, these curves have only one 
common point-the critical point. We can now formally 
determine XII when cP < CPs too: 

T 1 T 
XII = ---lim - = -:c--:-~;-:-;:--,-----:-

8n(<p.e)' 1~. x 8n(<p.e)'/'A'" 1<p-<p.1 . (21) 

U sing the relation (10), we find 
j(<p') = IfgA,<p_<p.,'. (22) 

As we should expect, the thermodynamiC potential <I> 
has a minimum at cP = CPs and is non-analytic at this 
point. We stress that values cP < CPs do not correspond 
to stable uniform states. Formally, this is manifested 
in the fact that the absolute magnitude of h, calculated 
by means of (22), is found to be negative in this region. 

We shall consider the correlator of the longitudinal 
fluctuations 

(23) 

This quantity is of interest in its own right, inasmuch 
as it enters in the full correlator: 

G.p(X, x') "" «B<p.(x)B<pp(x'»> (24) 
= (B.p-n.np)G.c(x, x') +n.n,GII(x, x'). 

We note that, for h - 0 above the transition point, Gil 
coincides with Gl, and the correlator GII(X, x') tends to 
a definite limit that is independent of the direction of h. 
Below the transition point, Gil t Gl even when h - 0, 
since the spontaneous moment "remembers" the direc­
tion of h. The appearance of two independent correlators 
in the less symmetric phase is a characteristic feature 
of the theory of degenerate systems. The description by 
means of the two Green functions was first introduced 
by Belyaev C5l in the theory of the Bose liquid and by 
Gor'k6v[71 in the theory of superconductivity. 

The prinCiple (12) of the conservation of the modulus 
cP makes it possible to establish a relation between the 
correlators of the longitudinal and transverse fluctuations 
at large distances: 

1 
Gil (x, x') "" «B<PII (X)cS<P1I (x'»> = 4<p,' «B<pJ.'(x) B<pJ.'(x'»). (25) 

As was remarked in the discussion of formula (13), the 
transverse fluctuations in the hydrodynamic limit do not 
interact. This enables us to represent the average of 
the product of four quantities in the form of a sum of 
products of pair averages: 

«B<pJ."(x) B<pj.p' (x'») = 2«B<pJ.' (x) B<pJ.p(x') »'. (26) 

Using formula (15) for Gl and going over to the Fourier 
representation, we find 

T' 1 q 
GII (q)=-4 ( )' -arctg-2 . (27) n <p.e q x 

We change from the variable h to the variable cp: 

x'=A(<p-<p.)'f<p,e. (28) 

The function GII(q) is not an analytic function of cp at the 
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point cp = CPs for any q, It is possible to obtain the ex­
pression (21) for the longitudinal susceptibility again, 
using the relation 

1 
XII =-limGII(q)· 

T q~O 

Thus, in any degenerate system, the susceptibility XII 
should be infinite at h = O. This requirement is not 
fulfilled in the Ginzburg-Landau (GL) theory[71. The GL 
theory starts from an assumption about the form of the 
density of the thermodynamic potential <1>: 

<1>= lha,,,,,' + l/.b'''''' + l/2e, V",'' -'f,(h¢' + h'¢). (29) 

The las"t term corresponds to the conventional "mag­
netic" field, and .we shall put h = 0 in the final results. 

By the usual method, we find 

rJI _ (01¢1) _ 
XII - aThT T.P - -::1 hC":"/¢-cIC":"+-;2:":"b7"1 ¢-;-I::-' 

1 (30) 

In particular, for h = 0, 

: x{JI = -1 f 2a *- "". (31) 

The reason for the contradiction lies in the fundamental 
premises of the self-consistent field method: the fluc­
tuations are assumed to be negligibly small. At the same 
time, it is preCisely the fluctuations which lead to in­
stability of the state with h = 0, Le., lj! = lj!s. We em­
phasize again that the above refers not to a small region 
about the transition point, but to the whole region T < Tc. 
Since for superconductors h = 0, the fluctuations when 
lj! = lj!s cannot be assumed small, Of course, Coulomb 
forces suppress the fluctuations, as usual. But even 
without an analysis of the role of the Coulomb forces, it 
can be shown that the application of the GL equations 
for superconductors is justified. 

The GL theory is applicable for sufficiently large 
11lj!1 -lj!sl, greater than the amplitude of the fluctuations, 
Comparing xyL with the quantity (18) due to the fluctua­
tions, we find the condition for the applicability of the 
GL theory: 

II¢I-¢,I (Tb)' 
--->; . 

¢. (4n) 'laic' 
(32) 

As Ginzburg[sl has shown, the dimensionless parameter 
which has appeared in the right-hand side of (32) should 
be small in the region of applicability of the self-con­
sistent field method. It is useful to note that this quan­
tity can be written in the form 

(Tb)' Gi 
TtM"=-:;- _I T-T, 1 

't- --T,- , (33) 

where Gi is the dimensionless Ginzburg number char­
acterizing the given substance, The condition for the 
existence of a region of applicability of the Landau theory 
has the form Gi « 1. For superconductors, 
Gi ~ 104(Tc/E F)4 ~ 10-12 • 

In real experiments, spatial or temporal non­
uniformities of cp' always exist. For example, in bulk 
superconductors in a real magnetic field H, the value of 
cp is non-uniform in the surface layer because of the 
Meissner effect. The unusually small value of Gi for a 
superconductor leads to the result that the criterion (32) 
is practically always fulfilled. Thus, the GL equations 
can be applied with confidence to the solution of problems 
in the theory of superconductivity . 

For superfluid helium, Gi is not a small quantity. 
Therefore, the analog of the GL equations for superfluid 
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helium-the Ginzberg-Pitaevskir equations [9] -have no 
region of applicability. Attempts have been undertaken [10] 

to improve the theory in the spirit of the scaling hy­
pothesis-assuming the coefficients a, band c to be 
singular functions of T. As was shown above (formula 
(14)), such refinements are unsound. 

We are grateful to A. I. Larkin, A. M. Polyakov and 
G. M. Eliashberg for useful discussions. 

Note added in proof (March 2, 1973). The expression (18) for the 
longitudinal susceptibility has been obtained independently by A. A. 
Migdal and A. M. Polyakov (private communication) by quantum field 
theory methods. 
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