
Critical phenomena in a liquid in a strong electric field 

V. L. Pokrovskil and S. V. Fomichev 
L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted November 20, 1972) 
Zh. Eksp. Tear. Fiz. 64, 1440-1444 (April 1973) 

Critical phenomena in liquids in a strong electric field are investigated. It is shown that 
the behavior of various thermodynamic quantities is determined by a geometriC factor 
which depends on the shape of the surface of the system. 

An external electric field E polarizes the particles 
of a gas. The oriented dipoles interact with one another. 
A dipole-dipole interaction of the density fluctuations 
develops. These long-range forces can significantly 
change the behavior of the liquid near the critical point, 
since they inhibit fluctuations and introduce anisotropy. 
Specific effects of the long-range forces also appear. 
In the present article, all these effects are considered 
in the homogeneous phase region. 

To simplify the Situation, we shall not consider fluc­
tuations of the electric field E, assuming it to be homo­
geneous and equal to the field outside the sample. This 
is valid if at the critical point 

8 - 1 ... 4nxp, < 1 (1 ) 

(E is the static dielectric constant, X the electric 
susceptibility of the individual particle, Pc the critical 
density). The inequality (1) is satisfied, for many real 
liquids. 

In the spirit of the Landau phase transition theory 
(see[l]), we write down the thermodynamic potential <P 
as a functional of the density p (r ): 

I [ a b Ed(r)] 
III = 111,+ T(p-p')'+2"(VP)'--2- p (r) d'r 

+ 1 IS ( ) ( )d(r,)d(r,)-3(d,n,,) (d,nl2) d' d' + g I ( _ )'d' 2 p r, p r, Ir, _ r,l' r, r, 4! p p, r, 

(2) 

where p(r) is the local denSity, d(r) the dipole moment 
for a single particle, and 

T-T, T, , 
a---+-, (p-p,). 

p, p, 

In the present work, we shall be interested chiefly in 
the qualitative change of the character of the critical 
phenomena in an electric field, and we shall therefore 
at first limit ourselves to the simplified theory of non­
interacting fluctuations, g = O. The dipole moment per 
single particle is equal to 

d(r) =xE,' 

and (2) can be rewritten in the form 

III = Ill. + J[ ~ (p-p,)'+ ~ (Vp)'- x~' p ]d'r 

+ + SS p(r,)p(r,) U(r,':" r,)d'r, d'r" 

U(r) = X'E'r-'[ 1-3 cos' <): (E, r) J. 

Inasmuch as <P depends quadratically on the denSity 
fluctuations in the approximation used, one can calcu­
late the density correlation function in the Fourier 
representation by the standard technique: 

G(k)=...!.( ) = T p-.p. -a"""'+;-b::-:"'c:-:"+-::U==-('"'"k"-) ' 

U(k) =x'E'(4n cos' e -4n/3), 
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(3 ) 

(4) 

(5) 

(6) 

where () is the angle between k and E, which is inde­
terminate for k = O. 

We take particular note of the value 

U(k = 0) = x'E'(4nN, - 4n / 3), (7) 

where the field E is directed along the z axis and Nz 
is the demagnetization factor in the direction of the z 
axis: 

_ 1 I zdxdy 
N'--4 --,-. 

n. r 
(8) 

Integration in (8) is carried out over the surface of the 
liquid. 

Substituting (6) and (7) in (5), we find: 

1 
G (k) = ""'a';-+:--:-Cbk:-::'-:+-4;-n-x:-:' E='k:-,::-:' j-:-:-k' ' 

1 
G(k=O)= , 4 'E'N' 

a + nx ' 

(9) 

(10) 

The difference between a and a' is essentially con­
nected with the renormalization of the chemical poten­
tial Oil = -XE2/2 due to interaction of the dipoles with 
the mean field. The theoretical consequences of this 
renormalization were considered by Voronel' and Giter­
man.[2] Debye and Kleboth[3] observed the decrease of 
Tc in an electric field experimentally. The self-con­
sistent field theory replaces the quantity a in Eqs. (9), 
(10) with the quantity a' = a + g cp Z; 2, where cp is found 
from the equation 

alp + '/,glp' = OIL. (11) 

The density correlation function (10) is identical in 
form with the correlation function of the dipole moments 
in uniaxial ferroelectrics in the region of applicability 
of the Landau theory Y, 5] However, the phYSical situa­
tion is quite different, since the anisotropy parameter 
in the case conSidered is the electric field, which can 
be changed arbitrarily. In coordinate space the corre­
lation function G( r) is also an anisotropic function of 
the angle l/J between the vectors rand E. In particular, 
for l/J = Till. right at the critical point T = T~, P = p~ 
(j) is the mean density), we have 

G(r)=_1_~exp{_ (...':.)'''XEr}. 
4nbp, r b 

In the direction parallel to the field E, at distances 
(r/rc)2» 4Tix 2 E 2/a', where rc = (b;a')l/z is the cor­
relation radius in the absence of field, we have for G(r) 

2X'E' 1 
G(r)=---

Pca'2 r3 

instead of the exponential decay from the Ornstein­
Zernike theory. Such a slow decay of the correlation 
function is a consequence of the long-range dipole­
dipole interaction and leads to a dependence of the 
behavior of the various thermodynamic quantities on 
the shape of the surface near the critical point. 

Copyright © 1974 The American Institute of Physics 731 



In the range of fields which will be defined below 
(see (20)), departures from Pascal's law are insignifi­
cant (the change in the pressure is of the order of 
PcXE2/2) and therefore the concept of the volume com­
pressibility of the liquid has meaning. 

Near the critical point we have: 

- ~ (~) =~(~) =~ L, «p(r)-p,) (p(r')-p,». (12) ap T va", T,P T .. 

It is not obvious beforehalld that the volume compressi­
bility will not depend on the choice of the point r in (12) 
in the presence of long-range dipole-dipole interaction. 
In order to show this, we write down the equation which 
the correlation function 

G(r, r') = V«p(r) - p,) (p(r') - Po) > 1 T. 

satisfies. It has the form 

aG(r, r')- M,G(r, r')+ S G(r" r') U(r - r,)d'r, = V6(r - r'), (13) 

Integrating (13) over r', we obtain the equation 

aK(r) + S K(r,) U(r - r,)d'r, - b S !l,G (r, r')d'r' = 1 (14) 

for the quantity 

K(r)= : L,G(r,r'). 

" 
The second integral in (14) has the order 1/L2, 

where L is a characteristic dimension of the system 
and vanishes in the limit L ~ 00. By virtue of the fact 
that 

S U(r- r,)d'r, = const = U(k = 0), 

Eq. (14) has a solution of the form 

K(r) = const = 11 [a+ U(O)] 

and we get the following expression for the volume com­
pressibility: 

p' ( av) 1 _ _ -- - = -G(k-O). 
V ap T a' + 4nx2E2N, 

(15 ) 

At the critical point itself, the compressibility has a 
finite value, which depends on the geometry of the sys­
tem. 

The diffusion coefficient of the dissolved material in 
the solution near the critical mixing point is connected 
with the denSity correlation function in the following 
way:[6) 

D=~SG(r)F(r)d'r/SG(r)d'r= 2T 1 SG(k)~~, 
3 3'] G(k=O) k' (2n)' 

(16) 

where F(r) = T/21T1jr and lj is the viscosity of the sol­
vent. Using (9), (10),.we find 

- -
( fa' 2fnXE) 2YnxE 

D=Do -_--+N,____='"" arcsh--_-, 
UnXE l'a' l'a' 

(17) 

where Do = T(a/b)1/2/61T1j is the diffusion coefficient in 
the absence of field. 

In an electric field, the diffusion coefficient increases 
and no longer goes to zero at the critical point (as it 
does in the absence of field), but has a logarithmic singu-
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larity there. The extinction coefficient[7) for scattering 
of natural light is determined by the density correlation 
function G( q) for q '" 0 (q = k - k' is the scattering 
vector) and, near the critical point in the electric field, 
has the form 

dh = T;w' ('!!")' {a' + 2 ~(1- cos tt) + 4nx'E' [sin.!. cos e 
32n'c' ap T c' 2 

(18) 

where J. is the angle of scattering between the vectors 
k and k' and (J is the angle between the direction of the 
incident wave (vector k) and the vector E. Anisotropy 
of the critical opalescence with respect to the angle cp 
arises at high fields, when the angle (J is not equal to 
zero. For (; = 0, Eq. (18) is Simplified: 

T,w' (ae)' (1 +cos'tt)sinttdttdq> (19) 
dh= 32n'c' ap Ta'+2[bw2/c'+nx'E'](1-costt)' 

It is seen from (18), (19) that suppression of critical 
opalescence takes place in an electric field, especially 
for low frequencies w ;S CXE/rc fa!. 

The fields at which a change begins in the critical 
behavior of the quantities mentioned are determined 
from the relation 

4nx'E' / a'-1 

and have the order 
T T' " ' 'I. 

E_(106 --107 ){ ~:' +("~,P,)} [V/cml]' 

(20) 

These fields are located on the boundary of minimal 
breakdown fields for the corresponding liquids, so that 
observation of these phenomena is possible in principle. 

The interaction of fluctuations for small g can be 
taken into account in the same way as was done in the 
work of Larkin and Khmel'nitskiI [5]. Summation of 
parquet diagrams leads in the first place to a logarith­
mic renormalization of the quantity a' in Eqs. (15), (17), 
(18). Moreover, in Eq. (18), the dependence on frequency 
changes but slightly. However, all the qualitative con­
clusions remain in force. 
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