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It is proved by means of a theorem of Bogolyubov that the magnetic ("phonon", electron, 
.•. ) part of the free energy F of an amorphous system is always less than or equal to 
the free energy Fo of the corresponding "crystal" described by a Hamiltonian averaged 
over the structure, Le., ~F = F - Fo ~ O. Estimates are given for I ~FI and the qual­
itative behavior of the variations of the thermodynamic quantities as a result of fluctua­
tions of the structure is elucidated. 

1. INTRODUCTION 

The physical properties of amorphous systems have 
been studied more and more intensively in the last 10-15 
15 years. Attention has been given primarily to the 
electrical properties, while the magnetic properties have 
not been the subject of particular interest. But there 
is no doubt that the magnetic properties of amorphous 
systems deserve more attention, since in many cases 
they are closely connected with the electrical properties 
and with the concrete geometrical and chemical struc­
tures of the amorphous systems. 

The following questions are of fundamental signif­
icance: 1) Can long-range magnetic order exist in 
amorphous systems, Le., without long-range structural 
order? 2) If yes, then under what conditions? 3) How 
are the magnetic properties in amorphous systems 
changed in comparison with crystals? 

The first question was first formulated theoretically 
by Gubanov as long ago as 1960[1J. He determined the 
Curie temperature within the framework of a quasi­
chemical approximation for the Ising model with spin 
S = 1/2 with the exchange integral depending on distance, 
and arrived at the conclusion that amorphous Ising sys­
terns can have a finite Curie temperature. The author 
of the present article pointed out the importance of fluc­
tuations of the structure for the magnetic properties of 
amorphous ferromagnets [2J . 

From 1964 onwards, a number of amorphous ferro­
magnets have been found and investigated experimentally. 
They were prepared in the form of films of thickness 
400-1000 A by means of deposition on to a very cold 
substrate, films of thickness 50 ).lm - 0.2 mm by rapid 
cooling of the melt, and films of thickness up to 0.2 mm 
by electrolytic methods. Measurements have been made 
of, e.g., the temperature dependence of the spontaneous 
magnetization [3~J , the coercive force [7 ,8J , the ferromag­
netic resonance (FMR) spectra[9,10J , the internal mag­
netic fields by means of the Mossbauer effect [3 ,11 ,12J, and 
the magnetic domain structure by means of Lorentz 
microscopy[13J (see also the subsequent experimental 
papers [14-19J). The existence of a ferromagnetic or 
ferromagnet-like phase in amorphous systems follows 
unambiguously from these experiments. 

The absence of crystalline structure in the samples 
investigated was proved by means of X-ray and electron 
diffraction. Highly diffuse diffraction patterns, which are 
also characteristic of liquids, were obtained. For ex­
ample, from the diffraction patterns for the amorphous 
ferromagnetic alloy with composition Fe80P12.SC705 the 
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mean distance between nearest neighbors is found to be 
2.6 A, and the standard deviation of this distance is 0.5 
A [3J. It can be concluded from this that, in the amorphous 
ferromagnets investigated, we can exclude with certainty 
the existence of long-range crystalline order and, in the 
majority of cases, we can also exclude Short-range 
crystalline order with high probability. 

An interesting review of experiments on amorphous 
ferromagnets with compositions Fe-Pd-Si, Fe-Pd-P, 
Fe-P-C, Co-Au, Co-P, Co-Pd-Si and Ni has been 
given by HasegawaC20J (cf. als0[12J and[31J). Numerous 
measurements have also been performed of the sus­
ceptibili~ X in liquid transition metals and their alloys 
(cf., e.g.,C21-24l); the curves of X(T) behave like those 
for typical ferro-or antiferromagnets in the paramag­
netic regime. Busch and GuentherodtC2SJ have reported 
that they have observed ferromagnetism in the liquid 
alloy Co-Au close to the eutectic composition. However, 
discussion on this question still continues (cf. e.g.,C26,27]). 

Amorphous antiferromagnets have recently been found 
experimentally[28,29J (cf. also C3OJ ). For these amorphous 
antiferromagnets, of course, we cannot introduce geo­
metrically completely defined magnetic sublattices in 
the customary way. However, in these also, an anti­
parallel arrangement of the spins of "nearest neighbors" 
is thermodynamically stable. The "mixed" magnets or 
"amorphous ferrimagnets" [5 ,6 ,31J , in which ferro- or 
antiferromagnetic coupling or (Pauli) paramagnetism is 
locally stable, depending on the structure, are a more 
general case. In many respects, the physical situation 
in mixed magnets is reminiscent of the "spin glasses" 
(cf., e.g., [43J). 

If we also take into account the magnetic anisotropy, 
which changes in direction and magnitude depending on 
the local structure, the diversity of the possible mag­
netic structures is further increased. The magnetic 
structure of such systems can be described consistently 
by determining not only the total magnetization but also 
the spatial correlations of the latter, e.g., (mi), (miIDj), 
; .. , where mi is the "spontaneous magnetization" of 
the atom at site ri, and the angular brackets denote 
averaging over the structure. 

Up to now, theoretical studies of amorphous ferro­
and antiferromagnets have been based on the Heisenberg 
and Ising models[1,2,31-39J . The structural model most 
often applied is the so-called stochastic "lattice" model, 
in which the spins are situated at lattice sites but the 
exchange integrals fluctuate stochastically[32-38J. The 
quantities primarily determined are the Curie temper­
ature Tc, the magnetization a and susceptibility X in 
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different approximations. In the molecular field approx­
imation[2J, it was found that fluctuations of the exchange 
integrals lead to a reduction of the magnetization for 
0< T < Tc , whereas Tc and X do not change1). The re­
duction of a has been confirmed experimentally [3 ,5 ,12J , 
and also in other approximations. By means of a Green 
function method, Montgomery et al. [3~J obtained a re­
duction of a and Tc as a result of fluctuations of the ex­
change integrals in the Tyablikov approximation. The 
author[35J, starting from simple thermodynamic pertur­
bation theory for the ISing model with spin S = 1/2, ob­
tained a decrease of a and X. By means of a hi§,h-tem­
perature expansion, Schreiber and the author[36 , obtained 
a decrease of T c and X for the Heisenberg model with 
atomic spin S = 1/2, 1, 5/2,00. For the Ising model, for 
S = 1/2 a decrease of X resulted at all temperatures T, 
and for S 2': 1 a somewhat unexpected increase of X re­
sulted at hiNh temperatures T[37l . It was proposed pre­
viously[34,3 that, when sufficient account is taken of the 
short-range magnetic order, fluctuations of the exchange 
integrals always lead to a lowering of the Curie temper­
ature. All the results existing at present confirm this 
hypothesis. 

At the present time, only the first attempts to de­
termine the Neel temperature and the susceptibility of 
amorphous antiferromagnets have been made [28 ,38 ,39J. 

In the present paper, an account is given of the ther­
modynamics of amorphous magnets assuming the geo­
metrical and chemical structures to be fixed. Attention 
is paid principally to the role of fluctuations of the 
structure. It is found that Bogolubov's theorem for the 
free energy makes it possible to determine qualitatively, 
in a simple way, the effect of these fluctuations on the 
free energy. By means of the same theorem, we have 
obtained inequalities for the free energies in the mole­
cular field approximation for the Ising and Heisenberg 
models. These inequalities are valid for both crystalline 
and amorphous magnets. We then give the boundary 
conditions for the free energy at temperatures T - 00 
and T = O. It is found that structure fluctuations do not 
change the magnetic part of the free energy at suffic­
iently high temperatures. 

If all the exchange integrals are positive, then struc­
ture fluctuations do not change the free energy at T = 0 
either. If a proportion of the exchange integrals is neg­
ative (mixed ferromagnet), the structure fluctuations 
lead to a lowering of the free energy at T = 0 and to a 
reduction of the energy of the ground state of the mag­
netic system. 

Below we give a qualitative description of the behavior 
of the free energy change ~F resulting from structure 
fluctuations, and of the corresponding entropy change 
~S, internal energy change ~U, and speCific heat change 
~C, as functions of the temperature. Knowing these 
quantities, we can predict qualitatively the changes of the 
spontaneous magnetization (~M), of the effective ex­
change integral (~Ieff), of the density of states of the 
magnetic system and of the effective rigidity constant, 
arising as a result of the structure fluctuations. Inves­
tigating the change of the thermodynamic quantities on 
going from the effective field approximation to the Ising 
model and from the Ising model to the Heisenberg model, 
we find a relatively close analog with the transitions 
from the corresponding "crystal" to the amorphous 
magnet. An explanation of this analogy is given, and on 
the basis of this analogy a simple physical picture for 
amorphous magnets 1s derived. 
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2. STATISTICS AND THERMODYNAMICS OF 
AMORPHOUS MAGNETIC SYSTEMS 

To be specific, we start from the Heisenberg model 
with the Hamiltonian 

:;c = - L/rSi8j - ftBgH.E 8;" 
i,i 

or from the ISing model, in which the slj1in operators Si 
must be replaced by the z-components Siz. Here Iij are 
the exchange integrals, depending only on the distance 
between neighboring spins, g is the Lande factor, f..i.B 
is the Bohr magneton and H is the external magnetic 
field, directed along the z-axis. The Hamiltonian (1), 
unlike that of the crystal, is no longer invariant under 
translations. Even when the spins are well localized, the 
Hamiltonian (1) for amorphous systems is an approx­
imation, since the exchange integrals Iij depend in the 
general case not only on the positions of the two spins 
i and j but also on their specific environment[31J. 

In the following we shall assume a rigid spatial ar­
rangement of all the atoms or ions (a fixed structure). 
With an arbitrary fixed structure, we obtain for the mag­
netic part of the free energy 

1 
F(T,H, R) = -13ln Sp exp[ - ~:;C(R)], (2) 

where R = (R1, R2, ..• , RN) defines the positions of all N 
localized spins. The trace in (2) is taken only over the 
spin variables. 

Amorphous systems are not found in thermodynamic 
equilibrium in the true sense, but only in a metastable 
state. We apply equilibrium statistics to the magnetic 
subsystem with the structure fixed, regarding the latter 
as a supplementary external condition. True, these 
external conditions differ from the usual ones, such as 
fixed volume of pressure, because they cannot be altered 
reversibly by means of a macroscopic perturbation. 
Nevertheless, this does not prevent the application of 
equilibrium statistics and thermodynamics to the mag­
netic system, if we regard all the exchange integrals Iij 
and the atomic spins Si, which can also fluctuate, as 
"external" parameters. In particular, we can use all 
three laws of thermodynamics. 

In order to obtain the macroscopic thermodynamic 
properties of an amorphous system, it is necessary to 
average Eq. (2) over the structure 

1 
F(T,H)= (F(T,H,R) = - ~ <lnSp exp[ - ~:;C(R) p. (3) 

This averaging can be performed, e.g., by means of the 
distribution function FN(R) of the atoms, which is as­
sumed to be independent of the temperature and of other 
parameters (fixed structure). 

3. BOGOl YUBOV'S THEOREM FOR AMORPHOUS 
SYSTEMS 

We begin with the case of the so-called "lattice" 
model for an amorphous magnet[32-37l, in which all the 
spins are identical and positioned at the sites of a reg­
ular lattice while the exchange integrals fluctuate arb­
itrarily. For simplicity, we shall consider only cubic 
lattices, and take into account the exchange interaction 
between nearest neighbors only. Under these conditions, 
the Hamiltonian can be written in the form 

(4) 
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deo = - <I> L SiS; - /lBgH ~S;', (5) 
i,J 

de, = - ~Mi;§'§i. (6) 
'.' 

where deo describes the corresponding crystal (pseudo­
crystal), del contains all the fluctuations of the exchange 
integrals-the structure fluctuations characteristic of 
amorphous systems, and the summation over i and j in 
(5) runs over nearest neighbors. One of the central prob­
lems, therefore, is to establish the influence of the fluc­
tuations on the physical properties. 

For arbitrary self-adjoint operators dCo and dill' 
Bogolyubov's theorem for the free energy states [40) : 

F (:Je}";;; F (.1to) + Sp1f,e-ll:tl'jSp e-~'" 0= F (·1to) + Je" (7) 

where the line denotes averaging over the state with 
dCa-over the regular crystal with the average exchange 
integral (I). Substituting the operator (4) into this in­
equality and taking the definitions (5) and (6) into account, 
we find 

F,,(de) .:;; F (deo) + i61. ". 

The index st indicates the dependence on the structure. 

Since the inequality (7) is fulfilled for any structure 
(any Iij = (I) + IlIij), it is also conserved after averaging 
over the structure: 

F(de}~ <F,,(de} >.:;; F(deo}+ <J6',.,,>. 

For the operator (6), we have 

- /" -~" " -. ~ (.1t, . ,,) = - "L.! !lIuS, S; ) = - i...J <M;;) S, S; = 0, 
i,j ij 

since the correlation function Si . Sj does not depend 
on the structure and is determined entirely by:l6'o 

(8) 

Thus, Bogolyubov's theorem takes the simple form[4l): 

F ~ F(de} .:;; F(deo} "'" Fo, !IF ~ F - Fo':;; o. (9) 

If we write the Hamiltonian in the form 

de = <de> + t-.de 

and choose deo = t;;c) and iff! = Ilde, we again obtain the 
inequality (9), since 

(t-.de> = <t-.de> = o. 

(10) 

The latter assumption is true, since the operations of 
averaging over the structure and over deo (the line!) 
commute. The inequality (9), together with the definitions 
(10) and (3), is the most general form of Bogolyubov's 
theorem for amorphous systems, or structurally dis­
ordered systems in general, when a fixed structure is 
assumed. 

Bogolyubov's theorem can be formulated in the follow­
ing way: structure fluctuations that are completely con­
tained in the Hamiltonian (10) or. (6) always lead to a 
decrease of the free energy of the magnetic system or 
at least do not change it. We emphasize that Bogolyubov's 
theorem in the form (9) is fulfilled for any structure 
fluctuations, including fluc tuations of the atomic spin, 
for the Heisenberg, Ising and X-Y models for any 
dimensionality. Another important point is that the ex­
change integrals can change sign, so that (9) is also ful­
filled for ferro-, antiferro- and mixed magnets. Clearly, 
it is also applicable for disordered and amorphous alloys. 
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4. COMPARISON OF THE FREE ENERGIES FOR 
THE ISING AND HEISENBERG MODELS AND 
IN THE MOLECULAR FIELD APPROXIMATION 

Bogolyubov's theorem (7) makes it possible to com­
pare the free energies for the Ising model and in the 
molecular field approximation, and also to compare 
those for the Heisenberg and ISing models. If we write 
the Hamiltonian in the form 

:Je, = - ~Ii; (8;' - S;') s,z, 
i,j 

(11) 

where §~ denotes the time-averaged value of spin j, it 
can be e1asily seen that dCl = O. Therefore, it follows 
from Bogolyubov's theorem that 

(12) 

i.e., the free energy for the ISing model is always less 
than or equal to the free energy for the molecular field 
approximation. 

Analogously, we obtain 

(13) 

where FH denotes the free energy for the Heisenberg 
model. The inequalities (12) and (13) are fulfilled for any 
dimensionality and any atomic spin, for both crystalline 
and any amorphous magnets. 

5. ESTIMATE FOR I~FI 

For any self-adjoint operators A and B, we can easily 
prove the inequality (cf., e.g., [42)) 

lIn Sp eA - In Sp eHI .:;; IIA - BII, (14) 

where IIA-BII denotes limsup(A-B). If we choose 
A = - {3de and B = - {3J'€o, and multiply the inequality (14) 
by 1/{3, we obtain 

IF.,(de} -F(deo} I.:;; llde -deoll. 

Taking into account that 

I <F., (de) > -F(deo} I.:;; <IF,,(de} -F(deo} I>, 

and using also the definitions (10) and (3), we obtain 

It-.FI.:;; <1It-.dell>. (15) 

This inequality is again fulfilled for amorphous ferro-, 
antiferro-, para- and mixed magnets of arbitrary 
dimensionality. For example, in the framework of the 
"lattice" model with' exchange interaction between near­
est neighbors, we obtain 

I!lFI':;;NzS'<IM"I>, 

where z is the number of nearest neighbors. 

We note further that, for 

also, we can obtain estimates which follow from the 
positivity of the entropy S = So + IlS 2: 0 and of the 
specific heat C = Co + IlC ~ 0, and also from the fact 
that the entropy per spin is finite. 
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6. FREE ENERGY FOR T ..... 00 AND T = 0 

It can be proved easily by means of the high-temper­
ature expansion that 

I1.F(T, H) ~ 0, F" ~ F, ~ F" npH T -+ 00. (16) 

The asymptotic relations (16) are ful!illed for both 
crystalline and amorphous magnets. The first of them 
shows that, at sufficiently high T, all the thermodynamic 
quantities of an amorphous system approach those of 
the corresponding "crystaL" This justifies, formally 
and practically, the introduction of the corresponding 
"crystal" described by the Hamiltonian «(/6). 

We now consider the case T = o. 
Since at T = 0 the changes IlF and IlU of the free and 

internal energies coincide, it follows from Bogolyubov's 
theorem (9) that 

(/\(/6)" ~ /\u ~ /\F,,;;;, 0 for T ~ 0, (17) 

(18) 

where the index gr denotes the ground state. The inequal­
ity (18) shows that the ground-state energy of an amor­
phous system is always less than or equal to that of the 
corresponding "crystal." It is valid in the same bro'ad 
region as Bogolyubov's theorem itself. 

If all the exchange integrals Iij are positive, then 
at T = 0 all the spins are fully parallel and the relations 
(17) and (18) become equalities. This is also valid when 
the atomic spin fluctuates2 ). If negative exchange inte­
grals are also present, as in "mixed" magnets, we must 
write the inequality sign in (17) and (18), as is com­
pletely unders~andable physically. 

7. CONSEQUENCES OF BOGOl YUBOV'S 
THEOREM 

In this section, we shall use Bogolyubov's theorem to 
establish the qualitative effect of the structure fluctua­
tions on the thermodynamic characteristics of the magnet. 

We first assume that all the exchange integrals Iij 
are positive. Then the simplest dependence of IlF on T 
that satisfies the Bogolyubov equality, the limiting value 
(16) for T - 00 and the relation 

I1.U~I1.F~O for T~O (19) 

corresponds to a curve with one minimum (Fig. 1)3) 

The corresponding curves for the entropy IlS and the 
specific heat are also depicted in Fig. 1. Thus, structure 
fluctuations lead at low temperatures to an increase of 
the entropy, internal energy and specific heat, and at 
high temperatures to a decrease of the entropy and in­
ternal energy and to an increase of the specific heat. 

LIS 
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FIG. I. Qualitative fonn of the 
curves of the temperature dependences 
of the changes of free energy (lIF) en­
tropy (liS) and specific heat (lie) of a 
magnetic system as a result of structure 
fluctuations (with the limit condition 
(19)). 
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The qualitative behavior of IlF, IlS, IlU and IlC at 
sufficiently low and high temperatures follows uniquely 
from Bogolyubov's theorem alone. The behavior of these 
quantities at intermediate temperatures cannot be de­
rived rigorously. However, the simple form proposed 
can be confirmed by simple physical considerations. 

For this we consider in more detail the behavior of 
the entropy change ~S(T). For simplicity, we assume 
that only the exchange integrals Iij = (I) + IlIij fluctuate. 
Then there is a large number of spins which are more 
weakly coupled with each other than exchange with (I) 
would have given. These spins can be thermally excited 
more easily than in the corresponding "crystal," in 
which all the exchange integrals are replaced by (I). 
Therefore, the entropy, being a measure of the order of 
the magnetic system, should increase at low T as a 
result of fluctuations. On the other hand, there is a 
large number of neighbors with ~Iij > o. Spins which 
are more strongly coupled are more difficult to excite 
thermally. This leads to a decrease of the entropy at 
high temperatures. It may be said that fluctuations with 
IlIij > 0 induce, at high T, additional short-range mag­
netic order, due to the structure fluctuations. The be­
havior of the entropy is thus fully understandable and 
substantiates, in turn, the proposed simple form for ~F. 
In particular, additional oscillations of IlS would be 
phySically incomprehensible. 

It is easy to interpret the behavior of ~C on the basis 
of this physical picture. Because of the exchange with 
IlIij < 0, the magnetic system accepts thermal energy 
more easily at low T, and this implies an increase of the 
internal energy and specific heat as a result of the struc­
ture fluctuations. At high temperatures, certain degrees 
of freedom are more difficult to excite; this gives rise 
to an additional positive specific heat and, in addition, 
the system increases its internal energy more slowly. 
Since ~C is positive at low and high T, it follows from 
the equation 

00 

S I1.C(T)dT = lim I1.U(T) ~ 0 
T~oo 

o 

that ~C should be negative at intermediate temperatures 
(cf. Fig. 1). 

If a second-order phase transition occurs in the cor­
responding "crystal;' a peak should appear in the specific 
heat at the transition temperature T~O). In the general 
case, structure fluctuations change the phase-transition 
temperature or eliminate it altogether. This means that 
IlC should cancel the specific-heat peak at T~O). This 
explains the appearance of a negative peak in ~C when 
there exists a phase transition in the corresponding 
crystal. 

The form of the curves of ~S and ~C shows that ad­
ditional degrees of freedom or states appear at low and 
high energies. This means that the structure fluctuations 
lead to an increase of the density of states of the mag­
netic system at low and high energies. However, since 
the total number of states cannot change, it must be re­
duced at intermediate energies (Fig. 2). From the in­
crease IlN = N -No of the density of states at low ener­
gies and from the behavior of ~S and .cl.C at low tem­
peratures, it follows that the correction to the magnetiza­
tion is negative, IlM :5 0, i.e., structure fluctuations re­
duce the spontaneous magnetization at sufficiently low T. 
In the language of spin waves, this means that the ef­
fective stiffness is reduced at low T, i.e., spin waves 
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FIG. 2 FIG. 3 

FIG. 2. Qualitative behavior of the density of states of a magnetic 
("phonon") system in the case when the simple limit condition (19) is 
fulfilled. N-the amorphous sytem, No-the corresponding "crystal". 

FIG. 3. Qualitative behavior of the change b.Ieff of the effective ex­
change integral as a function of temperature. 

I T 

~ AT 

FIG. 4 FIG. 5 

FIG. 4. Qualitative behavior of the change of free energy (b.F) and 
internal energy (b.U) as functions of the temperature when the ground 
states of the amorphous system and of the corresponding "crystal" 
differ, i.e., when the boundary condition (17) with the inequality sign is 
fulfIlled. 

FIG. S. Qualitative behavior of the density of states of a magnetic 
system when the ground states of the amorphous system and of the cor­
responding "crystal" differ, i.e., when the boundary condition (17) is 
fulfIlled. 

are more easily excited thermally because of the struc­
ture fluc tuations • 

Since the concept of spin waves does not apply to the 
Ising model and, moreover, is not fully applicable in 
strongly structurally-disordered systems, it is better 
to introduce an effective exchange integral. It follows 
from the behavior of AS, AC and AN that the effective 
exchange integral Ieff(T) = (I) + AIeff(T) decreases at 
low T and increases at high T as a result of structure 
fluctuations (cf. Fig. 3). It is not clear whether it is 
possible to describe all the thermodynamic quantities 
and the density of states by the same effective exchange 
integral. However, its qualitative temperature de­
pendence should be the same in all cases. 

We note that Montgomery et al. [32] calculated the 
density of states for a weakly amorphous Heisenberg 
model by the Green function method in the Tyablikov 
approximation. Their results are' in complete agree­
ment with our general conclusions concerning AN(E). 
For "phonons" in structurally disordered systems, all 
our conclusions concerning AF, AS, AU, AC and AN 
remain valid. Instead of a decrease of the effective stiff­
ness, at low T a decrease of the "phonon" velocity is 
obtained, and this is of particular interest for amor­
phous superconductors. 

If both negative and positive exchange integrals appear 
together ("mixed" magnets), the limit condition (19) at 
T = 0 must be replaced by the inequality (17). Exclud­
ing relatively singular distributions of the exchange in­
tegrals, e.g., (:JC) = 0, or a large gap in the distribution 
of excliange integrals close to (I), for AF and AU we 
obtain the qualitative behavior depicted in Fig. 4. In this 
more general case also, the qualitative behavior of AS 
and AC remains the same as that depicted in Fig. 1. For 
AS and AC, we can repeat the arguments given above 
concerning the role of AIij. Allowance for the decrease 
of the ground-state energy as a result of the structure 
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fluctuations leads to the behavior shown in Fig. 5 for the 
density of states of the magnetic system. 

8. SIMPLE EXAMPLES 

To illustrate the results, we shall consider a few 
simple examples. For an amorphous one-dimensional 
Ising system with S~ = ± 1, it is possible to calculate 
exactly all the therthodynamic quantities in the case 
H = 0 in a simple manner. Its free energy can be de­
termined by introducing the new variable ~. = S~S~ = ±1. 

1 1 1 +1 

F(T)= -+< lnSp 

x exp [~ 1: ["'+IS;' 8;+1]) 
, 

Denoting Ii = Ii,i+l for brevity, we obtain 

F(T)= -~<ln II 4ch~[')= -~N<ln4ch~[). 
~ { ~ 

Specifying the distribution function of the exchange inte­
gral I, we obtain the free energy by integration. 

For a simple distribution of exchange integrals, the 
internal-energy change AU resulting from structure 
fluctuations, following from Eq. (20), is depicted in Fig. 
6. Here, the mean exchange integral is conserved, 
(I) = const, and only its mean-square fluctuations 

!' = «M)'>/<[)', 

are changed. 

It follows from the given distribution of exchange 
integrals that only positive exchange integrals appear 
for A2 < 1/3, while negative ones also appear when 
A2 > 1/3. It can be seen from Fig. 6 that, for A2 ::s 0.3, 
the internal energy at T = 0, or the ground -s tate energy, 
does not change as a result of fluctuations of the exchange 
integrals. On the other hand, for A 2 2: 0.4, it follows that 
AU < at T = O. This result is in complete agreement with 
the general conclusions about the ground-state energy 
reached in the preceding section. The general form of 
the function AU(T) also agrees with the general qual­
itative predictions (cf. Figs. 1 and 4). 

For small fluctuations of the exchange integrals in 

• AUf <!J 

0,02 

-9,02 

J n: <I> 

O,J 

1l.5 

FIG. 6. Change b.U(T) of the internal energy for an amorphous one­
dimensional Ising model compared with the corresponding "crystal" for 
different fluctuations b.2 = «Mi)2)j(I)2 of the exchange integrals, for a 
rectangular distribution function of the exchange integrals with (I) = 
const. 
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-O,DJ 

- 0,/0 

FIG. 7. Changet.F(T, H) of the free energy as a result of small fluc­
tuations of the exchange integrals for the one-dimensional Ising model 
with different values of IlH/W. 

LlF/Ll Z <1> 

o f------...c---'r------+2 -=-c~ FIG. 8. Change t.F of the free 
T/r;(O! energy as a result of small fluctuations 

of the exchange integrals for the two­
dimensional Ising model with a square 
lattice. -0.5 

the framework of the stochastic "lattice" model, it is 
possible by means of thermodynamic perturbation 
theory(35) to obtain, for the one-dimensional ISing model, 
~F(T, H) (Fig. 7) and all the other thermodynamic quan­
tities (cf. alsO(44)), and, for the two-dimensional Ising 
model, ~F(T) (Fig. 8) and other thermodynamic quan­
tities for H = 0 far from the region T ~ T c. It can be 
seen that these results too are in complete agreement 
with the general conclusions of the preceding section. 

9. THE ROLE OF STRUCTURE FLUCTUATIONS 

The inequalities (12) and (13) and the asymptotic re­
lations (16) are evidence of the close analogy between, 
on the one hand, the behavior of ~FIM and ~FHI and, on 
the other, the change ~F of the free energy as a result 
of the structure fluctuations. Taking into account the 
well known temperature dependence of the speCific heats 
CH, CI and CM for the Heisenberg and Ising models and 
the molecular-field approximation respectively, we see 
that the qualitative behavior of the functions ~CIM 
= CI - CM and ~CHI = CH - CI coincides with the be­
havior of the function ~C (cf. Fig. 1). The qualitative 
agreement between ~UIM' ~UHI and ~U and between 
~SIM' ~SHI and ~S also becomes understandable. In 
addition, as is well known, the inequalities ~MIM == MI 
- MM :5 0 and ~MHI == MH - MI :5 0 for the spontaneous 
magnetization are fulfilled. 

Thus, the transition from the molecular-field approx­
imation to the Ising model or from the Ising model to 
the Heisenberg model leads to the same qualitative 
changes of the thermodynamic quantities as in the trans­
ition to an amorphous system from the corresponding 
"crystal" described by the averaged Hamiltonian (5) 
or (10). This analogy can be understood in the following 
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way. If for the crystal we write the Hamiltonian in the 
molecular-field approximation in the form 

:JeM = - ~ S' ~ [ .. S' M L.J t L.J 1] , 

\i i 
(21) 

then, on going over to the Ising model 

(22) 
; 

additional fluctuations of the "internal field" in which 
spin i is situated appear as a result of the replacement 

§zM - §~. In this transition, the equation ~ = 0 is ful­
filled,ot 

(23) 

Therefore, the change in the thermodynamic properties 
of the chosen spin on going over from the molecular­
field approximation to the Ising model arise because of 
the additional fluctuations (additional degrees of freedom) 
of its "individual internal field." The situation on going 
over from the ISing model to the Heisenberg model can 
be represented completely analogously. 

It can be seen directly that the transition (I) - (I) 
+ ~Iij, i.e., the transition to the amorphous sys tem from 
the corresponding "crystal," entailS, e.g., additional 
fluctuations of the <lindividual internal field" of the spin 
i in the Hamiltonians (21) and (22); the condition 
(~Iij) = 0, which is analogous to the condition (23), is 
satisfied. 

This treatment shows that, in all cases, the additional 
fluctuations of the "internal field" of the chosen spin 
are the reason for the change in the thermodynamic quan­
tities; this also explains the analogy described. On the 
basis of this analogy, we conclude that a sharp phase 
transition can exist in amorphous ferromagnets too, if 
the exchange integrals fluctuate stochastically. 

Taking into account the well knQwn inequalities for 
the Curie temperatures T(H):5 Ttl) :5 T(M), we may 

'c c c conclude that structure fluctuations lead to a decrease 
of the Curie temperature, i.e., Tc :5 T~O). All known 
consistent calculations confirm this conclusion C2 ,31 ,32 ,34-36) 

Taking into account the temperature dependence of the 
effective exchange integral (cf. Sec. 7), one can also 
understand the flattening, found in a number of 
papers C2 {> ,12) , of the curve of the reduced magnetization. 
The analogy also suggests a tendency of the critical 
coefficients to change as a result of the fluctuations. 

The analogy disappears if the exchange integrals vary 
more or less systematically over large distances, e.g., 
as a result of mechanical stresses. In this case, so­
called "smeared" phase transitions can arise. 

The author is grateful to Professor G. Heber for 
discussions and help and to Professor I. E. Dzyaloshinskir 
for reading through the manuscript. 

I) An increase was obtained for Tc and X in a "more exact" molecular 
field approximation [33]. 

2)True, fluctuations of the atomic spin Si should strictly be treated in the 
framework of the band model, but they can be included formally in 
local models of magnetism, if only in the case Si ~ 00. 

3)The magnetic field H is constant throughout this section and is there­
fore omitted. 
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