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The nonlinear theory of absorption of Langmuir oscillations during developed Langmuir 
turbulence is reported. The spectra of strong turbulence of low-frequency pulsations 
excited by the Langmuir turbulence are found. The heating of electrons produced by the 
low-frequency oscillations and generated by the Langmuir turbulence is estimated. The 
calculations are performed on the assumption of one -dimensional motion (magnetization) 
of electrons, whe » wpe' 

INTRODUCTION 

High-intensity Langmuir oscillations can produce a 
universal time -independent tu,rbulence spectrum inde­
pendently of the method used to generate them (see [1-4]). 

If nonlinear energy transformation plays the leading role 
in forming the spectrum, then in the region analogous 
to the inertial region for liquids the spectrum is gener­
ated as a result of the balance of nonlinear transfers. 

In contrast to liquids, the transformation of turbulent 
energy occurs from small to large scales (i.e., from 
large wave numbers k to smaller wave numbers). The os­
cillations are thus shifted from the region of efficient 
Landau absorption, and the problem arises of the dis­
persal of energy or an effective mechanism for the ab­
sorption of the oscillations in the small-scale region. 
This mechanism would appear to be nonlinear and comes 
into play automatically at a definite stage of the develop­
ment of turbulence, since the oscillations grow contin­
uously (in the presence of constant sources) at large 
scales until their energy becomes sufficient to exceed the 
nonlinear absorption threshold. Of course, if there are 
sufficiently intensive two-body collisions, the linear ab­
sorption may damp the oscillations which build up in the 
large-scale region, and these may not then exceed the 
threshold for nonlinear absorption. We shall be interested 
here in the opposite case. 

Effective excitation of low -frequency oscillations, i.e., 
nonlinear Langmuir turbulence instability, may be a 
mechanism leading to nonlinear absorption. The simplest 
form of this kind of instability is the decay instability[5] 
which involves, in particular, the decay into ion-acoustic 
oscillations (for small k, Le., large scales, decay in­
stability is occasionally, and quite inappropriately, re­
ferred to as parametric [6]). Langmuir turbulence insta­
bility of this kind, with correct allowance for the differ­
ence between the acting field and the mean field in the 
low-frequency region of the excited OSCillations, was first 
obtained by Vedenov et alY,8] 

relatively narrow interval of W. It was also shown in [9] 

that when these criteriawere not satisfied, the insta­
bility did not disappear but substantially modified the 
growth rates. The various necessary expressions are 
given in[9]. As a rule, low-frequency instability of the 
Langmuir oscillations is aperiodic, and this gave rise 
to definite difficulties when attempts were made to de­
velop a theory of the low-frequency instabilities and to 
determine their effect on the Langmuir oscillations, 
which leads to the nonlinear absorption of these oscil­
lations. The aim of the present work was to overcome 
these difficulties. 

In spite of the aperiodic nature of the instability, it 
is found that the nonlinear stage is reached when the 
energy of the low-frequency oscillations is much less 
than the mean thermal energy of the plasma particles: 

wi nT «: 1; (2) 

where w is the energy of the low-frequency oscillations 
per unit volume of the plasma. Therefore, in the sense 
of Eq. (2), the low -frequency turbulence may be re­
ferred to as weak. However, the aperiodic character of 
its excitation ensures that the frequenCies wand wave 
numbers k of these oscillations are not uniquely related 
Le., they do not correspond to any linear plasma oscil­
lation mode. In this respect, the low-frequency tur­
bulence may be referred to as strong. The derivation 
of Eq. (2) involves the following important small para­
meters: 

where wL is the frequency and kL the wave number of 
the Langmuir OSCillations, and wand k are the same 
quantities for the excited low-frequency oscillations. 

(3) 

The fact that the parameters in Eqs. (2) and (3) are 
small enables us to overcome the difficulties mentioned 
previously in the development of the nonlinear theory of 
the instability which we are considering. In this develop­
ment we shall start with the statistical description of 

WlnT> (l'roll'p.)', (1) the low-frequency pulsations. Assuming that the system 
W' th f th L 'tu bit '1 is ergodic, we may suppose that the results of averaging 

where 1S e energy 0 e angmu1r ~ u en OSC1 - are the same as those obtained by time and space aver-
lations per unit volume of the plasma, nT 1S the thermal aging of scales considerably exceeding the periods and 
energy of the particles, and Vph is the characteristic phase wavelengths of the low-frequency oscillations Several 
velocity of the oscillations. workers [10,11] have suggested that the develop~ent of the 

A general theory of turbulence instability in plasma \above low-frequency instability should lead to the ex-
was developed in [9], where the range of validity ofthe npn- citation of nonlinear solitones. On the other hand, it is 
linear growth rates found in [7]was obtained. In particular, suggested in [7] that the develop~ent of the instability 
it was shown that when vph < VTe F9m/m:;;;:-the specific leads to the splitting of the plasma into bunches or 
expressions for the growth rates found in [7 were, in fact layers, so that regions of high plasma density alternate 
valid only in nonisothermal plasma with Te»T1 and in a with regions with high density of Langmuir oscillations. 
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General considerations do not directly suggest that, as 
assumed in [12), such bunches should become fully iso­
lated from one another. In the statistical description 
which we are using the averaging is carried out over a 
range of scales substantially exceeding the scales of the 
above soli tones and bunches which cannot, strictly 
speaking, be introduced when there is a large number of 
them and their interaction is sufficiently strong. 

We thus have the problem of finding the average effect 
of the above inhomogeneities which develop as a result 
of the low -frequency instability. In this sense, we carry 
out double averaging. The distribution is first divided 
into two parts 

(4) 

where fT describes the Langmuir turbulence and ( )H 
represents averaging over high frequencies. Secondly, 
we subdivide 

(5) 

where fR describes the low-frequency oscillations and 
( )L indicates averaging over low frequencies. The 
function 

takes into account the average effect of both low- and 
high-frequency oscillations. 

(6) 

Our aim will be to derive the equation for <T> which is 
quasilinear in the low -frequency oscillations, i.e., it 
contains only terms which are linear in w, and there is 
no expansion over the energy W of the low-frequency 
oscillations. It is precisely this approach (in which 
expansion in terms of W) is not used, which has enabled 
us to develop a general nonlinear theory of low -fre­
quency instability .[9) The resulting equation for <T> is 
quasilinear in the low-frequency oscillations, and 
enables us to investigate the time dependence of the 
average distribution function and to obtain information 
on the possible heating of plasma due to the above effects. 

1. GENERAL EQUATIONS FOR AVERAGING 
THE DISTRIBUTION FUNCTION 

Without loss of generality, and to simplify specific 
calculations, we can illustrate the general method by 
considering the simple model of magnetized plasma, 
which can be described by the drift equations. [9) The 
present calculations are therefore restricted by the 
assumption of a strong magnetic field wHe = eH/mc 
» wpe' small phase velocities of the low-frequency 

oscillations w/k « wL/kL' and nonresonant nature of 
the high-frequency oscillations w/k » vTe. 

To find the equations which are quasilinear in the 
low -frequency pulsations, it is sufficient to know tll,e 
response of the distribution fR, which is linear in ER. 
It is sufficient for this purpose to use the equations 
given in[9) with fR(l) replaced by fR(1) (in the notation 
of 9)1) and take <T> in the form of Eq. (6). The equation 
for <T> is obtained in the form 

642 

all> all> 
-+v-=I.+I,. at az 

e < Ra[R(O) 1.=- E--
m. (}v L 

e a J k'd d ' ER [R(O) =--- dkd 00 00 < " .• ' '.. L 
m, av 
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8[T(t) 
I'=~< ET(t) __ ) 

m. av H L 

e a < J d ' dk "d ' d "<ET(t) fT(t)) =-- kt i O)t COt k,",Id!"1u',('H' B • 
m, av L 

(9) 

The first quasilinear integral 11 is analogous to the 
usual integral, whilst the second 12 is due to the pertur­
bation of the high-frequency fields by the low-frequency 
fields, and is usually absent. We shall henceforth omit 
the subscripts z on E and v; w, k, w', k' and w lf , kif 
refer to low frequencies and small wave numbers, while 
w1 , k1' w~, k~ and W~' , k~' refer, correspondingly, to high 
frequencies and their wave numbers of the order of 
those which correspond to Langmuir pulsations. 

For fR(1) we can use the solution found in [9) by trans­
forming it to the form 

[:(t)=i~ E.~ (_1_~+~ •.• ~). 00 < k.vT, (10) 
.• m.1+~ •.• w-kvav k av' 

where 
kG •.• 

~.Il.(J)=a--. 
no 

1 8lP 
G •• =J-----dv 

, 00 - kv av ' 
a=d.no 1+--d,; /( nome) 

T.+T, 

wp.' ( e )' J I ••• ,dk. dw. 
d.=-;;:- m. TI(k-k.,ro-w.)w.(w.-w)' 

wpe' ( e ) , J I., .•• dk. dw. 
d, = --;,- ~-: fi(k _ k •• 00 - 00.)00.'(00. - (0)' ; 

Ik , w , IT-1 are, respectively, the correlator and re­
nJrnuhized propagator for the high-frequency fields 
(see [9). 

and the effective temperature T e is given by 

J 8lP 
T. = - nome!2 -dv. 

8v' 

'(11) 

(12) 

(13) 

In deriving Eq. (10) we did not use the expansion in 
Ik1, W1' and in terms of the type II (ku wJ ~ 0 we took 
into account small corrections of the order of Ik1, W1 • 

If we introduce the spectral density of low-frequency 
oscillations defined by 

(14) 

w = J w •.• dkdw (15) 

and use Eq. (10), we obtain the specific expression for 11: 

411e' 8 J w.. dwdk 8lP 
I. = m,' a;; i 1 + ~ •.• 00 - kv a-;; 

+ 4ne'i J w.,.~... dkdw~. 
m.' k(1+~ •.• ) 8v' 

(16) 

It is interesting to note that this expression contains 
derivatives of <T> of order higher than two. This is the 
basic difference between this equation and the previous 
quasilinear equations which in the one-dimensional case 
do not lead to stationary solutions other than the so­
called plateau a<T>/av = O. We emphasize that, in the 
present case, the main mass of particles -and not 
merely a small fraction of them-may be in resonance 
with the low -frequency oscillations. Moreover, the first 
term in Eq. (16) contains, in addition to the resonance 
term 

4ne' at' i + Re ~... alP () 
I.R=--,_~W •.• I)(Ol-kv) 11+~ I,dwdk--;;--. 17 

me av 1t,It vV 

the following nonresonance term: 

4ne' a J w... 1m ~... alP dk dw. (18) 
m.' av 00 - kv 11 + ~ •.• I' av 
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If low-frequency oscillations have phase velocities w/k 
much smaller than the mean electron velocities vTe, 
then for most of electrons with velocities v » w/k there 
remains only the nonresonant interaction described by 
the sum of Eq. (18) and the second term in Eq. (16): 

, 4ne' a S lV',w 1m ~h,w , (1 aID a'ID ) I' ""-,---- dkdw --+-- . 
, m,' au kit + ~h,wl' u au au' 

(19) 

In the region of resonant interaction, Eq. (17) can be 
rewritten in the form 

(20) 

4ne' S 1 + Re ~"" 
D(u)=--, W,",h 11+~ I' dk, 

me ktl,k 

(21) 

It follows from Eq. (11) that, in general, ReJ3 is greater 
than ImJ3: 

1m ~ S aID / 2 S aID --'-=n (j(w-ku)-du - -du, 
fu~ ~ k a~ 

(22) 

which for the Maxwell distribution is of the order of 
w/kVTe. We emphasize, however, that the diffusion 
coefficients in Eqs. (19) and (20) depend substantially 
on <I> itself (or, more precisely, the integrals of <I», and 
the general quasilinear equation is a relatively com­
plicated integrodifferential equation. 

The general form of the second part of the quasi­
linear collision integral 12 can be found from the equa­
tion for the linear perturbation of the turbulent high­
frequency distribution function by the low-frequency 
field fT (1) .[9] After a number of calculations we obtain 

, e' Wpe' a r wh,wdk dw 
~=l J W 

m,' no(T,+T;) au klt+~"wl' 

{ S I.,w,dk,dw, k(T,+T i ) 

x 2~.,w -,-' - Ch,w 
I1(k,+ k, w, + Ul) (Ul,' - Ul')' nom, 

(23) 

J Ih,w,dk, dUl, 3Ul"} a ( 1 aID ~",w a'ID) 
x I1(k+k"Ul+W,) (Ul,'-W')' a;; Ul-ku a;; + ka;;; 

When kVTi « w « kvTe we may substitute 

S I.,w,dUli dk, "" ~ k'UT.' w 
'I1(k+k"Ul+W,)Ul,' (')p; w' 

and, correspondingly, 
. Ulp,'T, 3W a S wh,wk dk dUl {2 

1,=-1 ---- ~h 
4no'(T,+Ti) m/au Ul(1+~.,w)' ,w 

_ 3k (T, + T i ) Ch'W}~ (_1_ ~ + ~ a'ID ) , 
nom, {Ju Ul - ku {Ju k au' 

(24) 

This result enables us to compare 11 with 12, Taking 
into account the imaginary components of all the terms 
in Eq. (24), we find that 12 in Eq. (24) differs from 11 by 
the factor WkvTe/nTw. Although kvTe/ w cannot be 
greater than unity, the peak of .the spectral distribution 
wk, w occurs at w/kvTe ~ 1, i.e., 12/11 ~ W /nT « 1. 

The solution of the equation for the resonant particles 
[Eq. (20] is possible only if we know the correlation 
functions for the low -frequency oscillations. On the 
other hand, for the nonresonant particles Eq. (19) gives 

<DN _ nN 1 V max W 
-Vmaxn~, v::»k' (25) 

where v max is the maximum velocity in the particle 
distribution. Calculation of Te with the aid of Eqs. (13) 
and (25) for w/k « vTe results in a divergence and does 
not enable us to relate v~x with T e if we do not know 

the minimum value of velocity which can be found from 
<I> for resonant particles, i.e., from the correlator wk W' 

In the case of the distribution given by Eq. (25), and ' 
sufficiently large vmax ~ vTe, the fraction of nonreso-
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nant particles is small in comparison with the resonant 
fraction. The problem of the heating of plasma particles 
thus reduces to the determination of wk, W' 

2. CORRELATION EFFECTS OF LOW· 
FREQUENCY OSCILLATIONS 

Correlation effects determine the specific form of 
Wk, wand depend on the nonlinear response of the plas­
ma to the low-frequency perturbations. In the first 
instance, we must find [R(2)_the change in fR which is 
quadratic in ER and is due to the low-frequency pulsa­
tions. The general form of this equation is 

• R(2) e fj S R R(U TI(t) TI(I} 

-/(Ul - ku)f,w --- (E."w/h"w, - <E."." r",w, >"l 
m,. au 

x 8(u, - Ul, - ('" )6(k - k, - k,jdk, dk2 dw, dUl, 

e a S 1'(1) ,£(1) T(2) TIO) 

= -- «Eh,w, Th,,", + Ek ",,, "" + E.""" j..",,, >" 
m,au 

X6(w,- Ul, - Ul,)(j(k - k, - kJdk, dk,dw, d"". 

(26) 

The second term in Eq. (26) corresponds to the standard 
expression for a nonlinear perturbation. However, the 
standard expression now leads to a substantially differ­
ent result because of the modification of the relation 
between fR (1) and ER by the high-frequency pulsations. 
The right-hand Side, on the other hand, of Eq. (26) pro­
vides a complete description of the effects due to the 
modulation of high-frequency oscillations by the low­
frequency perturbations. 

Using the small parameter kvTe/W and proceeding by 
analogy with the calculations described in [9], we can set 
up and solve the equation for 

and transform Eq. (26) to the form 
_R(Z) . ( e) 1 a S R _ R(I) R - R( t) 
fh,w = I - --k--a (E."w,f."w. - <E",w,/h.,w. ).) 

me W - V V 
(28) 

an~'~ a (JeD 
X6(ffi - ffi, - ffi,)6(k- k, - k,)dk, dk,dUl, dUI,+--'--(ffi - ku)-, 

w - ku av au 

where a is given by Eq. (11). Using the equation div 
E = 47Ten and Eq. (27), we obtain the equation for the 
correlation functions for the low-frequency pulsations 
in the form 

ii (k, w) Wh,w = 2 (-=-) , (1- Ah, .. l' S 1 'S.,W;h".";h-.,,W-, .. 
m, I1(- k, - Ul) 

Ah-.,;w-w, " 
-~ ~k,w;kl'WI w"-l,wIWh-kl,w-w.dk1 dwl, 

where 
A., w = p., wi (1 + p., .), 

Ul p .' S du {JID!D" 
S.,w;",w,;.-h"w-W' = - ( k) ( k) [ (k k) 1 ' no U) - v WI - IV U) - WI - - t V 

~h.",W'= oop.'S 1 [~+ k-k, ]~dU, 
, , ' no (w - ku)' ffi - ku Ul - w, - (k - k,) u au 

The nonlinear equation (28) determines both the 
structure and form of the correlation functions. It is 
important that the instability itself is aperiodic and the 
unstable frequencies purely imaginary. At the same 
time, Eq. (28) must obviously contain real wand k. 
Therefore, strictly speaking, it describes pulsations in 
which there is no unambiguous relationship between w 
and k. In this sense, the low-frequency oscillations are 
strong although, as we shall see, the energy stored in 
them is less than nT. This energy must be estimated 
before we can determine the rate of heating of the 
plasma. 
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.We shall now write down the approximate equation 
for the correlation functions when '-l-,e phase velocities 
of all the low-frequency pulsations satisfy the inequality 
vTi < w/k:: vTe. Specific calculations of the nonlinear 
currents, n(k, w), and the coefficient Ak, w will be 
carried out for the Maxwellian distribution function 
substituting 

3W 
Ao2 =--, 

4noT, 
(29) 

The result is 

[1+2(1..0/1..)')' 
Va.,h. [ 1 + (1..0/1..)')' -;-{ -:-( m-,--:-Im-,-:-) :-c[ 1'--+:-2;--(:-::1..--'0/""'1.. )c:,-=-) +-:-:-CA '::-;:["'-1-:-+-:-(1..-:-0-;:/1..-:-)7:, )-;-:""p 

xI-dAtI (At-A,)A' {1+~ 
(A-A,) (A-At) 2 o , 

1..0' (AtA, - AAt - 1..1.., - 2A.0') }' 
x 1..,'1.,' [1 + 2 (Ao/A,) ') [1 + 2(1..,11..,)') V".,v"., dA,; 

(30) 

A-A, 1..,-1.. 
k,=k---, k,=k--. 

A, -1..2 1..,-:-1.., 
Although Eq. (30) looks complicated at first sight, it 
can be investigated in special cases which are of par­
ticular physical interest. 

Since the coefficient of the equation depends on A, it 
is readily seen that the most important solution of this 
equation corresponds to VA k which is independent of k. 
At the same time, there is one singularity which must 
be taken into account and, in particular, there is the 
logarithmic divergence of the integral kernel at A = 71.1, 
A = A2 when k1 and ~ tend to zero. However, this 
divergence can readily be removed if we recall that 
there are no turbulent pulsations with small k and, in 
particular, VA k - 0 for k « k*, where k* plays the 
role of the wave number characterizing the main tur­
bulence scale. The main contribution of the integral 
expression is determined by k » k* and, therefore, the 
specific form of k'" is of no particular importance. 

Now consider the case AO « (me/mi)1/2. When 
A « AO the main contribution to the integral is due to 
71.1 ~ ~ ~ 1 » Ao' To within the numerical coefficient ~, 
which is of the order of unity, we then have 

v,~4A'(m,/m .. )'s. (31) 

Equation (31) remains valid when (me/m//2 » A » 71.0 , 

but the numerical coefficient is reduced by a factor of 
four. When A » (me/mi)1/2 we have 

Consider now the other limiting case, namely, 
Ao » (me/m//2. Then for A « (me/mi),l/2 we again ob­
tain Eq. (31), and when AO » A » (me/mi)1/2 we have 
VA = 16~. Finally, when A » "Ao » (me/mi)1/2 we have 
vA = ~. 

These results lead to the following estimate for the 
total energy carried by the low-frequency pulsations: 

w 1 I 2nvT ; S -T- = --J' W'.w dk dw = --,- U'.' dA k dk. 
no c no" Wpc 

Since the maximum value of A is of the order of unity, 
we have 

00 T e of the plasma particles. We emphasize that it is 
precisely this fact that enables us to construct a reg­
ular theory. In the presence of strong turbulence [no 
unambiguous relation between wand k; white noise for 
A» (me/mi)1/2]. In fact, since kmax for the low-fre­
quency oscillations is, by hypothesis, much less than 
the value of k for the high-frequency oscillations (the 
instability of which is the object of our analysis), and 
for the latter we have obviously kmax « Wpe/VTe, it 
follows that w /00 T e « 1. A more complete estimate of 
the low-frequency oscillations can be obtained by setting 
kmax in Eq. (32) equal to the maximum value for which 
the high-frequency instability sets in: kmax = I;"ku 

where 1;" ~ ~(meTi/miTe//2 (wmax ~ kmaxVTe < k1VTi)' 

From the condition 
W I noT, > 12(ktVTJ w.,)' 

and when wpe/k1VTe > 3v'm/m* = wpe/k1*VTe, we ob­
tain for the present case 

kmoxVT' _ . {( 1 W) 'f, • 1 (m,) 'I, } .' ---mIn ~- ,- - ~. 
Wp' 12 nT 3 mi 

(33) 

Hence, it follows that 
w ( W 11m,) • -;;r"'min -;;rlo'g-;;;:, ~ '. 

Therefore, when the energy of the high-frequency tur­
bulence is sufficiently high, W /nT > me/mi' the energy 
of low -frequency turbulent pulsations is lower by a 
factor of me/mi' The fact that w is small indicates that 
there is no "deep" density modulation in the course of 
stability development. 

Let us now estimate the rate of stochastic heating. 
Since the phase velocities of the low-frequency oscil­
lations cover a broad spectrum of values (white noise 
up to velocities of the order of the mean thermal veloc­
ity of electrons), the efficiency of heating of resonant 
and nonresonant particles is roughly the same although 
nonresonant particles are heated to a lesser extent.2) 
Let us therefore estimate, to begin with, the diffusion 
coefficient for resonant particles: 

D(u) '" 2nvT,'km," ( A'~"') ( 1 + A'~T;) / ( 1 +2Ao:~T.') '. (34) 

The diffusion coefficient for v « "AovTe is constant and 
proportional to ~vTe/v2 for w » AovTe' Therefore, the 
most effective take-up of energy is found to occur for 
those electrons whose velocity is less than v_ 
= v'3W!4me, i.e., the amplitude of the electron oscilla­
tions in the field of the high-frequency pulsations. The 
rate of heating of the particles is found to be 

d(n,l',.) 4ne'I ww.wImC. w I ' 
--- = -- ---'---' - dk dw '" noT.vT' A u, dA dk '" 

dt m, kl1 + ~.,wl' 

If we substitute for kmax from Eq. (33), we obtain 

1 d W) 'I, 
- -tnT) = ~w", (-J ' ~ = ~·f.,~,"" 

nT dt n 
(35) 

where 1;" is the coefficient introduced above, which is 
much less than unity (A~x « 1). After a long enough 
period of time (substantially exceeding the instability 
development time) we have the following expression for 
the final plasma temperature: 

nT = ~wp"tw. (36) 

(32) 3. DISCUSSION OF RESULTS 
This result can be readily shown to prove the above 
statement, namely, that the total energy of the low­
frequency oscillations is much less than the energy 
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The results obtained in the present work can be used 
directly in the interpretation of plasma heating data ob-
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tained with Q-machines since the one-dimensional dis­
tribution of electrons in plasma is realized under these 
experimental conditions. The plasma heating effect has 
been observed, for example, in the experiments of 
Demirkhanov et al.[13] when the current frequency was 
equal to the Langmuir frequency and, consequently, 
magnetized Langmuir oscillations with frequency 
wpekz/k should have been observed. The plasma heating 
effect has also been observed by Astrelin et al.[14] in the 
course of the plasma-beam interaction in Q-machines. 

Let us first note some general points about the mech­
anism responsible for the suffiCiently intensive and time­
independent Langmuir turbulence. This time -independent 
turbulence is established as a result of the generation 
of waves with high k and their transformation toward 
smaller k, where the build-up of the oscillations takes 
place, and if the absorption due to two-body collisions 
is small the instability is found to appear. According to 
the present work, this instability leads to plasma heating 
and, consequently, to the absorption of the oscillations. 
If we use the estimate given by Eq. (33) for kmax , the 
nonlinear absorption rate becomes 

(37) 

This absorption is responsible for the balance of the 
energy flux and the onset of time -independent turbulence. 
If Q is the rate of turbulence generation, then the balance 
is achieved when 

dTI dt=Q (38) 

and, consequently, 
WlnT= (Q/~(llp"nT)2, 

The quantity Q is given in[15] (see Sec. 4.3) under dif­
ferent conditions including, in particular, the two­
stream instability. The quantity Win Eq. (37) corre­
sponds either to the energy at the maximum of the spec­
trum (if such a maximum is present), or to the total 
energy in the unstable region of high phase velocities 
when the maximum is absent because of the nonlinear 
absorption. Since W /nT > me/9mi' nonlinear absorption 
is important for Q/wpenT > 1:v'me/mi' Finally, non­
linear absorption ensures that the Langmuir oscillations 
acquire a correlation width Clw which is proportional 
to !W. 

As far as the experiments of Demirkhanov et al.[13] 
are concerned, we can carry out the following estimates. 
Assuming that the heating time cannot exceed the elec­
tron flight time over the length L of the installation, we 
find for n ~ 108 - 109 cm3, L ::>j 25 cm, and final tem­
perature T e ~ 2 eV that the plasma heating up to this 
temperature can be fully described by Eq. (35). To 
verify this proposition we would have to carry out more 
detailed measurements on the oscillation level and an 
accurate calculation of the parameter 1:. 

Comparison of the above theory with the experiments 
of Astrelin et al.[14] on the interaction between beams 
and calcium plasmas is possible both through checking 
the connection between the plasma temperature and the 
level of turbulence, and through the dependence of cor­
relation broadening on W. Equating the heating given by 
Eq. (35) and the heat flux through the ends of the plasma, 
as in [14\ we find that 

~O~~=~ r[eV] (39) 
2nT 8nnT ~ n[cm-3] 

For the two regimes a and b described in 14 the use of 
Eq. (39) for the same value 1: = 10'" yields: 
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a) for Te ::>j 8 eV, n ~ 7 x 108 cm-3 the energy is 
W /2nT ~ 10-3. 

b) for Te ::>j 20 eV, n ~ 2 x 108 cm-3 , which corre­
sponds to the observed values of E2 /87TnT , the value 
1: ~ 10-4 is quite reasonalbe because 1: contains a number 
of factors much less than unity (A~X' vTi/vTe' 
k1max/k1*)' Next, the correlation broadening is also 
satisfactorily explained by the relation Clw a: !W. 
Finally, Astrelin et al~14] have established the relation­
ship Tea: qF/3 a: cp1,4 on the basis of the theory de­
veloped in 16 . Similar calculations based on Eq. (39) 
yield Te a: cp. This is in exact agreement with obser­
vations [14\ which suggests that the interpretation of the 
experimental data referred to in[14] in terms of the non­
linear absorption mechanism discussed here is to be 
preferred. However, the final conclusion with regard 
to the agreement of the data given in[14] with the theory 
developed here can only be"established through an analy­
sis of correlations between the low-frequency oscil­
lations. 

I)Superscripts (I) and (2) of the regular and turbulent components cor­
respond to the linear and quadratic coefficients in the expansion in 
terms ofER, 

2) According to Eqs, (19) and (21), the oscillations for phase velocities up 
to vTe are resonant. 
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