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The generation and propagation of a plasma column when a strong electric field is ap
plied to a plane. layer of neutral gas is discussed. It is shown in the one-dimensional 
case that if, at an initial instant of time, electrical breakdown in the neutral gas pro
duces a layer of plasma with finite dimensions, its subsequent expansion may occur with 
a constant speed u « cs, where cs is the velocity of sound, i.e., without the formation of 
a strong shock wave. The rate of expansion of the plasma column is then controlled by 
diffusion and ionization processes, the combined effect of which leads to the possibility 
of a time-independent wave propagating through the gas. Ionization of the gas by epi
thermal electrons then occurs on the wave front. 

Consider a plane capacitor with large plates, the space 
space between which is filled with a neutral gas of den
sity ho. A potential difference is applied between the 
plates,producing an electric field Eo along the yaxis 
which is at right-angles to them. We shall suppose that 
electrical breakdown in the gas initially produces a plane 
layer of plasma (for the sake of simplicity, we shall 
assume that this layer is restricted in the direction of 
the x axis but is unbounded in the direction of the z axis). 
Subsequent behavior of the plasma column depends on 
the magnitude of the field Eo. If this field is strong 
enough to accelerate the electrons to energies at which 
cascade ionization of the gas begins (E > Ecrit), the 
expansion of the plasma column occurs very rapidly 
because the active electrons appear throughout the space 
as a result of diffusion, and subsequent plasma formation 
takes place in the form of a shower. In practice, how
ever, the source has a restricted strength and we have 
the situation where, because of the presence of a high 
resistance in the external circuit, the field falls after 
breakdown to a value below Ecrit so that the plasma 
column carries a current which can only lead to its heat
ing to temperatures T ~ 1-3 eV • (1] It is clear that, in 
this case, the diffusion of plasma and the ionization of 
the neutral gas by epithermal electrons results in an 
increase in the width of the plasma layer but the rate of 
its expansion is such lower. 

It is important to note that when Eo < Ecrit it is 
possible to have a different situation, in which sufficient 
energy is liberated in a narrow plasma layer in a short 
period of time so that a strong shock wave is generated 
and the ionization of the gas takes place behind the shock 
wave front. This case was discussed in detail by 
D'yachenko and Imshennik Cl] and we shall not consider 
it here in detail. We merely note that to ensure that the 
shock wave can ionize the gas behind the shock-wave 
front its intensity must be very high, for example, if 
the temperature in the region faCing the shock-wave 
front is To i:::! 3000K and behind the front Tl i:::! 1040K (gas 
ionization occurs at precisely such temperatures) then 
the Mach number for the wave will have to be M i:::! 15. 
A very strong gas-heating source would, of course, be 
necessary to produce such a wave. Moreover, since the 
velocity of this shock wave would be expected to be of 
the order of the velocity of sound in the heated gas, high 
currents would be necessary to maintain it. 

We shall suppose below that a strong shock wave is 
not produced in the system, and that weak shock waves 
lead merely to slight heating of the gas, whereas the 
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ionization waves are accompanied by the emission of 
radiation behind the front. 

Thus, suppose that the gas to which the electric field 
Eo has been applied contains a plane layer of plasma with 
electron temperature Te ;:, Ti » Tn, where Ti, Tn are, 
respectively, the ion and neutral-particle temperatures. 
The behavior of this layer can be described by the follow
ing set of equations of two-fluid hydrodynamics: 

and 
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0= eE - T, -ax - v,,,MV, 
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In these equations ven and vin are the collision fre
quencies of electrons and ions with neutrals, respectively, 
J is the ionization potential of the atoms, X = Te/(veem 
+ venm) is the electron component of electrical conduc
tivity, vee is the frequency of electron-electron col-
lis ions , and Pi and Qi are, respectively, the plasma 
heating and cooling sources due to the passage of current, 
ionization, excitation, recombination, emiSSion, and so 
on (we have purposely avoided writing out the specific 
form of the functions Pi and Qi for reasons discussed 
below). 

The right-hand side of the continuity equation contains 
terms describing the rate of increase in the electron 
density due to the ionization of the gas by epithermal 
electrons (3] and their recombination [it is assumed that 
T e < J, so that the gas ionization is produced only by 
electrons with velocities V > (2J/m)1/2 and, when their 
distribution is Maxwellian this contribution is expo
nentially small]. The equations of continuity and thermal 
conductivity are written out only for the electron com
ponent because it is clear that the ion and electron den
sities and velocities are equal, and the temperature 
transfer is determined largely by the electron thermal 
conductivity. Combining the two equations in Eq. (1) and 
substituting for V in the first equation in Eq. (2), we 
obtain the ambipolar diffusion equation, in which case 
Eq. (2) can be rewritten in the form 

an a an 
---D-= '(T)n(no - n)- ~(T)n', at ax ax 
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(3) 

In these expressions D = (Te + Ti)/(Mvin + mVen) is the 
ambipolar diffusion coefficient and 

J cm31 J 6 
y(T)=CVTe_e- JlT.[- ~(T)=1O-"C_lCm]. 

T. sec ' T, sec 

It has been pOinted out above that the strength of the 
source is assumed to be sufficient to maintain the elec
tron temperature at 1-5 eV in the region of effective 
heating. If we now compare the diffusion coefficient D 
and the thermal conductivity X it turns out that their 
ratio is much less than unity: 

D _ ( m ) 'I, n 0" _ ( m) 'I, n 3· 10-" ( m ) 'I, n 
-- - --- - -----10 - --~1. 

X M no a'n M no a'n M no 

In this expression ain ~ 3 x 10-15 is the resonance charge
transfer cross section. It follows from the foregoing 
calculation that temperature equalization occurs more 
rapidly than the density equalization, and we can assume 
henceforth that, whenever there are electrons, their 
temperature is constant and time-independent. This 
enables us to eliminate from the analysis the equation of 
thermal conductivity, and assume that the temperature 
in the diffusion equation is constant. Using the solution 
obtained below for the plasma-density profile, we can 
readily show that the change in the temperature due to 
thermal conduction across a characteristic inhomogene
ity is, in fact, ~T/To ~ D/X « 1. It is also important 
to note that the opposite limiting case, when the increase 
in the electron density due to ionization occurs more 
rapidly than the temperature equalization in the wave, 
has been investigated by Velikhov and Dykhne. [4] Without 
loss of generality, we can also neglect the recombination 
term in Eq. (3). This, in any case, is valid in hydrogen 
for Te ~ 3 eV and n:::s 1018 cm-3 .[1] Moreover, it is 
clear that even when the opposite inequalities are valid, 
the replacement of the term proportional to n3 by a 
similar term proportional to n2 can only lead to a small 
numerical change in the parameters .characterizing the 
process but cannot, to any great extent, change the 
physics of the transport process. Bearing in mind the 
foregoing remarks, we shall rewrite Eq. (3) in the form 

an a'n ( no) --D-=an 1--
at ax' n ' 

(4) 

where a = rna. 
Equation (4) must satisfy the following boundary con

ditions: n(x = -(0) = no, n(x = +00) = O. As usual, in the 
case of problems involving the generation of a wave, we 
shall consider a half-space rather than a plasma layer. 
Dimensional analysis shows that Eq. (4) has a parameter 
with the dimensions of velocity (aD)1/2 and, therefore, 
we may assume that it has a traveling wave-type solu
tion. Substituting the dimensionless variable 
~ = (x - ut)u/2D, where u has the dimensions of velocity 
but, for the moment, is arbitrary, we have 

0';;; y';;; 1. (5") 

We have noted that u is the unknown wave velocity. 
It is intuitively obvious that this quantity must be unique, 
Le., the wave velocity should be unambiguously deter
mined by the plasma parameters. Analysis of Eq. (5) 
for y « 1 shows that, when (:3 > 1, the function describ
ing the relation between y and ~ changes sign 
[y 00 sin v'j3=T[) and, consequently, it does not satisfy 

Eq. (5") J. Therefore, if the wave exists, it can propagate 
through the gas only with velocity u 2: (4aD)1/2. It turns 
out, however,CS], that for an equation such as Eq. (5) 
there is no unique characteristic value of the parameter 
{:3 for which the solution would satisfy the imposed bound
ary conditions, i.e., Eq. (4) has wave-type solutions with 
any {:3 :::s 1. 

Analytically, a solution of this kind can be obtained in 
approximate form for {:3 « 1. In fact, if we neglect in 
Eq. (5) the term with the highest-order derivative and 
integrate, we obtain 

(6) 

It is clear that Eq. (6) satisfies all the above boundary 
cOl\ditions and the relation y" /y' ~ {:3 « 1, so that the 
approximation which we have selected is correct. How
ever, Kolmogorov et al. [6] have investigated an equation 
similar to Eq. (4) for a monotonic initial distribution of 
density, and showed that the solution of Eq. (4) tends 
asymptotically in time to the solution with the character
istic velocity Uo = (4aD)1/2, Le., {:3 = 1. It has also been 
shown [6] that all the wave solutions with velocity u > Uo 
({:3 < 1) tend asymptotically to zero, i.e., y(x -ut, t) 
~ 0 as t ~ 00, Since, on the other hand, there are no 
time-independent solutions with {:3 < 1, the only time-
independent solution to which the system will tend is a 
wave traveling with the speed Uo = (4aD)1/2. 

The physical meaning of this process can be eluc
idated as follows. Suppose that at time t = 0 the plasma 
density is described by Eq. (6) with (:3 « 1. Since Eq. (6) 
satisfies Eq. (5) for any t 2: 0, it is clear that the only 
process which can lead to a distortion of the profile is 
its instability with respect to small perturbations. As is 
usual in studies of the stability of solutions, we shall 
write the solution in the form of the sum 

y(£, t) =Yo(£) +6y,«(;, t), 

where Yo(~) satisfies the unperturbed solution of Eq. (5), 
with {:3 « 1 and Ii « (:3 « 1. The function Y1(~' t) must 
satisfy the equation 

~ ay, -2y,'-y," -~y,(1-2yo)=0 (7) 
a-r 

which is obtained from Eq. (4) by introducing the var
iables ~ and T = at followed by linearization and the 
imposition of the boundary conditions Yl(~ = ± 00) = O. It 
is readily seen that when {:3 « 1, Eq. (7) has unstable 
solutions 

(8) 

y" + 2y' + ~y(1- y) =0. (5) for any 0 :::s A < 1. 

In this expression, y = nino, (:3 = 4aD/u2 and the differ
entiation is with respect to ~. Equation (5) can be sat
isfied by the following boundary conditions: 

y(\;=-oo) =1, y(£=+oo) =0. (5') 

Moreover, this equation describes the behavior of plas
ma density and, therefore, for any L 
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Therefore, solutions such as Eq. (6) with {:3 « 1 are 
unstable against small perturbations. To understand the 
consequences of this instability we must consider a sys
tem with weak nonlinearity when the perturbation am
plitude can no longer be regarded as infinitesimal and 
we must retain in Eq. (4) terms which are quadratic in 
IiY1 (~, t). We shall now suppose that the constant C in 
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the unperturbed density distribution Yo(O, which satis
fies Eq. (6), is a slowly varying function of time. In the 
second approximation, it then follows from Eq. (4) that 

,.InC Ce-W • 
--... -~. e""H't (9) 

ilt' (1 + Ce-W '5 2 

Assuming for simplicity that A « 1 and rle2AT + {3A~ 
~ const = E;2, we have from Eq. (9) 

81nC =~Yo'.· (10) 
81: ~ 

Integrating this equation with respect to ~ within the 
limits of the front width 0 < ~ < 2/{3 (this corresponds, 
in fact, to averaging Eq. (10) over a time interval less 
than the reciprocal of the growth rate), we have 

(11) 

Substituting for e from Eq. (11) into Eq. (6), we obtain 
Co e-V'f e-~U2 

1/0 = 1 + Co e Y'[ e ~~/Z ' 
(12) 

where y = 4E;2/{32. Since we are interested in the value of 
Yo on the wave front, where ~ = (x - ut)u/2D ~ 0, we can 
replace T with ax/u in Eq. (12), and if we use the var
iables x and t, we obtain 

Co ea.' e-a.(I+v)xlu: 

Yo = 1 + Ceat e-O:{1+vh:ltL • 
(13) 

. Let us now return to Eq. (6) and consider how it is mod
ified when the wave velocity is slightly reduced. Sub
stituting u = Ua - ~u (~u « Ua) in Eq. (6), we obtain 

Yo = Co em' exp [- :. (1 + ~~ ) x ] / { 1 + Co em' exp [ - ~ (1 + 1'1:) x]} . 

(14) 

It is clear that the functions given by Eqs 0 (13) and (14) 
are the same if ~j.J./j.J.o is replaced with y in Eq. (14). It 
follows that the density-profile instability for {3 « 1 over 
the nonlinear stage leads to an effective reduction in the 
wave veloCity. This continues until the wave velocity 
reaches its maximum possible value: u = (4aD)1/2 or 
{3 = 1. Subsequent reduction in the velocity cannot occur 
for reasons described above. It is important to em
phasize once again that the foregoing considerations 
should be looked upon only as a physical interpretation 
of the wave process and not the strict mathematical 
theory which is given in(SJ. Thus, for any monotonic init
ial distribution of density the solution of Eq. (4) tends 
asymptotically to a wave-type solution with the wave 
velocity given by u = (4aD)1/2. 

Equation (4) was solved numerically to determine 
the rate at which the wave front is established. Sub
stituting the dimensionless quantities y = nino, T = at, 
7j = (a/D)1/2x in Eq. (4), we obtain 

8y 8 2y 
---=y(1-y). 
81: 81"]2 

The boundary conditions are Y(7j, T)7j = -«> = 1, 
Y(1], T)7j = + 00 = O. 

(15) 

The implicit four-point approximation scheme and the 
sweep method were used to solve Eq. (15). In the finite 
difference form we used grids with a time interval ~T 
and a coordinate interval h so that Eq. (15) assumed 
the form 

In this expression, 

y/=Y(1:o+iih, so+jh), j=1,2, ... ,N, i=1,2, ... ,M, 
1 1 2 y/ . 

A=B=h," C=~+h" F;=~+Yi(1-Yi), 
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where N is the total number of steps along the Taxis 
and M is the number of steps along the 1] axis. 

The principle of the sweep method is that the value 
of the function at a given point at some instant of time 
is determined in terms of the value of this function at a 
neighboring point as follows: yj = a yj + [3 ,where 

i+1 i+l i+ i+l 
the coefficients a and [3 are definite functions of A, B, 
e, and Fi' (7J The system is stable for any positive h 
and ~T. 

Figure 1 shows the results of the calculations for an 
initial electron density distribution in the form of a step, 
and Fig. 2 shows the corresponding situation when the 
initial electron distribution is less steep. However, in 
both cases, the wave-front profile tends to the same 
form and is established in the same interval of time 
t = 6/a. The wave-front width is ~ ~ 2(D/a)1/2. The 
results shown in Figs. 1 and 2 enable us to determine 
more accurately the velocity of the wave, which is 
Ua = 1.8(aD)1/2. This is somewhat less than the analyt
ically derived upper limit Ua = 2(aD)1/2. The discrep
ancy may be due to the following. We have already noted 
that the solutions of Eq. (6) with {3 « 1 are unstable 
against small perturbations, and this instability leads to 
an effective reduction in the wave velocity. Numerical 
calculations show that even solutions with [3 = 1 are un
stable and, therefore, when the critical velocity is 
reached by the wave, it ten<!s to reduce it still further, 
leading to the time-independent regime, i.e., it tends to 
return to the state with Ua = 2(aD)1/2. On average, such 
oscillations may produce a net reduction in the velocity 
as compared with its calculated value. 

Finally, let us briefly consider the effect of the mag
netic field of the current on the expansion of the plasma 
column. We have assumed throughout that the magnetic 
field is zero in the system. However, when we consider 
the expansion of a plasma column or cylinder of finite 
dimensions (it is clear that our results are valid for 
these cases), the system is subjected to the intrinsic 
magnetic field of the current, which can be neglected 
only during the initial stage of the process when the 
radius of the plasma column is small enough. As it in
creases, the associated magnetic field increases in ac
cordance with the expression Hrp = 21/R = 21l-RuEo, where 
I is the total current in the column, 1= 1TR2J = 1TR2uEo, 
and J is the plasma conductivity. The current eventually 
reaches a value such that the magnetic pressure be
comes comparable with the gas-kinetic pressure H~/81T 

n 

FIG. I 

n 

0.5 

3D 'I 

FIG. 2 
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= nT. The expansion of the plasma column then term
inates and it begins to contract. 

Thus, under certain definite conditions an initially 
narrow layer of plasma may expand at constant speed 
uo = 2(aD)1/2 and this expansion is not accompanied by 
the formation of strong shock waves but is controlled by 
diffusion and ionization processes. The characteristic 
width of the wave front over which the electron density 
is reduced by an amount comparable with the density 
itself is ~ ~ 2(D/a)1/2. Any initial distribution of the 
plasma density is then found to tend asymptotically to 
the time-independent state described above, and the 
characteristic time necessary for this state to be 
reached is t ~ 10a-1 sec. 

In conclusion, the authors wish to express their 
gratitude to R. Z. Sagdeev for valuable discussions. 
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