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The theory of SRS by purely rotational transitions is considered by taking intermediate 
vibrational and purely rotational transitions into account. It is shown that the contribution 
to the amplification from these transitions may be the main one if a carbon dioxide laser 
is used for pumping. 

The development of high-power pulsed lasers operat­
ing in the medium and far ill bands raises new problems 
in nonlinear optics. One of the principal problems is the 
study of stimulated scattering in these bands. Stimulated 
scattering exhibits in this case a number of distinguish­
ing features due to the more complete manifestation of 
the atomic and molecular motions. 

The present article is devoted to a theoretical inves­
tigation of stimulated Raman scattering (SRS) on rota­
tional transitions. This scattering has already been ob­
served in the visible band in [r3], where some theoreti­
cal estimates are also given. However, there is, insofar 
as we know, no consistent theory of SRS on rotational 
transitions. We first describe an approach, based on 
classical premises, to the description of SRS on rota­
tional tranSitions, and then present a consistent quantum 
theory in which account is taken of intermediate purely­
rotational levels and the possibilities of resonance with 
the vibrational-rotational transitions. These cases can 
be realized by exciting SRS with radiation in the medium 
and far IR bands. 

1. CLASSICAL THEORY 

The classical approach is useful in qualitative con­
sideration of the phenomenon. We therefore confine 
ourselves only to the simplest case of a rigid molecule, 
when the contribution of the nuclear vibrations to the 
polarizability can be negelcted. We consider only the 
rotation of the molecules in the (x, y) plane, which also 
contains the pump and Stokes-wave polarization vectors. 
In this approximation, the Hamiltonian of an indivic':al 
molecule, without allowance for the interaction of the 
molecules, can be expressed in the form 

M2 1 
~o=2T-2ExE, (1) 

where M is the angular momentum, I is the moment of 
inertia, K is the electronic polarizability tensor, and 

E = 1/, E' exp (-iUld) + Ih E' exp (-iUl,t) + C.c. 

is the electric field of the pump and of the Stokes wave 
with their respective frequencies Wz and wS' 

For the distribution function peep, M) in phase space, 
where ep is the angle between the molecule axis and the 
x axis, we can write down the Liouville equation 

~+ a~o ap _ a~o ~=O (2) 
at aM a<p if<p ifM ' 

which is equivalent to the classical equations of motion. 
By adding to this equation the relaxation terms that 
take into account the interaction between molecules, we 
get 

(3 ) 
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=~~(X -x ) [ie"·(E 'E "e-loo'_E "E 'eiOo')+c C 1 4 aM II.L + - - + •• 

We have left out from the right-hand side the terms with 
frequencies different from no, since they have no bear­
ing on our problem. Here no = Wz - w S ' K II and Klare 
the polarizabilities of the molecule parallel and perpen­
dicular to the axis, Els are the circular complex ampli­
tudes of the fields (the plus sign corresponds to right­
hand circular polarization and the minus sign to left­
hand). The relaxation constant T' determines the relaxa­
tion of the distribution function to the equilibrium func­
tion poem), and the term with the constant D describes 
the diffusion of the rotation phase. The relaxation terms 
introduced in this manner ensure preservation of the 
normalization 

S pd<p dM = S pod<pdM = 1. 

Equation (3) can be solved by successive approxima­
tions: P = po + Pi + '" • The equation for Pi is obtained 
by substituting the quantity apo/aM for ap/aM in the 
right-hand side of (3). The sol~tion of the obtained equa­
tion is Pi = p~+)e-21ep + pi-)e- 21 ep, where [p~+)J* = p~-), 
while pi+) is obtained by solving the equation 

The dipole moment produced by the molecules (per 
molecule) is equal to 

P = S p(cp) p(M, <p)dM d<p = S P(M)dM, 

where 

P(M)= S p(<p)p(M, <p)d<p, and p(<p)= X.LE +(XII- x.L)n(nE) 

is the dipole moment of a molecule whose axis is 
directed along a unit vector n making an angle ep with 
the x axis. 

(4) 

(5) 

With the aid of (4) and (5) we can investigate the onset 
of polarization at the Stokes frequency, including the 
nonstationary case for slowly varying amplitudes E!' s. 
We confine ourselves to the stationary case, when El,s 
do not depend on the time. In this case, using (4) and (5) 
we obtain the amplitudes of the polarization at the Stokes 
frequency 

P-'(M)= n(xlI-x.L) ifp'IE'I'E_' (6) 
+ 4(th - ih) aM ± + , 

where D.+ = no± 2n == no ± 2M/I, and lIT = 1// + 4D, 
with T playing the role of the "transverse" relaxation 
time. If we now integrate (6) with respect to M, assum­
ing that apo/aM varies little in the interval liT, then we 
obtain 

(7) 
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According to (7), the total value of the polarization P:>, 
and consequently the gain at the Stokes frequency does 
not depend on the relaxation constant T. A discussion of 
this feature will be carried out in the second part, in the 
comparison with the results of the quantum calculations. 

As seen from (6), contributions to P:> are made by 
molecules having an angular velocity n + approximately 
equal to no/2. This agrees with the analysis of the in­
teraction of one molecule with the field. The torque act­
ing on the molecule 

T = - ax, = ~ (~EXE) , 
dfjl ofjl 2 

averaged over the time, is in this case different from 
zero, and the polarizability of the molecule varies at 
double the rotation frequency 2n, thus ensuring the ap­
pearance of polarization at the frequency Wz - 2 n = wS. 

Amplification of the Stokes frequency, as seen from 
(6) and (7), occurs if EJpo/EJM < 0; this is always the case 
at thermal equilibrium. The amplification of the radia­
tion at the Stokes frequency is a consequence of ordering 
of the molecules over the rotation phases, and the de­
grees of phasing, i.e., the amplitudes pt), as seen from 

(4), are proportional to the product EZ*Es. In addition, 
it is seen from (6) and (7) that the pump component with 
right-hand polarization gives rise to amplification for 
the left-hand polarization of the Stokes wave, and vice 
versa. 

In the next higher approximation, we obtain from (3) 
Pa = p~o) + p~+)e-4i<p + p~-)e4i<p, with p~o) describing the 
change in the populations and the saturation effect, while 
p~±) leads to the appearance of the combination frequen­
cies Wz ± 2n o• The equation for p~o) contains only the 
relaxation constant T' (since p~o) does not depend on <p). 
Thus, T' has the meaning of the time of the "longitudi­
nal" relaxation. 

2. QUANTUM THEORY 

If we disregard the field at the antistokes frequency 
(as was done above), then in the lowest order of pertur­
bation theory, in the quantum (more accurately, semi­
classical) analysis, without allowance for the change of 
the populations or for the Stark shifts, we have the fol­
lowing expression for the polarization at the Stokes fre­
quency (per molecule): 

) , _ ,'.. 1 I. _ p, - P2 ~ ( m,m'E ') (E '. m,m'E I.) 
I. - X.",L, E,E, - - 41i(/I,. _ ih:) ~ x., , ,x" ,. (8) 

In. 1//2 

Here ES and EZ are the circular complex amplitudes of 
the Stokes wav~ and of the pump field [Eo = Ez ' E± 1 
= (± Ex + iEy) / v'"2], pa and PI are the populations of the 
upper- and lower-level states (they do not depend on m! 
or rna), ~ = Wz - Ws - Wo (where Wo is the frequency of 
the rotational transition), T is the relaxation time, m! 
and rna are the quantum numbers of the projection of the 
angular momentum on the z axis for the lower and upper 
states, respectively, and 

x:;m'=~[_~~'!I!;lr>(rll!.lml> _ (m211!.lr)(rll!;lm,)] (9) 
Ii 0)1 + COr,ml WI - OOr,ml 

is the scattering tensor. Summation over the repeated 
indices {3, y, and 0, as well as over the intermediate­
state index r, is implied throughout. By IJ.O/ we denote 
the circular components of the operator of the total di­
pole moment. 
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The quantum numbers for the angular momenta of the 
initial and final states will be designated J l and Ja. It 
follows directly from (9) (Since IJ. 0/ is a vector operator) 
that Ja is equal to J l dr to J! + 1 or else to J l + 2. The 
first possibility is of no interest for a pure rotational 
transition. We consider first the case Ja = J 1 + 2 for 
molecules of the symmetrical-top type, particularly for 
linear molecules. The tensor Kmami can be represented 
in the form O/y 

where the contributions from the electronic, vibrational, 
and rotational intermediate states are separated. Usually 
(in the Placzek approximation) one takes into account 
only the electronic part. In the case of pumping from an 
infrared laser, nuclear contributions can also playa 
role. It is assumed that the prinCipal electronic term of 
the molecule is not degenerate and has no fine structure, 
since for most molecules in the ground state it is possi­
ble to separate in (9) intermediate states !r) that corre­
spond to the electronic ground state. Then the remaining 
part of the tensor K 0/ is transformed by Placzek's 
method and can be ex~ressed in the form 

(10) 

where K O/y (e) is the electron-polarizability tensor aver­
aged over the ground vibrational state and !Jikimi) is a 
rotational eigenfunction, with ki the quantum number of 
the angular-momentum projection on the molecule axis. 
Owing to the axial symmetry, Kmaml 1= 0 only at k! = ka 

O/y(e) 
= k. The eigenfunctions !Jikimi), as is well known, coin­
cide with the normalized Wigner functions for the repre­
sentations Ji of the rotation group [4] • The nuclear part 
of the scattering tensor corresponds to transitions within 
the electronic ground state. An appreciable contribution 
to the tensor KO/y(V) is made only by those intermediate-
vibrational-rotational states for which the pump fre­
quency Wz approaches the transition frequency Wv (the 
molecule is assumed to be active in the absorption spec­
trum). We need therefore retain only the intermediate 
states with vibrational quantum number v = 1 for that 
mode of oscillations for which this is satisfied. It is as­
sumed that this is a nondegenerate oscillation mode. 

Then the vibrational part of the scattering tensor 
takes the form 

Since jJ. is a vector operator, we can write 
0/ 

<l,m,JIl!lm> = <l,km,Jd,Jlkm>, 

(11) 

where di is a certain vector directed along the molecule 
axis, and in the approximation in which no account is 
taken of the interaction between the vibrations and rota­
tions we have d l = da = d, where d is the dipole moment 
of the vibrational transition. 

At J2 = J 1 + 2 we can sum in (11) also over J, since 
the tensor KO/y(V) differs from zero only at J = Jl + 1. 
Taking this into account, we can write 

(12) 

where nO/ is a unit vector directed along the molecule 
axis. 
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If the molecule has a constant dipole moment do 
directed along its axis, then a noticeable contribution 
can be made by the intermediate rotational states. The 
corresponding contribution K m 2m 1 can be written, in 

ay(r) 
analogy with (12), in the form 

2d'B 
"" ~ <J,km,!n.n;!/,km,>, 

f£CiJl 

(13) 

where 2B = wJ2 ,J - wJ,J1' 

Using (8)-(13), we can express X 0 in terms of 
3j -symbols in the form a (3y 

(14) 

or 

p' = - 4ft~~ -=-~~T) !'X,!'g(/,)[3E'(E"E ') - 2E' (E"E') + 3E"(E'E')] (15) 

Here 
d' 2Bdo' 

'X, = 'XII - 'Xl. - ( + <>"'1' ; ft rol - ro.) ,,~ 

K II and Klare the electronic polarizabilities of the mole­
cules parallel and perpendicular to the axis, and 

(l)=-~ [(/,+1)'-k'][(/,+2)'-k'] . 
g, 30 (I, + 1) (I, + 2) (2l, + 3) 

(16) 

The factor g(J 1) is known from the theory of spontaneous 
Raman scatter!ng. For linear molecules we have k = O. 

Expressions (14) and (15) make it possible to obtain 
the Stokes-wave gain and its dependence on the polariza­
tions. As seen from (15), this dependence is the same as 
proposed in [lJ. The gain G is connected with X by the 
relation 

G = -41tN~Imx!E'12; 
c 

(17) 

where N is the number of molecules per unit volume. 

The gain for the electronic part of the tensor K was 
estimated in [2J from data on the cross section of ~Jon­
taneous scattering. It is meaningful to estimate the con­
tribution of the nuclear part. The contributions of the 
vibrational and rotational parts referred to the contribu­
tion from the electronic polarizabilities are respectively 
equal to 

d' 
(18) 

The quantities K II and Klare well known for many mole­
cules from measurements of the depolarization of 
Rayleigh scattering of light. When 
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I 'XII - 'X.LI.~~O-" cm3 , d ~ 10-" cgs esu d, ~ 10-" cgs esu 
2B ~ 30 cm -1 and ("I ~ 10' cm -1 we have e. ~ 50 cm -1 / tw, 
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where t,.v is the detuning Iwz - wvl in cm-1, and Er 
~ 0.15. 

Thus, at t,.v < 50 cm-l, the vibrational part can be­
come comparable with the electronic part. As seen from 
(14) and (15), interference of these contributions takes 
place, and they can either reinforce or cancel each other, 
depending on the sign of Wl - wv- At detunings of the 
order of 50 cm-l, it can be verified that the linear damp­
ing at the Stokes frequency will be smaller than the gain 
due to the Raman process over a considerable range of 
pump powers. 

The rotational part can also make a noticeable con­
tribution to the gain, and under certain conditions one 
can have Er > 1 and Er > EV ' i.e., this effect becomes 
the principal one. At J2 = J 1 + 1 the contribution of the 
electronic part to X is determined by expression (14) 
with d = do = O. The nuclear part leads to the appear­
ance of an antisymmetrical component of the tensor 
KaY' so that the dependence on the polarizations turns 
out to be different from that given by expression (15) 
with d I- O. 

The expressions presented above for X and pS are 
valid if only one transition does indeed play the principal 
role. Otherwise it is necessary to sum over the tran­
Sitions, and then if the line width greatly exceeds the 
difference between the frequencies of two neighboring 
transitions, the gain ceases to depend on T_ This corre­
sponds to the classical analysis; the then-obtained con­
dition no i":! 2n corresponds to the selection rule J2 = J 1 
+ 2. 

Thus, we have considered the theory of stimulated 
Raman scattering on purely rotational transitions with 
allowance for the intermediate vibrational and purely 
rotational transitions. We have shown that the contribu­
tion of these transitions to the gain can be the principal 
one if pumping is with a carbon dioxide laser of wave­
length 10.6 /l. Under these conditions, the dependence on 
the polarization is different (for the transition J2 = J 1 + 1) 
than in the case of pure electronic polarizabUity_ 

The authors thank Y. T _ Platonenko for a discussion 
of the problems set forth in the present article. 
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