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It is shown that the analogy between gravitational and electromagnetic fields inherent
in the equations of the theory of gravitation can be considerably extended by attaching
a physical meaning to the geometric quantities encountered in the theory of embedding of

Riemannian spaces.

1. INTRODUCTION

We write down the well-known Maxwell-Dirac system
of equations, which describes interacting electromag-
netic and electron-positron fields, in spinor form

[]A% — 598 — %6 4 nnp  (Maxwell);
(o6 — A%); —mts =0,
(040 —Apq ) ¢ —mny =0 (Dirac),
where the spinor indices run through the values @ =1
and 2 and § =1 and 2.

(1)
(2)

These equations can be regarded as a field theory of
sources of an electromagnetic field. The spin tensor

T g“gB + nanB is a Hermitian form made up of two
spinors & and 7 describing the sources of the electro-
magnetic field. The divergence of the current vanishes,
on one hand, by virtue of the structure of Maxwell’s
equations, and on the other hand by virtue of the Dirac
equations. The Maxwell-Dirac equations are not universal
in the sense that the sources of the electromagnetic

field in them are only electrons and positrons, while

other forms of charged matter, which also produce an
electromagnetic field, are not taken into account.

We shall show that by making use of additional geo-
metrical quantities that enter in the theory of embedding
of Riemannian spaces, the equations of the gravitational
field can be recast in the form (1) and (2).

2. EMBEDDING THEORY AND THE GAUSS-
CODAZZI-RICCI EQUATIONS

It is shown in embedding theory[” that the curvature
tensor Ry g, 5 (@, B,y,06=1,2,3, 4) Riemannian space
can be represented as a quadratic form made up (in
the general case) of the components of six symmetrical
tensors Hag[A], where the ‘‘large” index is A =1, 2,

.

Rasw(8) = e[A](Hoy[A1Hn[A] — Hus[A]Hy[A]) (Gauss),

where e[A] = + 1. Here and throughout we sum over
repeated ‘‘large’’ indices from 1 to p.

®)

For Riemannian subspaces of special type, the num-
ber of tensors HaB[A] in terms of which the curvature
tensor is expressed decreases. The minimum number
of tensors Hag[A] in terms of which one can express
the components of the curvature tensor is denoted by
p(0 = p = 6) and is called the class of the space.

The Gauss formula (3) is analogous to the Maxwell
equation (1). The analog of the metric tensor gag is the
electromagnetic potential Aap , and the analog of the
curvature tensor Ragys is the current spin tensor saB,

The tensors Aqg[A] satisfy the equations of Codazzi
and Ricci
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VvHux[A] - V1HW[A] + e[B] (TV[A, B]Hux[B]

_Tr[AyB]Hw[B]) =0 (COdaZZl (4)

v,T.[A, B] — V.T,[A, B] + ¢[C](T,[A4, C]T.[C, B]
—T.[4, C1T,[C, B]) + g*(HalA1Hn[B] — Ha[A1H.[B]) =0 (Ricci),
(5)
where V,, denotes covariant differentiation, o, y, 7, p
=1,2,3,4,A,B,C =1, ...,p; e[A] = £1. The vectors
T,[A, B] are antisymmetrical in the “large’ indices A
and B: T./[A, B]=-T,[B, A].

The Gauss-Codazzi-Ricci (GCR) conditions (3)— (5)
are the conditions for the embedding of 4-dimensional
Riemannian space in the pseudo-Euclidian space
E4+p (05 p= 6).

The Codazzi and Ricci equations are analogous to the
Dirac equations (2). The tensors Hyi{A] are the analog
of the spinor fields £ and 7, and the analog of the mass
are the vectors T, [A, B] which, unlike the mass m (an
experimentally determined constant) are determined
together with Hy7{A] from the GCR equations.

The Bianchi conditions
VoRagws + YoRapoy T VyRagse =0 (6)

are satisfied for two reasons: on the one hand, by virtue
of the structure of the curvature tensor as a functional
of the metric tensor, and on the other hand by virtue of
the equations of Codazzi and Ricci.

In the presented theory, the geometrical quantities
HggA] and T,[A, B] are interpreted as physical fields
describing the sources of the gravitational field. The
field equations describing the interacting gravitational
field (metric tensor gag) and the fields of the sources
HaglA] and T,[A, B] are the GCR equations. Unlike the
Maxwell-Dirac equations, the GCR equations are uni-
versal in the sense that they describe all the gravita-
tional-field sources without exception.

In gravitational theory, the geometrical tensor
Rap — (1/2)gagR acquires, by virtue of Einstein’s equa-
tions, the physical meaning of the energy-momentum
tensor of the gravitational field sources. In our theory,
a physical meaning is assumed by the fields HaB[A] and
TY[A, B], and consequently by the curvature-tensor com-
ponents Ragys, which are expressed in their terms.

The energy momentum tensor Tag is constructed in

quadratic form from the fields Hag[A]:

Top = e[Algiolu[A1Hi[A] — e[ Al gotlac[A1Hp[A]

—l/Ze[A]gaﬂ(guvglPHw[A ]Hlo[A] — guvthM[A]HW[A])-
The covariant divergence of this tensor vanishes by
virtue of the GCR equations. We see that the equations
and quantities contained in gravitational theory are ob-
tained as a result of a contraction of the corresponding
equations of the developed theory. Thus, the GCR equa-

Q)
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tions describe in greater detail the sources of the gravi-
tational field than the Einstein equations.

3. SPHERICALLY SYMMETRICAL FIELDS

By way of illustration, we consider spherically sym-
metrical solutions of the GCR equations.

The nonzero components of the fields gag, HapglAl,
and T,[A, B] are written in the following form:

(1—8‘)"."4—6.1 0
g¢.=( 0 e") ’ ®)
a1 (clAlnn—dlA]6, 0
Hala]=( N 1a1) )
T,[4, B] = (0, 0,0, T[4, B]), (10)

where
B Y=12,34s1t=123 4, B=1,..

After long manipulations, the GCR equations take
the form (see Appendix II)

P =21, T =Yz.2..

t o e
= (" =)t o' = efAlelA]d[A],

(e = D=clAld[4]d[4],

1
——;—-p"e“——:—p”e“+%u'-:—e“" +Tp,’v’e“= e[Alc[4]1f[4],

2Lﬂ'e“"=e[A]d[A1f[A],
r

(11)
d’[A]+er[A]+(c[A]—d[A]) 17e—~ —0,
¢[BIT.[4, BIc[B1 =0, ¢[BIT.[A, B]d[B] =0,
Al 4 We ela]— dla]) — 5 wilal=0,
T[4, B] =0,

where the prime denotes differentiation with respect
tor.

It is interesting to note that for spherically sym-

metrical spaces the vector fields Ty[A, B] are constants.

A solution of this system yields a spherically-sym-
metrical metric gap of a space of class p, and also the
fields Hag[A] and T,[A, B] that produce this metric.

For spaces of second class, the GCR equations are
of the following form:

1—(e“'— 1)+1—v' =e[1]c[1]d[1]+ e[2]c[2]d[2],
r 2r

1

F(ew— 1)=e[1]1d*[1]+ e[2]d?[2], (12)

1 .
u”e"—:—u”e“+21r— we +4— wv'er=e[1]c[1]1f[1]+e[2]c[2]f[2],

00| =~

W e a1+ el21ar21120;

d’[A]+éd[A]+(c[A]— d[A])%e“ —0  (4=1,2),

FlAl- o we ClA]-dl4) -5 WilAl=0  (4=12),
T[4, 2]e[2] =0, T[2, 1]e[1] =0,
T[1,2]d[2] =0, T[2, 1]d[1] =0,
T[1, 2] = —T[2, 1] = consl.
This system has two different solutions:
1) T #0. Then c[1] =c[2] =0, d[1] =d[2] =0, u’ =0,

v =0, f{1] =f[2] = const. This solution corresponds to a
Euclidean metric.

(13)

2) T = 0. We obtain a system of eight equations for
eight unknown functions c[A], d[A], f{A], &, and v. The
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solution of this system gives a spherically-symmetric
metric for a space of second class.

4. THE SCHWARZSCHILD PROBLEM

Let us examine in greater detail a Schwarzschild
metric, for which the functions pu(r) and v(r) take the
following form:

p(@r) =—v@)=—In(1—alr) (a0 =2xm).

The system of the GCR equations is in this case a sys-
tem of equations for the determination of six unknown
functions c[A], d[A], and f[A] (A =1, 2). Since the
Schwarzschild space is Euclidean at infinity, it follows
that the functions c[A], d[A], and f[A] should vanish as
r — =. We determine the signature e[A] (A =1, 2) for
the Schwarzschild space.

As is well known [1, 2], the Schwarzschild space for
which the quadratic form ds’ is represented in the form

o 1
2 = —_—— o — e — 04 | dadz’.
ds (1 r)dt+[(1 1_a/r)nn 6] rdz
has a metric of a second-class space. Indeed, if we put
(atr> a)

a t * ¢
y‘=aV1——cos—,' yz=°‘v1__.5i“_* y' =1,
r a T a

4 1 5 __ 2 6 3
y=z, y=2, y*=2,

where the function f(r) is such that

() (%)

then ds’® takes the form

ds® = (dy')*+ (dy*)* — (dy®)* — (dy*)* — (dy®)* — (dy°)~
Thus, the signature e[A] for the Schwarzschild space
has the form e[1] = 1, e[2] = - 1.

We turn to the GCR equations for a space of second
class with signature ¢[1] =1, e[2] = — 1. We introduce
the six unknown functions c(r), d(r), f(r) and ¢.(r), @.(r),
and @s(r), which are connected with c[A], d[A], and f[A]
by the following formula:

d[1]=d5h(‘)27 f[“:fCh(Ps,
d[2] =dch ., f[2] =fshqs.
Equations (12) and (13) become

o/r*=d

(1+§(r'—-———a)) =cd ch(p,— @),

c[1] = cshqy, (14)
c[2] =cchq,

o

=
o r—
7(1 +*2—ra) =cfsh(gi— 1),

o (r—a)

r2r

(15)

(Gauss);

= df sh(@: — @s)

, , 1 r—a

d’ sh . + do: chq)z+7dsh(p,+»T(csh(p,—dsh(pz)=0,
r

r—

@ (cchg:—dchg.)=0, (16)

L1
d’ ch . +dg,’shg.+—dchg.+
r

r?

, , a (r—a a
f ch@s + fos shcp3+2—( = ) (cshq).——dshcpz)—mfch(m:(),
, a (r—a a
1" sh @3 + fos chcp1.+7( = )(cchq>.fdch¢pz)—m-fshq)3=0
(Codazzi).

It can be verified in the usual manner that only three of
the four Codazzi equations are independent and are of
the form

(r—a)

) csh(ei—¢:)=0,

do,’ +
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(r

ftps’+g—[cch(q>x @) — doh (g2 — ) 1=0,
F+E 2o (0 — i) — dsh (s — gs) J— ———2—— =0 (ea)
o csh(@q—@s P2— Ps Tr—a f=0.

Solving the last of the Codazzi equations (16a) with re-
spect to f and taking into account the third and fourth
Gauss equations (15), we obtain, allowing for the boundary

conditions,
a V a
B

Thus, the Gauss-Codazzi system of equations reduces
to a system of five equations for four unknown functions
clr), ¢ilr), ¢2(r) and @s(r):

cch(@s—g)— 'Va (3r —2a)

r 2(r—oc)
Br—a)

csh(p,— @)= —

r—a

Sh(Q)Z*‘(PS):V o’
,, r=a)
Var

)

¢+

c Sh(‘Pi - q>:)= 0,

ar

S T [ o
[0} +V1—T[cch(w,—wx)—V%ch(wz—wa) =0.

The solution of this system is

iy 9a _ a? _ 2a(r—a) a? w1
(= 21*(r—a)  4r(r—a)? rt +r (r—a) [302 2
3 a
- 289 — +160——507+4—
3 r rr 17
—147§7+45a‘ 8 a(r—a)
s
0= [ ar' (T 5)
-dr’ [ 20 —3r _ Gr'—a)a ¢ () {3r' —a)
* l 7{ r’ 4r' (r' —a) c(r’) }’ (18)
¢ dr 4 '/x
9:(r)= %[ (3 —20)! = —r"("-a)e () |,
e —a) R
(Ps(T)—Jdr{——;T—-—r;T},
where # =[(3r’ — @)? +r”@’ — a)c*(r’)]¥?. From

formulas (14) we get c[A], d[A], and f{A].

We have thus obtained the fields Hyg[A] that produce
a gravitational field with a Schwarzschild metric.

APPENDIX |

GCR EQUATIONS FOR n-DIMENSIONAL
RIEMANNIAN SPACE

We denote by Yp (X1, ..., Xp) a certain Riemannian
space, and by En +p(y1, .., ¥n + ) a pseudoeuclidean
space into which the space Vn(X) 1s embedded with the
aid of the formulas y* =x!, ..., y" =x, y? *1=yn +1
(Xl, ceey XH), ceey yn +P = yn +p (X]_, ceny Xn)-

At the pdint P of the space Ej + p(y) we can construct
the following:

1) A tangent manifold over n vectors eq with co-
ordinates
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']
o =1{e) = {ﬂ’_}
oz*

2) A normal manifold over p vectors np = {ni} ,
forming an orthonormalized basis
(na, ’n,,) =e[A]164,5 (R4, e.) =0,
(ear €5) = 8up (A, B=1,...,p).
Differentiating the preceding equations with respect to
xY, we have

k=1,....,n+p, a=1,...,n;

dea dep  Ogap
eq——=——%*0,
oz’ e oz’ ox’
ona dea
A T4 0z’ o
ona ong
o +n, Pk 0.

Consequently
T., BV+FF av=/=0 Caet FD.Av=0y FA.Bv+Fn ay=0.

We introduce the quantities HygA] and T,[A, B] in the
following manner:
Taw= _rb. Ay = HDV[A] = H.,,[A],

FA,Bv=—FE,Ay=TV[A1 B] =—T‘V[By A]~ (19)
In n- + p-dimensional Euclidean space, the Riemannian
tensor vanishes:
lam O,
6y!h - Ay r:l +g*(Toulgem — Fpamlgu) =0

(s, k,l,m,p,g=1,...,

Roum (y)=

n+p). (20)

From (20) we have
Olaps  Olapy
Ra"vb (y)= 9z - )
+e[A](TapTaas —Tapplaay) =0
(e[A] ==1), (o B, v, 6=1,...,n).

+ g% (Typelcas — Lopaleav)

Hence, taking (19) into account, we obtain

Ropw(z) = e[A] (Hoy[A1Hu[A] — Hao[A]Hy[A]) (Gauss) (21)

From (21) we get
Ray = e[A) (gnHa[A1Hun[A] — goH o[ A1Hy[A]),
R =e[A] (gungHav[A]Hbd[A] — B8l o [A1Hy[A]).

From (20) we also have

7] DR
RAm(y)= 3.‘:" 04'

+e[BI(T B,pnI‘n,Ar - PB,?vFE,Au) =

+ g (Typelsac — Ty, pxrn 40)

Using (19), we obtain
VHp[A] — V.Hy[A] + e[BI{(T.[4, BlH[B]
—T.[A, BlHwW[B]) =0 (Codazzi)
Finally, since
aI‘A Br 6I‘A,w
0.: oz’
+ e[C] (FPe.polc,ar —

Rayor (y) + g"° (Fv,aura,u - Fy.Bth,Aa)

Fc,mrc,Aa) =0,

we have
V,T.[4, B] — V.T,[A, B] + e[C] (T[4, C]1T:[C, B] —

—T.[4, C]T,[C, B]) — g®(Huy[A]Hw[B] — Hy[A]Hs[B]) =0
\(Ricci)

APPENDIX 11

In the spherically-symmetrical case the GCR equa-
tions (3), (4), and (5) take the form

Rupg=e[A](H[A]H[A] — H, [A1H,[A]),
R,p= C[A]Hw[A]Hu[A]y

OHnlA] _OHulA) | 1\ oy 4] DB, [4]=0,

ax! dz’
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0H,.[A]
s
0H.[A]
dx?
g"’(H,.[A]H,,,,[B] - H,.,,[A]H.,.[B]) =Ov
OT.[A, B] /92> =0,

where p, s, t, r, q run through the values 1, 2, 3.

(22)

+e[CIT.[A4,C1H,.[C]=0,

+ TW'Hp[A]- T Hu[A]1=0,

For the Christoffel symbols we have
1

I'=—np'e*"n,, W'=—p'n,

) pn'e*n T ) n'n

1—

r

- 1.
L.l=n [ d (8;s —n.n,)+ ?v’n,n.] .

After simple but cumbersome manipulations we obtain
an expression for the components of the Riemannian
tensor

1 1
Riypg= (—z—(e“’ —1)+ ?v' ) (8ugruntp + Bipntantg — 8. pning — Syntuny)
T r
1
+ r—z(e"v — 1) (8,p8:g — 844615),

1 1
% pier+—p —e*
r

Rt e
siph_( —Wn € 5

2
1 1,
+ e p,'v'e") n.n, — o n'e*=8,p.
Further, it is easy to show that Eqs. (22) take the form

(rt_—(e—v— 1)+

2—V'> (8sqniny + 8epn,ng — 8,,0ng — Sigitalp)
-
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1
+ 7(6_' —1) (845010 — 8.0ip) = e[A1c[A1d[A] (8sqnin, + Sipnung
— 6.,n,n¢ — 6.¢n.n,) + C[A ] d[A ] d[A] (Gupalq - 6-116!?) B

i, 1, 1, 1., 1, .
[—7;1, e“——4p’e“+.—2;p, e""+7y.ve“]n,n,—3u.e"‘ 8.p

=e[A]c[A]lflA]n.n, — e[A]d[A]f[A]S.s,

1ze” | @bu—nts =0,
.

e[B]T.[A,B](c[Bln,n,—d[B]6,,)=0,
1 1

(f'[A]+ 5 we(c[A]—-d[A])— —2—u'f[A]) n, =0,

8T.[A,B]
ar "
As a result of obvious simplifications we obtain Egs.

(11). .
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[-ela1+a 141+ @a1-eta)

,=0.
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