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It is shown that a limiting mass in the form (9) or a corresponding cut-off length in the 
form (10) arises in intermediate states when gravitational interactions are taken into 
account in quantum electrodynamics. It is asserted that the electron mass cannot be of 
an electromagnetic nature since the electron-mass corrections due to the electromag­
netic field yields are smaller than the experimental mass by several orders of mag­
nitude. The possibility of the appearance of states characterized by a half-closed metric 
in intermediate states is discussed. 

As is well known, the total mass of a classical 
charged particle, distributed over a region ro, is given 
by the expression (see Pl) 

where mo is the "bare" mass of the particle, e is its 
electric charge, and K is the gravitational constant. It 
follows therefore that 

(1) 

Relation (1) takes into account the equality of the inertial 
and gravitational masses. 

When the particle dimensions tend to zero <"ro - 0) 
we have 

m,o, ..... e/1X. (2) 

The same result is obtained rigorously within the frame­
work of general relativity theory{l-3]. In this rigorous 
description, however, the particle is in fact not pointlike. 
More accurately, in general relativity theory the par­
ticle turns out to be pointlike when described in isotropic 
coordinates. But isotropic coordinates do not give a 
complete spatial description of the given object. This 
circumstance can be explained directly when the problem 
is solved consistently and rigorously. The consistency 
and rigor in the investigation of this problem lie in the 
fact that one obtains not only an external solution, but 

a semi-closed world mtot > e/..;K as mtot - e..;K. As 
e _ 0, the external metric becomes Euclidean, and the 
external metric becomes the metric of Friedmann's 
closed world. The case of a system (ii) was called in[4l 
a fr idm on , and the corresponding metric of semi-closed 
world was called a fridmon metric. 

On the other hand, all the known attempts to take 
into account the regularizing role of the gravitational 
field within the framework of quantum theory lead to the 
appearance of another fundamental mass and accord­
ingly to another fundamental length [5-8]: 

m'=Yltc/x, (4) 

or 

r' = Yltx/ c'. (5) 

According to these results, an impression may be 
gained that the regularizing ability of the gravitational 
field has a pure quantum nature. According to the 
classical analysis of the problem, on the other hand, 
gravitation plays the role of the regularizer even without 
making use of quantum theory. 

The purpose of the present note is to indicate that'a 
consistent theory should account for both lines (rc and 
rq), and that this result can be obtained from simple 
considerations based on the equivalence principle and 
on the Heisenberg uncertainty relation. 

also an internal solution describing the given extended In quantum theory, the problem is considered within 
system. From the condition that the internal and ex- the framework of perturbation theory. In other words, 
ternal solutions be mutually continuous, it is established[2,we consider a charged particle of mass mp, which in 
that the system cannot have pointlike dimensions at the the intermediate state emits an energy quantum whose 
mass given by (2). The minimum possible dimensions mass Mo, according to the Heisenberg uncertainty re-
of the system are given by the expression lation, is localized in the region ro, so thae) 

r' = xm,o'/ c' = eY;;:/ e'. (3) 

In other words, this expression for r C is exactly half 
the Schwarzschild radius. Indeed, in this case, as shown 
in[2,3], the external metric is given by the element 

ds' = «l> (r) dt' - dr' / «l> (r) - r'dO', 

where <l>(r) = (1- Kmtot/c2r?, and mtot = e/.fK. A con­
tinuation of the given external metric to the region oc­
cupied by the matter (internal solution) is ambiguous: 
(i) a case of monotonic variation of r is possible and is 
realized by the Papapetrou model (the static model of 
charged dust e/Km = 1), and (ii) a case is possible when 
the external and internal solutions are joined together 
through an orifice ("mole hole"), in this case the in­
ternal solution may not be static. In the pre,sent ex­
ample, the external solution is described by a Friedmann 
metric, and r, as a function of X[2J, has a minimum 
(r' = 0 is the orifice). This case is the limiting case of 
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M,"" h/2r,e. 

Alternately, writing down in analogy with (1) an ex­
pression for the total mass of intermediate state, we 
obtain 

whence 

r e' [ Z" to 2 2 m,o,--- -+-+_+ __ , _ '+ r, e "e e r,e'm ] 'I. 
x )(z )(. )( ;e • 

As ro - 0 we have 

( he e') 'I. 
m/ot -to-. -;- + -;- . 

(6) 

(7) 

(~) 

(9) 

Expression (9) is the maximum value of the intermediate­
state mass in quantum perturbatio!1 theory. 

The role of the gravitational field in the intermediate 
states is usually not taken into account, and this leads 
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to infinite values of the energy in these states. Allow­
ance for the gravitational mass defect limits the upper 
limit of the energy (mass) of the intermediate states to 
expression (9). Now the gravitational radius 
rgr = 2MtotK/C2 contains a mass Mtot, given by ex­
pression (9), and on the basis of (3) the corresponding 
length is given by the expression 

( lic+e' ) 'I. 
r'= --x . 

c' (10) 

Both expression (9) for the mass expression and 
(10) for the length go over into the corresponding clas­
sical formulas (2) and (3) as h - O. In the case of 
electrodynamics, e 2/fic « 1 and the quantity e2 in (9) 
and (10) can be neglected. But another situation can 
arise in mesodynamics, where the specific charge of a 
massive vector field g can no longer be regarded as' 
small: g2 /bc ~ 1. 

Thus, taking into account the foregOing, the known 
expression for the electromagnetic self-energy of the 
electron takes the form 

(11) 

It should be noted, however, that the logarithmically 
divergent expression for the electromagnetic self­
energy of the electron, obtained in Dirac's theory many 
years ago, raises many questions, some of which could 
be satisfactorily answered only lately. Indeed, ex­
pression (11) for the electrostatic self-energy of the 
electron does not go over to the corresponding classical 
expression as fJ. - O. Moreover, the quantum expression 
(11) depends strongly on the bare mass of the electron. 
On the other hand, a linearly diverging classical analog 
of the electrostatic self-energy of the electron has in 
general no dependence whatever on the bare mass of the 
particle. 

Recently, however, searches for the corresponding 
solutions outside the framework of perturbation theory 
had led [9] to an expression different from (11) for the 
electromagnetic self-mass of the electron: 

m" = mm"exp { - 32n :~}-1I:c e~{ - 3; :~}. (12) 

This "superconducting-type" solution cannot be ex­
panded in terms of the fine-structure constant and cannot 
be obtained within the framework of perturbation theory. 

Expression (12), unlike (11), in accordance with the 
classical expression, does not depend on any bare mass 
of the electron at all. It diverges linearly with increas­
ing mmax, like the classical one, and goes over at 
h - 0 into the corresponding classical expression. The 
exponential factor ~ e -650, which takes into account the 
quantum corrections (polarization of vacuum), makes 
the contribution of the electromagnetic field to the self­
energy of the electron negligible, in spite of the seem­
ingly tremendous value of the limiting mass of the inter­
mediate state. According to this analysis, the mass of 
the electron cannot be of electromagnetic origin. 

Although the earlier estimates took the equivalence 
principle into account in the form (2) and the quantum 
character of this phenomenon is recognized (which is 
important), a shortcoming of such an analysis is that 
the metric in this problem remains Euclidean, although 
its conditions are such that they can lead to the occur­
rence of a closed or almost-closed metric. Let us ex­
amine in greater detail these conditions from the point 
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of view of the possible occurrence of similar fridmon [2-4] 
formations in intermediate states. 

If the density E/C2 of electrically neutral matter is 
such that a system with a metric of the close Friedmann 
world is indeed produced, then the corresponding Ein­
stein equation takes the form 

8nx e =~[ (~)' .!...+ 1] (13) 
3c' a' dt] a' ' 

where a(1/) is the radius of the given system at the 
instant t, and cdt = a(1/)d. 

At the instant of maximum expansion of the "world" 
(da/d1/ = 0), its maximum radius ao is given by 

Bo = 3c' / 8n xao'~ (14) 

The total "bare" mass of the system takes the form 

1 f 3 ao Mo=- 8 odv=-nc'-. 
c' 4 x 

(15) 

It must be emphasized that a closed world can exist 
in principle in the form of a wor ld with very small 
dimensions (small ao) and contain matter with very 
small masses (Mo). However, the necessary homo­
geneous denSity of matter (ILo) at the instant of maximum 
expansion should only satisfy the condition 

!.to = e, / c' - c' / x'Mo'. (16) 

If we take the liberty of setting Mo in (1~) equat" to the 
limiting mass Mmax of the intermediate states 
Mo ~ lbc/K, then we obtain for the dimensions of the 
"world" the critical length 

ao = '{lix / c' -Ii I Moe. (17) 

If a similar situation were to arise in classical, non­
quantum physics, we could say that in these intermediate' 
states there can arise states with closed (in the case of 
an electrically neutral system) or semiclosed fridmon [2-4] 
metric in the case of charged systems. Moreover, at­
tention is called to the fact that when the mass in the 
intermediate state is of the order of Mo ~ JhC/K, then 
the gravitational radius of this mass 

rg , = 2xm / e' = 2,{ lix / e' 

coincides with the region of localization of the given 
mass, admitted by the Heisenberg uncertainty relation 

I-iii me - '{lix/ c'. 

With further increase of the energy mc2 of the inter­
mediate states, the gravitational radius should increase 
accordingly. On the.other hand, the region of localiza­
tion of the energy of the intermediate states, according 
to the Heisenberg relation, should decrease corre­
spondingly, and should become smaller than the gravi­
tational radius at m> JhC!K. If such a situation were 
to arise in the region where classical physiCS applies, 
then we would say that we are dealing with a system 
whose mass is under the gravitational Schwarzschild 
sphere. In other words, we would deal with systems in 
the collapsed state. This would be either the state of a 
"black hole ," or more readily the state of a system with 
semiclosed metric, if the "bare" mass of the inter­
mediate state decreases strongly as a result of the 
gravitational defect. At the present time, we do not know 
the extent to which the metric concepts remain in force 
in this state, although in modern theory we stubbornly 
use a Euclidean metric in these cases. We know, how­
ever, that with increaSing energy of the intermediate 
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states the region of localization of the mass decreases 
in accordance with the Heisenberg relation. Conse­
quently, owing to the high mass concentration, its 
gravitational defect should increase, and this decreases 
accordingly the total mass of the intermediate state. 
Evidently, only if we take into account the gravitational 
mass defect will the gravitational radius of an intermed­
iate-state system not exceed the dimensions admitted 
by the Heisenberg relation, i.e., this may resolve the 
discussed contradiction. 

Semiclosed-system states or black-hole states 
should seemingly be included in the complete set of states 
that can arise spontaneously in the discussed cases. 
Moreover, these states have the lowest energies, and 
this, as we have seen above, is important in the general 
picture of the intermediate states if gravitational inter­
actions are taken into account. On the other hand, it 
would be a direct violation of elementary logic not to 
take gravitational interactions into account in the inter­
mediate states, and to admit at the same time the 
possible occurrence of macroscopically ultralarge 
masses in these states. 

Of course, an adequate quantum description of col­
lapsing systems can reveal the need for appreciable 
corrections, but apparently mainly in their space-time 
description. The energy picture of these states can 
hardly change significantly. Mor e accurately, this can 
hardly concern significantly such an effect of the gravi­
tational defect of masses localized in a small region, 
and the equivalence principle. States of semiclosed 
systems can be characterized in the energy representa-
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tion by a relation between the total mass (Mtot) and the 
"bare" mass (Mo). Namely[3], Mtot = 4/37TJ.Loa~sin3x, 
where ao = KMo/37Tc2, and consequently 
Mtot = 2/37T-'Mosin3x. If 7T/2 < X < 1T, then the relation 
Mtot/Mo "" 2/37T-'sin3X is the condition of semi-closed­
ness[2,3] of a state in the energy representation. 

J)In Fermi's terminology, a particle that emits in the intermediate state a 
mass quantum Mo = E/c2 makes a "loan" for a time l1t - hiE = h/Moc2 • 

During the time 6t, the emitted quantum can "flyaway" from the parti­
cle only to a distance r .;; c6t = h/Moc. 
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