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The density matrix formalism is employed to derive a kinetic equation in which the coher
ent nature of diffraction in a regular medium and inelastic processes concurrent with mo-
tion of a fast charged particle in a crystal are taken into account simultaneously. The damping 
length L2 of off-diagonal density matrix elements responsible for coherence effects, such 
as the dependence of a nuclear reaction yield on crystal thickness [1], is discussed. It is 
found that L2 may be several thousand angstroms. It is shown that for L > L 2, damping of 
off-diagonal elements leads to symmetrization of the particle angular distribution in a 
planar channel. A theory of multiple scattering of fast charged particles under channeling 
conditions is developed. The problem reduces to that of two-dimensional diffusion in 
transverse momentum space with a diffusion coefficient D that changes appreciably on 
transition from the channel region to the region outside it. It is demonstrated that inside 
the channel, D is determined mainly by scattering by electrons, and in particular by 
valence electrons, and that the value of D is small compared to that outside the channel. 
The solution of the problem for the case of planar channeling yields an explanation for 
the sharp anisotropy of the angular distribution of particles emerging from a single 
crystal, and in particular for the elongation of the angular distribution along the family 
of crystallographic planes considered and, simultaneously, the channel's "screening" 
effect; it also is possible to bring out some of the features of the angular distribution 
for incidence angles exceeding the channeling angle .J o, such as the "forced channel 
crossing" effect at small thicknesses and the "particle capture and delay in channel" 
effect at large crystal thicknesses. 

1. INTRODUCTION 

In a preceding paper[1] (henceforth deSignated I) we 
developed a quantum theory of channeling, with inelastic 
processes neglected. We have revealed the purely 
quantum-theoretical aspects of the phenomenon, which 
are manifest in the existence of a unique effect of 
spikes of the yield of the nuclear reaction with increas
ing thickness ("nuclear echo"), and also in a fine struc
ture of the dependence of the reaction intensity on the 
angle of entry of the fast particles. Naturally, in the 
presence of inelastic processes, these effects should 
become smeared out and ultimately vanish. In the case 
of "nuclear echo" this is due to the damping of the off
diagonal elements of th.e density matrix, since it is the 
deviation of these elements from zero which in fact 
determines the unique phase gathering following the 
passage through a definite thickness of the crystal. 
(We note, to avoid misunderstandings, that the ampli
tude of the spikes also decreases in the absence of in
elastic processes, owing to the inevitable phase differ
ence that sets in with increasing thickness). As shown 
in I, we are primarily interested in the off-diagonal 
elements of the density matrix, which correspond to the 
nearest above-the-barrier states. Consequently, a de
cisi ve role in the feasibility of revealing this effect is 
played by the length L1 over which the off-diagonal 
elements of the density matrix are effecti vely damped 
outside the channel. 

For a particle moving inside the channel, the damp
ing of the off-diagonal density-matrix elements is much 
slower than for a particle outside the channel. This 
damping therefore corresponds to a certain effective 
length L2 which is larger than Llo In fact, L2 is the 
characteristic dimension over which the memory of the 
state of the incident particle at the level of the wave 
function is still preserved. At distances L» L 2 from 
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the entry surface, this memory is completely erased, 
and the particle's motion is now described by an equa
tion that contains in fact only diagonal elements of the 
density matrix. 

The transition thickness L2 is, as will be shown be
lOW, relatively large, on the order of several thousand 
Angstrom units. In such a thickness, however, the 
angular spreading of the packet is still small in com
parison with the channeling angle. At the same time, 
under conditions in which the off-diagonal elements have 
alr.eady been damped out, the properties of the true 
angular distribution are close to the properties of the 
angular distribution averaged over the crystal thickness. 
In the case of planar channeling, in particular, this 
causes, as indicated in I, the incident beam to be repre
sented in the angular distribution on a par with the 
"specularly" reflected beam. With further increase of 
the thickness, this symmetrical state becomes smeared 
out as a result of the inelastic processes, within the 
framework of a multiple-scattering picture that differs 
from the usual one in an exceedingly strong dependence 
of the character of the scattering on the direction of 
motion in the crystal, primarily on going from the 
region inside the channel to the region outside. 

It is interesting that L2 was in fact measured re
cently in experiments by Eisen and Robinson [2]. 

Most experiments on the angular distribution of par
ticles after passing through a single crystal under 
channeling conditions were in fact performed with 
crystals of thickness L» L 2. The experiments re
vealed quite nontrivial Singularities in the character of 
the angular distribution. Thus, in the case of axial 
channeling, a star-like structure of the angular distri
bution is observed, with higher-intensity "prongs" 
along the crystallographic planes, and the given 
crystallographic axis lies on the intersection of these 
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prongs[31. In the case of planar channeling, there is a 
strongly pronounced stretching of the angular distribu
tion along the planes in question [4,5]. 

The physical causes of these phenomena have not 
yet been fully clarified. Yet it is clear from the fore
going that at such thicknesses the entire picture can be 
described within the framework of the Boltzmann-type 
equation (for the diagonal elements of the density 
matrix) with allowance for the strong difference be
tween the types of scattering inside and outside of the 
channel. 

The present paper is devoted to an analysis of in
elastic scattering of fast heavy charged particles pass
ing through crystals under channeling conditions. The 
quantum-kinetic equation obtained for the density 
matrix is analyzed primarily from the point of view of 
the damping of the off-diagonal elements, and by the 
same token, of the determination of the thicknesses LI 
and L 2. The result obtained here raises the hope of 
experimentally observing coherent spikes of the yield 
of the nuclear reaction. It is found at L» L2 that the 
kinetic equation can be reduced to a diffusion equation 
with different values of the diffusion coefficient inside 
and outside the channel. The angular distribution ob
tained in this region turns out to be fully equivalent to 
that observed in the experiment. In particular, it ex
plains the aforementioned singularities in the angular 
distribution of the particles emerging from the single 
crystal, and reveals the special role played by multiple 
scattering in the trapping of particles in the channels, 
a role observed experimentally in a recently published 
interesting paper by Markus, Geguzin, and Fainshtein [61• 

2. KINETIC EQUATION FOR THE DENSITY 
MATRIX 

We start with a derivation of the equation for the 
denSity matrix of a fast charged particle moving in an 
arbitrary scattering medium. The Hamiltonian of the 
entire system as a whole can be represented in the 
form 

where HI is the Hamiltonian of the particle and includes 
its interaction with the medium, while H2 is the Hamil
tonian of the medium (we shall henceforth omit the 
carets deSignating the operators). 

We introduce the density matrix p for the entire 
system as a whole. The denSity matrix of the fast 
particle 

(the trace with subscript 2 denotes summation over the 
variables of the medium) satisfies the equation (Ii = 1) 

iOp,! iJt = [Ho, ,p,] +Tr, [W, pl. 

Here 

where p~o) is the equilibrium density matrix of the 
medium and is diagonal in the representation of the 
eigenfunctions of the Hamiltonian H 2• 

(2.1) 

(2.2) 

If the inelastic-scattering operator W is neglected, 
Eq. (2.1) describes a coherent evolution of the density 
matrix of the particle in the averaged potential pro
ducedby the particles of the medium. The solution of 
the corresponding problem was given in I. If the in-
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elastic scattering is taken into account, the equation for 
the density matrix of the entire system can be repre
sented in the following integral form: 

p (t) = exp{- i(Ho + H,) t}p (0) exp{i(Ho + H,) t} 

o (2.3) 
- is exp{i(Ho + lI,h}[W, p(t + 't) ]exp{- i(lIo + H,h}d't. -. 

Here 

p(O)= p,(O)p:'), (2.4) 

where PI (0) is the initial density matrix of the particle. 

We substitute (2.3) in (2.1) and recognize that the 
terms containing p(O) vanish when (2.2) and (2.4) are 
taken into account. We confine ourselves in the right
hand side of the resultant equation to an approximation 
quadratic in the scattering operator W. Then the total 
density matrix p (t + T) in the right-hand side can be 
replaced by exp [-iHoTlpl(t)exp[iHoTjp~O). Bearing in 
mind that the characteristic times of the incoherent 
variation of p I are long in comparison with the dura
tion of the collision, we obtain 

fJp,!f)t + i[lIo, p,]=Tr,~ [exp{i(Ho + lI,)'t} 

(2.5) 
(0) 

X[ W, exp{- ilIo'tlp, (t) explilIo't}p, ]exp{- i(lIo + lI,),,}, W]d't 

When integrated with respect to time, the contribu
tion of the terms with the principal values of the inte
grals with respect to energy in the right-hand side of 
(2.5), a contribution connected with the renormalization 
of the energy spectrum, turns out to be small in the 
case of fast particles and can be neglected. Then, after 
simple transformations, we write the following kinetic 
equation 

(2.6) 

+ 6(E .. + E,' - E," - E,)]- [W~::' w.~:~'''p"",., (t) 

+ w,~~:."w"~\"",,,(t) ]6(E," +Eo' -E,,,, -Eo)}. (2.7) 

Here the subscript s labels the particle eigenstates 
corresponding to the Hamiltonian Ho, while CI' labels 
the states of the medium. 

We note that the operator W has no matrix elements 
that are diagonal in the states of the scattering medium. 
Indeed, a diagonal matrix element over the states of an 
equilibrium macrosystem is equivalent to thermody
namic averaging of the considered quantity. But in our 
case Tr2(p~O)W) = O. 

When channeling in a crystal is conSidered, the 
states of the Hamiltonian Ho are Bloch functions cor
responding to the motion of the particle in an effective 
periodic potential (see I for details). Accordingly, the 
subscript s corresponds to a quasi momentum k and a 
band number n, and in the expanded-band scheme it 
corresponds to a generalized quasimomentum q. As to 
the off-diagonal elements of the operator W, in a regu
lar crystal they correspond to inelastic scattering of a 
fast particle with excitation of the electron and phonon 
sUbsystems. 

Operating in expanded q-space, we can show that in 
a regular crystal we always have in (2.7) 

q'" - q" = q' - q + K, (2.8) 

where K is the reciprocal-lattice vector. Let us con-
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sider the transition to the case of a completely ran
domized scattering medium. In this case, the eigenfunc
tions of the Hamiltonian Ho are plane waves. Under the 
assumptions that have led to the equation for the density 
matrix in the form (2.6)-(2.7), allowance for the ran
dom distribution of the scattering centers reduces to a 
corresponding averaging of bilinear combinations of the 
matrix elements of W. A simple analysis shows that in 
this case relation (2.8) holds with K == O. 

When considering the problem of scattering of fast 
particles in a random medium made up of heavy parti
cles, we can neglect the inelastic scattering by the 
electrons. Neglecting also the recoil energy of the 
nuclei in the energy Ii functions in the right-hand side 
of (2.6), we arrive at the following equation for a mon
atomic medium: 

ap".,/at + iCE. - E.,)p"., = 3, S dp' 1 Vp ' 1'[6(E. - Eo+ p ') 

8n (2.9) 
+ 6 (E., - E.,+p') 1 [Pto+p',.'+p' - p",' 1, 

Here N is the density of the atoms of the medium and 
Vp is the Fourier component of the potential, averaged 
over the ground state, of an indi vidual atom. 

We note that Eq. (2.9) coincides with an equation 
first derived by Migdal in [7]. 

3. DAMPING OF OFF·DIAGONAL ELEMENTS 
OF THE DENSITY MATRIX 

In this section we consider the question of the damp
ing length of the off-diagonal elements outside the 
channel and inside the channel, primarily in connection 
with the problem of coherent spikes of the yield of the 
nuclear reaction with thickness. This effect depends 
significantly on the off-diagonal elements of the density 
matrix, which connect the low-lying above-the-barrier 
states (at an incidence angle smaller than the channel
ing angle-see I). In this connection, we start with an 
analysis of the damping of the off-diagonal elements 
within the framework of Eq. (2.9), where the analysis 
can be carried through directly to conclusion. 

We replace q and q' in (2.9) by new variables 
p = (q +q')/2 and g =q - q', and put 

The main contribution to the right-hand side of (2.9) is 
made by the region p' « q, q'. Since we are obviously 
interested in the case g« P (g - K), the energy Ii 
functions cut out under these conditions, as usual, a 
plane perpendicular to p and containing the vectors p'. 
We recognize that 

(2~2P S IVp'~ I' d2p~' = vao, 

where v = p/M is the particle velocity and ao is the 
cross section for elastic scattering by a single atom. 
Then Eq. (2.9) can be transformed into 

ap,(p,t) +(" +' gP) () NM Sd2 'IV I' (+ 't) --- "vao !- pg p,t =-(-2- p~ Po. p. P p~, ' 
at M 2n) p ( ) 

3.1 
Assume that at the initial instant of time we have in 

a certain fixed coordinate system 

pg(P.L' p" 0) = p~O) (P.L,p,) 

and let P.L « pz. ConSidering limited time intervals, in 
which the transverse spreading of the initial distribu
tion is still small, we ignore the variation of pz (and 
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also of the quantities I p 1 and v), assuming this quantity 
to be constant in the left- and right-hand sides of (3.1). 
Then the solution of (3.1) can be expressed in the form 

P.(P.L,p"t)=exp{ - (Nvao+i ~) t} 

%+. '1M (3.2) 

xJ d'p~' Jd2p exP{-iP.L'P+ M ~S F(x',Y)dX'}p.(O'(p.L -P.L',P,). 
(2n)' g.L % 

We have introduced here the function' 

F ( ) - N M i d2 [ V [2 ,ip 1." () P - (2n)2p J Pi. P1. e ,p= X,y, (3.3) 

The x axis is directed here along the component g.L 
(of the vector g) in the plane perpendicular to the z 
axis. 

To obtain an estimate of the characteristic damping 
time of the off-diagonal denSity-matrix elements, we 
change over from Pg( p, t) directly to Fourier compon
ents of the fast-particle density, bearing in mind the 
fact that it is precisely this quantity which character
izes, in particular, the coherent effects in the yield of 
the nuclear reaction. In the plane-wave representation, 
the expression for the particle denSity n (r, t) (see 
(2.14) in I) is of the form 

n(r,t)= ~ei"n.(t), 
d'p 

n.(t)= J(2n)' P.(p,t). (3.4) 

Substituting (3.2) in (3.4) and assuming that the initial 
distribution pit(p) was characterized by a narrow peak 
near a certain po, we obtain 

(0) { M '.L'SIM } 
n.(t)=n. (t)exp -Nvaot+- F(p)dp, (3.5) 

g.L 0 

where ngl)(t) denotes the Fourier component of the 
particle density in the absence of collisions. 

Let the characteristic dimension of the region where 
the function f(p) (3.3) differs noticeably from zero be 
1/ Ko. Then, at times exceeding 

t=MI g.L"XO, (3.6) 

ng(t) takes the asymptotic form 

(0) { M.l} n.(t)2fn. (t)exp -Nvaot+g; , .l = S F(p)dp. (3.7) 
o 

Thus, expression (3.6) gives an estimate of the damping 
time of the off-diagonal density-matrix elements. 

A more accurate analYSiS, carried out for scattering 
by a screened Coulomb potential, gives for the damping 
length L = vt at a proton energy E = 5 meV and at gl 
on the order of the reciprocal-lattice vector a value 
L ~ 1000 A in the case of silicon and L ~ 600 A in the 
case of germanium. It is interesting that these values 
are much larger than l/Nao. 

When the fast particle moves inside the channel, the 
scattering cross section decreases sharply (by one or 
two orders of magnitude-see Sec. 5 below). This in
creases by several times the length over which the 
damping of the off-diagonal elements takes place (the 
asymptotic damping (3.7) that sets in at large times now 
becomes much slower than outside the channel). Thus, 
the characteristic damping length L2 of the off-diagonal 
density-matrix elements inside the channel is several 
thousand A at a proton energy on the order of several 
MeV. 

It should be noted that it follows from the structure 
of the general kinetic equation for PI, with (2.8) taken 
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into account, that when the particles are channeled in 
the crystal, the off-diagonal elements of p 1 with indices 
that differ by an amount equal to the reciprocal lattice 
vector, are "reinforced" to a certain extent by the 
diagonal elements. This unique circumstance only in
creases the length L 2. An analogous situation takes 
place also in the case of motion outside the channel, if 
one considers not a random medium but a regular one 
(density matrix in the Bloch-function representation), 
and by the same token Ll is actually larger than L. 

From the point of view of quantum oscillations of the 
yield of a nuclear reaction in the case of channeling, we 
are interested primarily in the damping of the "trans
verse" off-diagonal density-matrix elements corre
sponding to the lowest above-the-barrier states that 
differ by multiples of the reciprocal-lattice vector. At 
short distances from the entrance surface, the damping 
of these off-diagonal elements follows a law close to 
(3.2) and (3.5). However, as seen from the results of I, 
a sharp decrease of the interaction between the parti
cles and the atoms with the medium, owing to the re
structuring of the wave function in the crystal, occurs 
over distances much shorter than L 1• Therefore the 
effective damping length responsible for the detuning 
of the nuclear-echo effect is determined by a value in
termediate between Ll and L 2 • Bearing the foregoing 
estimates in mind, we can state that at proton energies 
on the order of several Me V one is expected to deal 
with a length on the order of several thousand Angstrom 
units. This is longer than the length to over which the 
first spikes of the yield of the nuclear reaction ap
peared in the model considered in I (at E = 5 MeV, 
lo ~ 900 A in silicon and 10 ~ 700 A in germanium). Thus, 
in all likelihood, given a suitable choice of conditions 
and good angular collimation of the incident beam of 
particles, one could realistically observe a size effect 
in thin films, namely a dependence of the yield of the 
reaction on the plate thickness. 

In concluding this section, we note that the general 
expression (3.2) is valid arso when the limit g - 0 is 
taken. Then, USing a screened Coulomb potential for 
the interaction, we can usually obtain the expression 
first derived by Moliere[8J for the angular distribution 
of the particles with a a-function angular initial condi
tion. 

4. QUASISYMMETRICAL STATES OF A 
PARTICLE IN A PLANAR CHANNEL 

The results of the preceding section lead to the con
clusion that damping of the transverse off-diagonal 
density-matrix elements takes place over distances 
much shorter than the length Lo over which the charac
teristic width of the angular distribution that is de
scribed by the evolution of the diagonal elements of the 
density matrix (see Secs. 5-6 below) becomes of the 
order of the channeling angle J o. As a result, there 
exists in the problem a thickness interval L2 < L « Lo 
in which the phase "memory" of the initial state has 
already been erased, but the particle is still <ldeep" in 
the channel. This causes loss of the memory of the 
initial direction of entrance of the particle, and the 
angular distribution at any thickness becomes quasi
symmetrical, i.e., the distribution with respect to the 
transverse momentum represents to an equal degree 
both a group of states with momenta close to the initial 
momentum <li and a group of states with momenta 
close to -<li (the x axis is perpenddicular to the sys-
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tem of planes making up the planar channel). The 
reason is that plane waves with oppositely directed 
momenta are represented with approximately equal 
weights in the Fourier expansion of the modulating 
Bloch function of any sub-barrier state in a one-dimen
sional potential with weak penetrability between the 
wells. 

The general expression for the angular distribution 
of the particles after traversing a thickness L(t = L/vz) 
is (see I) 

p,(O(,t)= EC"(O()Cq'(O()p,qq.(t), (4.1) 
q,q' 

Cq (0() = ~ eixrljJq' (r) dr = 6x"q,6x •• q• \ eiXxXljJqx' (x) dx 

= 6."q,fJ. v 'qv ~ 6'x,qx+KxC,x (x",), (4.2) 
'Kx 

where I/Jqx(x) is the Bloch function defined in expanded 
qx space. It follows from (4.2) that the right-hand side 
of (4.1) contains only off-diagonal density-matrix ele
ments with indices that differ by reciprocal-lattice 
vectors perpendicular to the considered system of 
crystallographic planes. 

At L > L2 we can leave the off-diagonal elements out 
of (4.1), and 

p,(O(,t)'" ~ !Cq(O() !'poqq(t). (4.3) 

At L« L z, neglecting the inelastic processes, we ob
tain for P1qq'(t), assuming that a plane wave with 
momentum qO is incident on the entrance surface: 

P,qq·(t) '" Cq(qO)Cq"(q')exp{- i(e,. - 8,)tl. (4.4) 

Her~ Eqx is the energy corresponding to the Bloch state 
with quasi-momentum qx. 

Figure 1 shows the evolution of the angular distribu
tion as a function of the thickness during the first stage, 
when the inelastic processes can be neglected; this 
evolution was obtained using a potential of the Kronig
Penney type as an example. The figure shows quite 
clearly how nearly specular successive reflections 
take place from each of the planes. 

It is interesting that the angular distribution of Fig. 
1 reveals quite clearly' 'tails" in the angular distribu
tion, equivalent to scattering through a large angle, on 
the order of the channeling angle ';0. This is caused by 
the existence of above-the-barrier states which are 
inevitably represented in the initial distribution of the 
particles even at entrance angles that are small in 
comparison with J o. Thus, the admixture of particles 
in such states is in no way connected with inelastic 
scattering. We note that in the Simplified classical 
picture the presence of these states apparently corre
sponds to the random part of the beam produced on en
tering the crystal (in Lindhard's terminology[9J). 

At L2 < L « Lo, using (4.3) and (4.4), we obtain a 
distribution that does not vary with the thickness. The 
form of this distribution is shown in Fig. 2. We see that 
a quasisymmetrical distribution is indeed produced. 
Such a distribution was apparently observed in the ex
periments of Eisen and Robinson [2], who noted the onset 
of symmetrization in the angular distribution, starting 
at a certain thickness. It is interesting that in silicon 
this thickness turned out to be of the order of (5-7) 
x 103 A at a proton energy 004 MeV. This cale corre
lates with the estimate obtained in the preceding sec
tion. On the other hand, in the experiments of Lutz et 
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FIG_ I. Evolution of the angular distribution of protons as a 
function of the crystal thickness L in the case of planar channeling, 
neglecting inelastic processes and using an effective model potential 
of the Kronig-Penney type as an example: 1- L = 0, II - L = 136, 
III - L = 232, IV - L = 408, V - L = 544 (L is in units of q~/MVo). 
The parameters of the potential are: period d = 2A, height of 
barrier Vo = 4.5 X 104/Md2 width of barrier b = 0.08A. In = I(qxn) 
are the intensities of the discrete beams with momenta qxn = (n + 
1/4) (K~ is the elementary reciprocal lattice vector), which are the 
only beams produced in the crystal when a plane wave with q~ = 
(lOI/4)K~ is incident on it (the components qyn and qzn of the 
momenta of the diffracted beams coincide with the corresponding 
values q~ and q~ of the incident beams). 

D.1l> 

-50 -fll -20 q 7,0 "0 ,0 

FIG. 2. Angular distribution of the particles, which remains un
changed with changing thickness, calculated for L» L2 under the 
assumption that the inelastic scattering leads only to damping of the 
off-diagonal density-matrix elements. In are the intensities of the same 
diffracted beams as in Fig. I, averaged over a small interval of n: 

1 

- 1 '" In ="3 L.J In+k 
k=-l 

aL [10] a clear-cut picture of specular reflections of the 
beams was observed up to thicknesses on the order of 
3 x 103 A at {DOl} -plane channeling of a particles with 
energy 2 MeV in single-crystal gold. Thus, at least up 
to such thicknesses, inelastic processes played no sig
nificant role and the coherent picture was preserved. 

5. DIFFUSION APPROXIMATION IN 
CHANNELLING 

In accordance with the results of the preceding sec
tions, we can state that at a crystal thickness L » L 2 
we should in fact consider the kinetic equation only for 
the diagonal density-matrix elements. USing in this 
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case the general expression (2.6)-(2.7), we obtain 
directly 

X[p;!~P,.,.,(t)- P;~P, •• (t) J. 
(5.1) 

A solution of this equation, substituted in relation (4.3), 
should yield a complete description of the angular dis
tribution of the particles after passage through a thick 
crystal. We note that an equation of the type (5.1) could 
be obtained from the initial equation by averaging in 
this equation the left- and right-hand sides over times 
that are long in comparison with the period Ii/ (Eq x + Kx 
- Eqx) of the oscillations of the off-diagonal elements -
(in classical language, this time was of the order of the 
period of the oscillations of the particle in the channel). 
However, it is only when L > L2 that we can be certain 
that it suffices to consider only the diagonal part of the 
density matrix in the problem. 

Since we are, of course, interested in the evolution of 
the distribution of the particles with respect to the 
transverse momentum, it is advisable to integrate the 
left- and right-hand sides of (5.1) with respect to dqz. 
We limit the crystal thickness to a value at which the 
total particle-energy loss is relatively small. Then, 
considering scattering through limited angles, we obtain 
for the function 

the equation 
ap(q.L, t) 

at 

1 00 

P (q.L, t) = 2tc }!'" (t) dg, (5.2) 

(5.3 ) 

Here w( ql, qJ.) denotes a quantity that plays the role of 
the transition probability, per unit time, between the 
states ql and q~: 

( ') M ~ IWoo'I' (0) 
w q.L, q.L = (2tc) 'gO l...l kk' fho, (5.4) 

'X,a' 

where k = (ql, qV, k' = (ql., q~) and qO is the momen
tum of the particles incident on the crystaL 

We confine ourselves for Simplicity to the case of 
planar channeling. We direct the x and y axes perpen
dicular and parallel to the considered family of crystal
lographic planes, respectively. Then qy degenerates 
into the ordinary momentum, and qx remains a quasi
momenhlm in the expanded one-dimensional qx space. 

In the expanded zone scheme, the transition proba
bility is subject to discontinuities at the end points of 
the Brillouin zone as a function of the variables qx and 
q~, or, equivalently, as a function of the discrete vari
able number of the zone. Bea.ring in mind that K~ 
«q* (q* = [2M(Vmax - Vmlll)]"/2 is the momentum x x eff eff 
corresponding to the channeling angle .Jo), we are in
terested in the distribution of p (ql' t) over intervals 
that are large in comparison with the elementary re
ciprocal-lattice vector ~. By virtue of this we use the 
smoothed-out value of the transition probability 
W(ql' qj), which, of course, does not change the result 
at all. 

As shown in the preceding section, motion in the 
channel, starting with a definite thickness, gives rise 
to a practically symmetrical angular distribution. Then, 
naturally, Pqxqx = P-qx'-qx (actually, this relation, 
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being the relation between the diagonal elements proper, 
is established from the very outset for the subbarier 
states if K~ « I qx I < q~ ). It is therefore advantageous to 
make use of the explicit form of this symmetrization, 
which takes place for subbarrier states as a result of 
the coherent action of the medium, and to introduce a 
symmetrized density matrix 

p+(g" g" t) = 1/,[p(gx, g" t) + p(-qx, q" t)]. 

For this matrix we have from (5.3) the equation 

2 Sdgx' Sdq,'w+(q"q/, Iq,' -q,l)(p+(q.l.',t)-p+(q.L,t)]; 
o -~ (5.5) 

w + (qx, q~, I qy - qy I) is the even part of the probability 
(5.4) with respect to the variable ~ (in this case w+ 
is automatically even also in the variable qx). This 
circumstance has enabled us to confine ourselves in 
(5.5) to the half-space qx 2 0 in the solution of the 
problem. 

In the general case, the expression for the probabil
ity w + can be represented in the form 

w+=w(q,+Ax/2, IAxl, lA,\), A~=q~'-q~, ~=x, y. 

Bearing in mind the small-angle character of the scat
tering, we change over from the integral equation (5.5) 
to a differential equation of the Fokker-Planck type, 
using the well-known procedure (see, for example/"J): 

ap+ a ap+ a'p+ () 
-.-=-Dx+(qx)-+D:(qx)-" 5.6 
dt agx og, aq, 

~ ~ 

D: (gx) = S dAu S dAxw(qx, IAxl, IA,I) A~'. (5.7) 
-'Ix 

We have left the linear "hydrodynamic" term out of the 
right-hand side of (5.6), since this term simply 
vanishes at fJnite qx, when the lower limit of integra
tion can be replaced by - 00, and this term does not 
play any role at small qx near zero, by virtue of 
ap+/aqx I qx=O = O. 

Let us examine the values of the diffusion coeffic
ients D~(qx) inside the channel. To this end, we analyze 
first the contribution made to the diffusion coefficients 
by scattering from the vibrating nuclei without excita
tion of the electronic subsystem. The corresponding 
scattering probability, in accord with (5.4), can be 
written in the form 

w,(q.l.,q.l.')= (2n~'qO< 1~(Vj- (V».k'l') . (5.8) 

Here Vjkk' is the matrix element of the interaction 
wilh the j-th atom, averaged over the ground state of the 
electronic subsystem. The symbol ( •.. ) denotes averag
ing over the phonon subsystem. 

We consider a crystal consisting of atoms of one 
sort, and approximate the particle interaction with an 
individual atom, averaged over the ground state of the 
electronic subsystem, by a screened Coulomb potential. 
Then we obtain directly 

V,kk' = (x,::Z::,),,, (up {iA,R jy -Ix -R"I [xo' + A/J"'} )qXq/. (5.9) 

Here Rj is the radius vector of the j-th nucleus, x is 
the particle coordinate, and Ko is the reciprocal of the 
screening radius. 

Making use of the fact that Di varies little with qx 
within the channel, we obtain approximately 
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00 00 
Dx+(qx)e< fdA, fdqx' w+(qx, q/, IAyl) (q/ -qx)'. 

" 

In accordance with the mean-value theorem and with 
the properties of the function w +, we can write 

100 _ 00 

Dx+ (qx) = 2" LdA, Ax'(qx, Au) LdL\xW(q" q, + !lx, I Au l). 

We substitute (5.8) and (5.9) in this expression and use 
the completeness theorem when integrating with respect 
to d Ax. In the approximation in which the oscillations 
of the individual atoms are independent, we arrive at 
the simple relation 

D +"( ) = n(Ze')'MN SOO, ;o(q" !lu)Qn(q" Au) dA 
x qx qO _<Xl x/ + /1y2 u, 

(5.10 ) 

- exp {- u' Ai} (exp{-I x - Ri,1 (xo' + Ai) "'}>']I¢qx(x) I' dx, 

where N is the density of the crystal atoms and u2 is 
the mean-squared thermal displacement of the atom 
along one of the coordinate axes. 

Bearing in mind the exponential decrease of the wave 
function iJlqx(x) in the region that is classically inac
cessible to the particle inside the potential barrier 
(see I), we can readily conclude from (5.10) that 

n+'(q,) -Dooexp{-2xolxo(qx) -R"OI}. 

where Rjx is the equilibrium position of the nucleus, 
xo( qx) is the classical turning point, nearest to this 
position, for a particle in the state qx, and Doo is the 
value of the diffusion coefficient outside the channel and 
far from its boundaries. 

This shows directly, if we use any reasonable esti
mate for Ko, that for the overwhelming majority of the 
subbarrier states (with the possible exception of states 
directly adjacent to the top of the barrier), the diffusion 
coefficient D~n(qx) is a very small quantity. 

We note that at I Ay I ~ Ko we have as a rule U2A~ 
< 1. This leads to 

Q,(q" A,) '" u'(xo' + 2A,,') S exp{- 21x - R,,'I (xo' + A.,') '''}hilq, (x) 12 dx 

(5.11 ) 

and as a result we obtain an additional source of small
ness, which is physically connected with the fact that 
the regular lattice proper does not lead to incoherent 
scattering l ) • 

We turn now to electron scattering. To determine 
(D~e) v due to scattering by valence electrons, we can 
use the same expressions (5.10\ provided we leave out 
the second term in the square brackets, replace the 
coordinate of the nucleus by the coordinate of the elec
tron, and take the symbol ( ... ) to mean averaging over 
the state of the electron subsystem (Ko should be re
placed here by Ke, and the factor Z2 by Zv). Assuming 
as an estimate that the spatial distribution of the 
valence electrons is homogeneous, we obtain simply 

(D +') = nZ,e'MN S~ (~'(A,)),dA, 
x v qO _00 (x/' + 1l.,,}f/2 

Here Zv is the number of valence electrons per atom 
and Ke is the corresponding screening momentum. 

An estimate of the contdbution of the scattering by 
the internal electrons cannot, of course, be obtained as 
simply. It is c lear only that in most cases the contribu-
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tion of this scattering mechanism is, as a rule, small, 
by virtue of the already noted character of the behavior 
of the wave function of the particle in the region under 
the barrier. 

Comparing the results, we can conclude that 
Dx+'(qx) Z' 
~( ) <-Z exp{-2Ixo(qx)-R jx°lxoL 

x qx t' 

We see from this expression that the ratio of the scat
terings by electrons and by nuclei is radically altered 
in the channel, and a situation wherein electron scatter
ing predominates is quite realistic2 ). In any case, how
ever, the value of D;{ itseU inside the channel turns out 
to be small in comparison with the value DOC) outside the 
channel. If scattering by electrons predominates inside 
the channel, then n;c decreases by a factor ~(Zv/Z2 
to liZ). Naturally, this should alter radically the char
acter of the multiple scattering of the particles in 
channeling. 

We have analyzed so far only the coefficient D;C(qx). 
It is seen from (5.7) that for Dy(qx) we should have the 
same expressions as for D;C( qx), with the substitution 

- 2 
<l~(qx, <ly) - <ly. It is clear from the structure of the 
formulas that in this case we have 

D,+(qx) "" D.+(qx). 

In all the formulas considered above for D+ we have 
ignored the standard difficulty of diffusion theory of 
multiple scattering by screened Coulomb centers con
nected with the logarithmic divergence of DB at large 
momentum transfers. To overcome this difficulty, it is 
necessary to take into account the finite width of the 
distribution over the transverse momentum when cal
culating the integrals with respect to d2<l1 in the ex
pressions for the diffusion coefficients (for details 
see (121 ). 

Equation (5.6) with allowance for the explicit values 
of the diffusion coefficients (5.7) in the channel and out
side the channel describes the picture of the transverse 
diffusion of particles incident on the crystal at an angle 
smaller than the channeling angle. This automatically 
establishes the symmetrization of the particle states, 
which was effectively taken into account from the very 
beginning (see Eq. (5.5)), 

On the other hand, if the particle beam is incident at 
an angle ,J > ,Jo, then the picture must be refined some
what. The point is that diffusion outside the channel 
proceeds in the usual manner, and so long as the parti
cles are not drawn into the channel, no special sym
metrization takes place in the distribution. For the total 
function p outside the channel, we then have a diffusion 
equation of the type (5.6), with the substitution D~ - Dj3' 
where Dj3 is defined by 

D~(qx)=+ Ld!;, Ld!;xW( qx+ ~x ,qx- ~x I!;,I) !;~' 
with the usual probability characteristic of scattering 
outside the channel (we shall henceforth ignore the role 
of the narrow transition layer near the channel bound
ary, and consider a problem that is strictly local and 
therefore distinctly Fubdivided into regions inside and 
outside the channel; accordingly, D~ outside the channel 
coincides with Dj3). 

As soon as the particles enter the channel, however, 
the coherent action of the medium leads to symmetriza
tion of the distribution inside the channel, and this oc-
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curs within times that are short in comparison with all 
other characteristic times in the problem. Therefore, 
if in addition to P+ we introduce the function p_: 

p-(q" g" t) = '/,[p(q" gy, t) - p(-q., q" t)], (5,12) 

then the latter will always be equal to zero inside the 
channel and in the general case different from zero out
side the channel. 

The rapid symmetrization of the distribution brings 
about a special connection between the points q~ and 
-qi at the channel boundaries (q~ is the momentum 
corresponping to the channeling angle), as manifest by 
a non-diffusion exchange of part of the flux at these 
points. Indeed, owing to the coherent action of the 
medium, part of the flux G from the point q~ is trans
ferred to the point -q~ "hydrodynamically." The 
conditions at the channel boundaries are then 

(5.13) 

where Do and Dl are the values of the diffusion coef
ficients inside and outside the channel near its bounda
ries. Recognizing that 

p-(gx, g" t) =0 for Igxl ~g;, (5.14) 

we can easily obtain from (5.13) 

Do iJp+ I = D, iJp+ I ' 
fJqx <lx=q'"x-o fJqx qx=q;+o 

Equations of the type (5.6), written out for the re
gions inside and outside the channel, together with the 
conditions (5.14) and (5.15) and the continuity condition 
for p, solve completely the problem of multiple scatter
ing in channeling. 

6. ANALYSIS OF THE PICTURE OF MULTIPLE 
SCATTERING UNDER CONDITIONS OF 
PLANAR CHANNELING 

To reveal the qualitative picture of the character of 
multiple scattering of fast particles in planar channel
ing, we consider in the present section the solution of 
the diffusion problem assuming the diffusion coefficients 
to be constant inside and outside the channel: 

{
Do for Iqxl < g; 

Dx+(qx)=D:(g,)= D, >D,for Igxl;;;' qx" (6.1) 

Let the initial distribution of the beam be Ii -like, i.e., 

pdg., g" 0) ='I,[6(qx-gxO) +6(gx+gx')]6(q,). (6.2) 

The problem of finding p. then reduces in fact to a 
solution of Eq. (5.6) with allowance for (6.1), for the 
boundary condition (5.5), and for the initial condition 
(6.2). It is convenient here to use the Laplace transform 
with respect to time and the Fourier transform with re
spect to the "coordinate" qy, and to seek the solution 
as a function of qx in explicit form. Taking into ac
count the initial and boundary conditions and taking the 
inverse transforms, we arrive after straightforward but 
cumbersome manipulations at the following expression 
for P+: 

p+(q., gy, t) = !,(g" g" t) + f,(gx, gy, t), 

1 00 

!,(q"g"t)=-;;S dpe-'''cos(pll'I'g,) 
, 

S
OO exp{-1;,'t}R(qx', 1;" p)R (g" 1;"p)dr, 

x 0 A'(r"p)sin' A(1;"p)+ 11 '1;,'COS'A(1;"p) 

1 -
j, (gx, g" t) = - S e-P'" cos (pl1'I'gy) 

n y • 
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Here 
R(gx, ~, p) = ~ cos[~1')'" (I g,1 - 1) leos ).(~, p) 

-1')"'sin[~1')"'(lgxl-1)lsin).(~, p) for Ig,1 ;;;'1, 

R(q,,~, p) = ~eos[g,).(~, p) 1 for Ig,1 < 1; 

).(~, p) = [~' + (1- 'I) p'J"'; (6.4) 
S(qx, ~"' p) =exp{-1')"'[(l-1'))p'-1;,,'(p)]"'(Jgxl-l)}cos~,,(p) 

for I gxl ;;;. 1, 

S(gx, i;",p) =cos[gx~"(p)l for Iq,1 < 1, 

and the summation over !:n is the sum of the residues 
at the poles of the laplace transform, with !:n deter
mined as the roots of the equation 

(6.5) 

located in the interval 0 ~ !:n ~ p(1 _ 1) )1/2. 

In expressions (6.3)-(6.5) and in the following ones, 
qx, qy, t, and P+ are taken to mean the dimensionless 
quantities 

g,l g/, gul gu', tDol (qx')', (g,')'p+, (6.6) 

and we designate the ratio of the diffusion coefficients 
by 

1')=DoID, 

(as 1) - 1, the function f2 vanishes, while fl goes over 
into the well-known solution for homogeneous space). 

In the analysis of the multiple-scattering picture, 
there are two physically different cases, when the 
directions of incidence of the initial beam are such that 
\ q~ \ < 1 and \ q~ \ > 1. It is convenient to cons.der 
these cases separately. 

Analyzing the behavior of j5, which at \ q~ \ < 1 coin
cides identically with p +, in the case of short times, 
corresponding to the condition 

1'1'1 [l-lg,Oll« 1, 

we can easily obtain 
1 [ { (g,_g,O)'} 

Ii (qx, gu, t) "" 8nt exp - 4t 

{ (q + gO)' }] { g , } + exp - x 4t' exp -it- for Ig,1 < 1. 

It is seen from this expression that at sufficiently short 
times the presence of channel boundaries has not yet 
come into play, and the diffusion is determined com
pletely by the coefficient Do (see the notation in (6.6)). 

To describe the evolution of the particle distribution 
in the channel, we put for simplicity q~ = 0 and investi
gate the region of small qx and qy at arbitrary times. 
In this case 

p(g" g" t) =p(O, 0, t) +.1(t)ql+B(t)g,,'. (6,8) 

At short times, the constant-level lines of the function 
p, as seen from (6.7), are circles. At long times, the 
contribution of f2 to A(t) and B(t) can be neglected, 
Determining the asymptotic form of fl and taking the 
second derivatives with respect to qx and qy at zero, 
we obtain 

A (t) "" -1') (2 - 1')) I 32nt', B (t) "" -1')' I 32nt'. 

Hence 
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lim [A (t) 1 B(t) 1 = 2D,/Do - 1. (6.9) 

Thus, in the considered case the level lines of the 
function j5 in the region of small qx and qy become 
deformed in the course of time from circles to ellipses, 
becoming more and more elongated along the y axis, 
with a maximum ratio (6.9) of the squares of the semi
axes (at D1 > Do; if Dl =: Do, then the circular sym
metry is preserved). 

This result is quite remarkable for the entire picture 
of diffusion in channeling. Indeed, let us bear in mind 
that in a real case D1 » Do, Then at times t ~ 1 the 
fast diffusion in the region outside the channel comes 
abruptly into play, and causes the distribution at t ~ 1 
to be sharply delineated within the width of the channel. 
Since diffusion with the characteristic coefficient Do 
takes place at the same time along the channel, the 
distribution of p exhibits a clearly pronounced tendency 
to become elongated along the y axis. A situation close 
in fact to diffusion under conditions of total absorption 
on the channel boundarj.es produces in the direction of x 
gradients (dictated by D 1 ) that are large in comparison 
with the gradients along the y direction (which are 
dictated by Do). It is precisely this circumstance which 
is reflected in the result (6.9). Thus, under conditions 
of planar channeling there should occur a strongly pro
nounced anisotropy of the particle distribution, and the 
scale of the anisotropy should correlate uniquely in the 
experiment with the ratio DIlDo. 

The strong difference between the diffusion coeffic
ients inside the channel and outside the channel lead to 
an interesting effect of "screening" of the channel. Its 
gist lies in the fact that the particles emerging from the 
channel and returning to its boundary at noticeable 
"distances" qy as a result of fast diffusion experience, 
as it were, reflections from the channel boundaries, 
namely, the particles diffuse principally along the 
channel (in momentum space), and not into its interior. 
As a result, over a large interval of qy' the density of 
the scattered particles outside the channel is much 
larger than the density inside the channel (a "white 
channel" against a "grey background"). We emphasize 
once more that this effect is a consequence only of the 
ratio DIlDo» 1, which is characteristic of the chan
neling effect. This phenomenon was treated earlier as a 
manifestation of the ''blocking'' effect (see, for exam
ple ,Pl). 

We note that simultaneously there takes place a 
unique "shunting" effect, wherein particles that have 
experienced diffusion outside then channel can again be 
trapped in the channel at distances much larger than the 
distances characteristic of diffusion in the channel 
along the y axis. This should alter noticeably the char
acter of the distribution of the particles in the channel 
itself, especially at intermediate distances (qy 14t > 1). 

The described picture is very clearly pronounced in 
Figs. 3 and 4, where the constant-density lines pare 
plotted in accordance with (6.3) for different values of 
t. First to be noted is a very sharp distribution aniso
tropy that increases continuously with time. The 
stretching of the distribution of p along the y axis near 
its maximum value has already become noticeable at 
t = 1, and is the stronger the larger t and the larger 
the ratio DIlDo. 

The figures corresponding to the times t = 0.5 and 
t = 1 show quite distinctly the manifestation of the 
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FIG. 3. Constant-level lines and profiles of the function p, calcu
lated in accordance with (6.3) for the case 7) = 0.1. Initial value q~ = O. 
The distributions presented correspond to the following instants of 
time t: 1- 0.5, II - I, III - 2, IV - 4. Curves I and 2 give the sections 
of p by the planes qy = 0 and qx = 0, respectively, while curves 3 and 
4 give the distributions that describe the diffusion in homogeneous 
space with coefficients Do and D" respectively. 
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FIG. 4. The same distributions as in Fig. 3, constructed for the 
case 7) = 0.02. 
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channel "screening" effect. Indeed, at noticeable qy, 
the density p inside the channel turns out to be appreci
ably smaller than outside the channel. At the same 
time, a "shunting" effect comes into play, wherein the 
particle flux density vector is directed away from the 
walls towards the center of the channel. With increasing 
time, the region where the "screening" and "shunting" 
effects come into play moves away from the origin and 
corresponds to values of qy not found in the figures at 
times t> 1 (see also[ L2 1). 

Finally, we note that the relative value of the maxi
mum in the region of the channel decreases with in
creasing time and in the limit as t - 00 the distribution 
tends to become uniform, as it should. 

Case B: IqOI > 1 
x 

To determine p in this case it is necessary to add to 
the function p+, which is determined by the same general 
expressions (6.3), the function p_ (5.12). The latter is 
determined in the form of a continuous function that is 
equal to zero in the channel and satisfies equation (5.6) 
outside the channel (with allowance for (6.1) with the 
initial condition 

p-(qx, qu, 0) =i/2 [6(qx-q/) -1'i(qx+qxO)]6(qyl. 

It is easy to see that p_ is simply 

, ). ( 0) I'] [ { 1'](lqxl-lqx'I)'} 
p- \q., qu, t = sign qxqx 8nt exp - 4t (6.10 ) 

-exp{- 1'](lqxl+lqxol-2)'}] {I']q,'} 
4.t cxp -41 

p-(q" qu, t) =0 for Iqxl < 1. 

For short times 

1"'1']-'" / (I qxO I - 1) « 1, 

we obtain directly, by determining p with allowance for 
(6.10 ), 

p (gx, qy, t) = p+ (qx, qyo t) + p_ (q., qy, t) 

~I'] J I'][Qu2 +(qx-qxO)2]}fO 11>1 
= 4nt exp\ - 4t r qx . 

It was perfectly natural that at such times the picture 
of the distribution is equivalent to the situation of homo
geneous space with diffusion coefficient D1• 

The exponential decrease towards the channel 
boundary, from the outSide, is accompanied at short 
times by an even sharper exponential decrease inside 
the channel (Do« D1 ). At the same time, the coherent 
action of the medium leads to symmetrization of the 
distribution with respect to qx inside the channel 
within very short times (as already noted above, these 
times are small in comparison with all the other char
acteristic times in the problem). This 'results in a 
unique "forced channel crossing," manifest in the fact 
that the particle density near the opposite boundary of 
the channel is immediately appreciably larger than that 
at the center of the channel. The total number of parti
cles remaining in the "forced" channel, however, turns 
out to be small. 

The particles that forced have executed the channel 
crOSSing leave the channel rapidly, whereas the parti
cles that fall in the channel stick in it, increaSing at 
first the total number of particles in the channel. After 
times that are already characteristic of diffusion with 
a coefficient Do, the minimum on the channel axis gives 
way to a distribution peak, and the subsequent evolution 
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of the distribution of the particles trapped in the channel 
recalls the picture described in case Ao 

The validity of the foregoing statemel',ts can be 
checked by considering the behavior of the density dis
tribution at small qx and qy in the channel, for which 
the general representation \6.8) is valid. In the case of 
long times, t» 1, we have 

1] [( 1]) 1](q.O)'] {T](q.O)'} 
A(t)=- 1Bnt' 1-2 -41- exp --4-t - , 

1]' {T](q.O)' } 
8(t)= - 32"t' exp --4-t- . 

It follows therefore that the minimum of p as a function 
of qx turns into a maximum at qx = 0 (which is, 
generally speaking, a saddle point) in the case of long 
times, and roughly speaking, that the accumulation of 
particles in the channel gives way to diffusion from the 
channel. The maximum of the distribution shifts to this 
point from the regiqn outside the channel. The p level 
lines near the origin then take the form of ellipses that 
become elongated along the y axis with increasing t. 
Their semiaxis ratio, just in the case A, tends to 
(2D1/Do - 1)1/2 as t ~ 00. 

All the obtained results can be very clearly traced 
by analyzing the curves obtained in accordance with 
(6.3) and (6.10) and shown in Fig. 5. The curves for the 
short times demonstrate quite lucidly the effect of 
"forcing" of the channel. A sharp density spike is seen 
on the left edge of the channel (qx = -1, as well as a 
distribution corresponding in the interior of the channel 

,;.' 
I 

IUj 

fJ.T 

lUI 

0 -. 

FIG. 5. Constant-level and profile lines of the function p, con
structed in accordance with (6.3) and (6.10) for the case 1'/ = 0.1. 
The initial value is q~ = 2. The distributions presented here correspond 
to the following instants of time t: I, curve a - t = 0.05, I, curve b - t 
= 0.1; II, t = 0.2, III, t = 0.4, IV t = 0.8. Curves I and 2 give the inter
sections of p with the planes qy = 0 and qx = 0, respectively. The 
points show the distributions describing the diffusion in uniform space 
with a diffusion coefficient D1 . In case I, the curves show only the 
distribution ofp in the plane qy = O. 
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to a saddle point at qx = qy = O. In the case of longer 
times, a delay of the particles in the channel is observed, 
accompanied by a strong anisotropy of the distribution 
within the channel and by the appearance of a "screen
ing" effect, two phenomena typical of the picture of dif
fusion of particles from the channel (see also[12J). 

7. COMPARISON WITH EXPERIMENTAL 
RESLILTS 

The theory developed in the preceding sections for 
multiple scattering of fast particles under conditions of 
channeling explains all the main experimental results 
obtained in this region. On the other hand, it is inter
esting to verify that all the theoretically deduced fea
tures of the physical picture become obServable in one 
form or another in experiment. 

We note first of all that the momentum distribution 
of the particles is connected with the diagonal density 
matrix P1qq by the relation (4.3). Being interested only 
in the distribution with respect to the transverse mo
mentum, or in the angular distribution, we can change 
over in this expression from P 1qq (t) to the function 
P(ql, t) (5.2), which we have obtained precisely in the 
preceeding section. The function 1 Cq (K) 12 at 1 KX 1 < q~ 
is close to a superposition of 1) functions at the points 
qx = ±KX, and is close to a 0 function at point qx = KX 
when 1 KX 1 > q~. Consequently the angular distribution 
P 1( Kl, t) is close to the function p( Kl, t). As a conse
quence, all the experimental data can be compared with 
the results obtained for the distribution function 
p(ql, t). 

The first experiments in which the angular distribu
tions of fast heavy charged particles were measured in 
planar channeling were those of Gibson et al.[4J. They 
were the first to observe a sharp anisotropy of the 
angular distribution with stretching along the channel. 
The experimental distribution of the particles is quali
tatively very close to the picture shown in Figs. 3-4. 

Dearnaley et al.[5] have revealed very clearly the 
character of the anisotropy by measuring the distribu
tion of the partic les in two planes, one of which is 
parallel to the plane of the channel and the other per
pendicular to it. It is interesting that the shapes of the 
obtained curves are very close to those of the distribu
tions in the planes qy = 0 and qx = 0, as shown in 
Figs. 3-4. Dearnaley et al. were apparently the first 
to observe the effect of the sharp increase of the in
tensity on the opposite edge of the channel while the 
density remained low inside the channel if the proton
beam incidence angle was larger than the channeling 
angle J.o. This nontrivial result, which was not ex
plained adequately either in that reference or in any 
subsequent one, is none other than the "forced cross
ing" of the channel, which was described in detail in the 
preceding section (see Fig. 5). 

The effect of trapping and retention of the particles 
in the channel at initial-beam incidence angles larger 
than So was first revealed in distinct form by Markus, 
Geguzin, and Falnshtein[6J. They have pointed out that 
when the proton energy is increased at a fixed crystal 
thickness and a fixed geometry, the capture effect can 
give way to a picture characterized by a value of the 
particle density in the channel that is smaller than the 
diffusion background outside the channel. It is easily 
seen that the explanation of this phenomenon lies in the 
decrease of the diffusion coefficient with energy, and 
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consequently, at a fixed thickness, in a change of the 
characteristic time t. When such a decrease takes 
place, the particle distribution changes from that repre
sented by curves IV and III in Fig. 5 to that represented 
by curves II and I in the same figure. 

In[S], as well as in many other papers, "screening" 
of the channel was clearly observed, namely, the parti
cle density inside the channel, at a large distance from 
the initial direction of incidence, turned out to be small 
in comparison with the diffusion background outside the 
channel. 

Finally, we note that Golovchenko[13] recently per
formed a detailed investigation wherein the angular 
distribution of the particles was varied under conditions 
of planar channeling and with systematic variation of 
the angle of incidence from values .:t < ,)'0 to ,)' > .:to. He 
used 1.8-MeV protons and thin gold crystals. The ex
perimental results are in good qualitative agreement 
with the distributions given in Figs. 3-53). 

It should be stated that all the physical arguments 
advanced in the analysis of particle diffusion in an indi
vidual planar channel remain fully in force also for a 
system of planar channels in the case of axial channel
ing. The formation of a star-like angular distribution 
with prongs of increased intensity along the planar 
channels, and the drop of the intensity at large distances 
in the channels below the intensity of the surrounding 
background, can be obtained directly from a diffusion 
equation similar to that used above for an individual 
planar channel. 

I)The expression for the total cross section un( qx), per atom, for 
scattering by oscillating nuclei without excitation of the electronic 
subsystem is obtained from (5.10) bymaking the substitution 
A5. (qx' Ay) .... 2 and dividing the result by Nvo. Taking (5.11) and 
the rapid convergence of the integral with respect to dAy into 
account, we readily obtain the estimate 

540 SOY. Phys . .JETP, Vol. 37, No.3, September 1973 

u,,(g.,') - u 2x,' exp (-2xolxo(q,) - RjxOI}uo. 

where Uo is the cross section for elastic scattering by an individual 
atom in free space. 

2)For the ratio of the total cross sections of the nuclear and electronic 
scattering in the channel we have an even stronger bound 

u"(qx) / u,(qx) < (Z2 / Z,)UZx,' exp (-2Ixo(qx) - R",Olxo). 

3)One of the authors (Yu. Kagan) is grateful to Prof. Gibson for the 
opportunity of becoming acquainted with Golovchenko's disserta
tion prior to publication. 
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