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The geometric diffraction optics of x-rays is considered. The trajectories of rays scat­
tered by an elastic dislocation field are found by employing an analogy between the equa­
tions for ray trajectories and equations describing one-dimensional motion of a relativ­
istic particle in an external field. Expressions for the eikonal and amplitudes of a wave 
field in a crystal are derived in the general case of dynamic scattering of x-rays by a 
straight dislocation. Scattering by an edge dislocation under conditions of anomalous 
transmission of x-rays (the Borrmann effect) is analyzed in detail. 

1. INTRODUCTION 

It is known that the wave field of x-rays in a crystal, 
under conditions of the dynamic problem, is very sensi­
tive to static deviations of the crystal lattice from the 
ideal. This is the basis of various x-ray diffraction 
methods of investigating the internal structure of real 
crystals. Scattering of x-rays by dislocations in a 
crystal is furthermore of interest because a suitable 
choice of the dislocation distribution makes it pOSSible, 
in prinCiple, to form a wave field with prescribed 
properties [lJ. In particular, focusing of x-rays can 
take place if the dislocation structure of the crystal is 
suitably chosen. 

The general theory of x-ray scattering in crystals 
with defects is developed in[2-6]. The principal mecha­
nisms of dynamic scattering of x-rays by dislocations 
are classified in [2J. An integral form of the theory has 
been developed in [3,4 J. Integral equations equivalent to 
the modified differential equations of Takagi make it 
possible to treat by a unified approach both weakly 
distorted and strongly distorted regions of the 
crystal [4] 

A general theory of diffraction geometric optics of 
x-rays has been developed in[5,sJ. The role of the 
characteristic wave length is taken here by the extinc­
tion length A = AC- l (X_lXlr.tl2 (A is the x-ray wave­
length, C is the polarization factor, and X-l and Xl are 
the Fourier components of the polarizability of the 
crystal, corresponding to diffraction with a reflection 
vector Kl; for x-rays \ X-l,l\ ~ lO-s - 10- 5), and the 
role of the inhomogeneities of the medium is assumed 
by the local deviation a (x) from the Bragg condition. 

In the present article we consider, within the frame­
work of geometrical optics, the scattering of x-rays by 
an elastic dislocation field. In Sec. 2 we present 
briefly the derivation of the fundamental equations of 
two-ray geometric optics in an absorbing crystal. A 
system of differential equations along the x-ray trajec­
tory is given for the eikonal and for the amplitudes of 
the transmitted and diffracted waves. 

Using the analogy between the equation for the ray 
trajectories and the equation describing one-dimen­
sional motion x(z) of a relativistic particle in an alter­
nating external field a (x), we obtain in Sec. 3 the tra­
jectories of rays scattered by an elastic dislocation 
field. It is shown that the degree of "relativism" for 
particles moving along the trajectories is given by 
*2 ~ (leff / At 2, where leU is the characteristic length 
over which the function a (x) varies, while for the tra-
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jectories whose minimum distance to the dislocation 
core exceeds the extinction length we have *2« 1. 
Expressions are obtained for the eikonal and for the 
wave-field amplitudes in the general case of scattering 
by a straight-line dislocation. In Sec. 4 we consider the 
scattering of x-rays by an edge dislocation under con­
ditions of anomalous transmission (the Borrmann ef­
fect[7,81) for strongly absorbing crystals, when the dis­
tance of the dislocation from the two surfaces of a 
plane-parallel crystal is much larger than the length of 
the photoelectric absorption J-I.~l. In this case there 
propagates in the crystal a Borrmann wave field of 
weakly absorbed x-rays interacting with dislocations. 
It is shown that a shadow is produced behind the dislo­
cation, and that the intensity of the wave field varies 
like exp(-gJ-l.oA2/lx21), where X2 is the longitudinal 
distance from the center of the shadow (along the re­
flection vector Kl ), g is a numerical coefficient that 
depends on the "longitudinal dislocation power" (K1b), 
and b is the Burgers vector of the dislocation. 

2. FUNDAMENTAL EQUATIONS OF X-RAY 
GEOMETRIC OPTICS 

If the orientation of the crystal is close to the Bragg 
position with a reflection vector Kl, a coherent super­
position of transmitted and diffracted waves propa­
gates in the crystal. To describe the x-ray wave field 
in the crystal, one can use Maxwell's equations in the 
quasic lassical apprOximation [3,5 J : 

( 2i.®++Xo x~,Cexp{iK,u(x)} )(Eo)=O. (2.1)* 
x,Ccxp{-iK,u(x)} 2'.®_+xo E, 

Here .®± = (a/az ± a/ox), Eo and El are the amplitudes 
of the transmitted and diffracted waves, x and z are 
the dimensionless coordinates in the x-ray scattering 
plane (xOz), ,\0 is the average polarizability of the 
crystal, and u(x) is the displacement field in the dis­
torted crystal. Details concerning the notation can be 
found in [5, 6J. 

The substitution Eo ~ Eo exp lixoz/2] and El 
- El exp[iXoz/2 - iKl 'u(x)] transforms (2.1) into 

The function a(x) of local deviation from the Bragg 
condition is determined by the displacements of the 
re flecting planes, and is given by 

(2.2) 

(2.3) 

The substitution used to go from (2.1) to (2.2) does not 
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affect the boundary conditions at the entrance surface 
of the crystal z = z 1 if the amplitudes Eo and E 1, in 
the case of a plane wave incident on the crystal, are of 
the form 

Eo (x, z,) = 1, E, (x, z,) = o. (2.4) 

The problem (2.2)-(2.4) of x-ray propagation in 
crystals with defects is analogous to the problem of the 
passage of light through inhomogeneous media. Assum­
ing that the characteristic length leff of variation of 
the function O! (x) exceeds the extinction length A, we 
can construct the wave field in the crystal by the method 
of geometrical optics. Accordingly, we separate in the 
amplitudes Eo and El the eikonal S(x) 

E(x)"" (Eo(X) ) = eiS(X) ~ E(n) (x). 
E,(x) ""--I 

(2.5) 
n_O 

Substitution of (2.5) in (2.2) leads to an infinite sys­
tem of coupled equations for the eikonal S(x) and the 
amplitudes E<n)(x). A recurrence procedure for deter­
mining the successive approximations E(ll)(x) is de­
veloped in [5,6]. With the aim of practical construction of 
the wave field in a crystal with a dislocation, we hence­
forth confine ourselves in the expansion (2.5) to the 
first term E(ll) with n = O. Then the fundamental equa­
tions of geometrical optics, namely the eikonal equa­
tion and the ''trans port" equation, take the following 
forms (see (2.2) and (2.5» 

( as )' (as ' -a;-+a(x) - Tx-a(x») = x', (2.6) 

( a a) ~ ~ (i.2 - (:il+s)') ,ax 7fZ j = 0, j = 0' ,x' + (:il+S)' ' (2.7) 

Ii'" = a ( 0.5Cx-, ) 
flJ+s ' 

where X = 0.51 C I (X-l Xl )1/ 2 (we shall henceforth omit 
the superscript 0 of E( 0) for the sake of simplicity). 

The eikonal equation (2.6) is analogous to the one­
dimensional relativistic Hamilton-Jacobi equation for 
particles with rest mass ± X in a certain variable ex­
ternal field. The only difference is that (2.6) and (2.7) 
contain the complex coefficient x: = X - i Y, and conse­
quently the trajectories and the eikonal are complex. 
Physically, this is connected with the damping of the 
x-ray wave field in the absorbing crystal. In the case 
of an arbitrary ratio of X and Y, Eq. (2.6) is a system 
of two nonlinear equations with respect to the real and 
imaginary parts of the eikonal (S = s + iq). For x-rays 
we usually have Y « X. This enables us to regard the 
imaginary part of the eikonal as small in comparison 
with its real part. Putting I q I « I s I and introducing 
the notation 

a a ) -a;:(S+iq)=H+ir, a;(s+iQ)=P+iQ, (2.8 

we obtain from (2.6), accurate to terms of order (q/ S)2 
~ (Y/X)2« 1, the following equations for the determina­
tion of s(x) and q(x): 

(H-a)'- (P-a)'=x', 

(H - a)r - (P - a)Q = -xv. 
(2.9) 

(2.10 ) 

It is easily seen that the trajectory equations for the 
Hamilton-Jacobi equations (2.9) and (2.10) coincide and 
are given by 

d(=FXX) - -= =F(x), 
dz Vi-x' 

(2.11) 

where x = dx/dz and the "external force" F(x) is de-
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termined by the deri vati ve of the function O! (x) in the 
propagation direction of the transmitted wave Eo: 

F(x)= - (~+~) a(x). 
az ax. 

(2.12) 

The minus and plus signs in (2.11) correspond respec­
ti vely to x-rays that are weakly and strongly absorbed 
in the crystal. Equations equivalent to (2.11) and (2.12) 
were obtained in[9,1O]. 

According to (2.8), the "transport" equation is also 
complex. In our case, when X » Y, the imaginary part 
of (2.7) can be neglected, since its inclusion introduces 
corrections of the order of Y / X in the amplitudes Eo 
and E l. Thus, the ''transport'' equation takes the form 

a a 
-lo-'[x'+(P-H)']l +-Ia'[x' -(P -H)']J =0. (2.13) 
i)z ax 

Formulas (2.8)-(2.13), and also (2.4), constitute the 
complete system of geometrical-optics equations de­
scribing the scattering of x-rays in distorted crystals 
in the general case of arbitrary smooth displacement 
fields u( x). The partial differential equations (2.9) and 
(2.10) for the determination of the complex eikonal 
S(x) can be expressed in the form of differential equa­
tions along the trajectories (2.11). Taking into account 
the connection between the usual momentum and the 
canonical momentum 

p=P-a(x), p==Fxx/11-x', (2.14) 

we obtain the sought equations for s(x) and q(x): 

dsl dz = ±xl'1-x' - a(x) (1- x), dq/dz= =FyY1-x'. (2.15) 

The ''transport'' equation (2.13) admits, as usual, of 
formal integration along the ray trajectories 

, 1+x(z) 1 6X (Z,) I 
0- (x,z)=o-'(x(z,),z,) 1+x(z,) 6x(z) . (2.16 ) 

Thus, the problem of the dynamic scattering of x­
rays by static distortions of a crystal lattice reduces 
to the construction of the ray trajectories on which the 
wave field propagates in the crystal. 

3. X-RAY SCATTERING BY THE ELASTIC FIELD 
OF A STRAIGHT-LINE DISLOCATION. GENERAL 
CASE 

The elastic field Ui,j = aui/axj of a straight-line 
dislocation in an infinite isotropic medium has the 
following invariant form[1l,12] 

1 { 1 [ ( 2piPj )]} Ui;=--- ·2binj-2mipj+-- m,p,+m,pi+D 6 ij -TiTj---
4np' i-v p' , 

(3.1 ) 
Here T is a unit vector along the dislocation, P = x 
- (XT)T is the distance from the point of observation in 
the crystal to the dislocation, m = T X b, b is the 
Burgers vector, n = T X p, D = m 'p, and v is the 
Poisson coefficient. 

Introducing the coefficient X in the definition of the 
dimensionless coordinates x, z (x = KXXI/sin e, 
z = KXX3/COS e, where Xl and X3 are the absolute 
coordinates in the scattering plane (xOz), K is the wave 
vector of the x-rays, and e is the Bragg angle), and 
taking (2.3), (2.11), (2.12), and (3.1) into account, we 
obtain equations for the trajectories of the rays in a 
crystal with dislocation 

=Fx! (l-x,)"r'=F(x, y, z), (3.2) 

F(x) = -'f,K,,,-'(cos' 8u"" - sin' SU"H). (3.3) 

The second -order differential equation (3,2) should be 
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supplemented with two boundary conditions. We place 
the origin at the point of intersection of the dislocation 
with the x-ray scattering plane, which we take to be the 
plane y '" O. The customary boundary conditions for 
x( z) are the values of the function and of its deri vati ve 
at a point (Xl, z 1) on the upper surface of the crystal. 
In our case it is convenient to modify the boundary 
conditions, namely, we seek trajectories having a 
specified slope on the upper surface z '" Zl and passing 
through a given point (xo, 0) at the level z '" 0: 

x(O) =Xo, X(X" Z,) =X, (x, =X(Z,». (3.4) 

The slope of the trajectories on the entrance surface 
is determined from the condition of continuity of the 
eikonal Sex) at z '" z 1. It follows from (2.4) that in the 
caSe of a plane wave incident on the crystal we have 
Sex, Zl) '" O. When (2.14) is taken into account, the 
initial slope of the trajectories is 

X(X" Z.) = ±a(x" z,) /11 +a'(x" Z,). (3.5) 

In the general case, the trajectories can be obtained by 
numerically integrating (3.2) subject to the boundary 
conditions (3.4) and (3.5). In the case of x-ray scatter­
ing by an elastic dislocation field (3.1), however, we 
can construct the trajectory field by successive ap­
proximations with respect to the parameter Pc/ « 1, 
where Po"" Xo is the minimal distance of the trajector­
ies from the core of the dislocation (in absolute units, 
Po» 1\.). Indeed, it follows from (3.1) and (3.3) that the 
external force depends on the distance to the disloca­
tion like 

F(x, y, z) = hex, y, z) / p', (3.6) 

where h(x, y, z) is a function characterizing the angu­
lar dependence of the elastic field of the dislocation and 
is of the order of unity. At Po» 1 we have I F max \ 
~ p~2 « 1, and a perturbation theory can be developed 
in terms of the parameter p~l. The iteration procedure 
of constructing the solution of the boundary-value prob­
lem (3.2)-(3.5) with allowance for (3.6) reduces to the 
following: In first-order approximation 

+ x(l' (z) = 0, x(O (z,) = 0, x(t) (0) = Xo; (3.7) 

In second-order approximation 

+x("(z) =F(x(t)(z), z), .i("(z,) = ±a(x('), Z,), z(')(O) =0 (3.8) 

etc. It is easy to see that the higher apprOximations in­
troduce corrections on the order of POl and higher in 
the trajectories. 

The successive-approximation equations determine 
the trajectory field in the x-ray scattering plane at 
Po> 1. We note that the equations of the first two ap­
proximations corres pond to nonre lati vistic partic Ie 
motion. Allowance for relativistic corrections (the 
term xx 2 in (3.2» is essential starting with the fourth­
order approximation. 

Integrating (3.7) and (3.8) in succeSSion, we obtain 
the ray trajectories accurate to terms of order p~l: 

, " 
X(z)'" xo+z(2)(z)-xo+x,(z)= Xo"F J dz' J dz"F(xo,z")±(z-zo)a(xo,z,), 

" " (3.9) 

Formal substitution of (3.9) in (2.15) and (2.16) leads to 
the following expressions for the x-ray field in a crystal 
with a dislocation: 

E(x(z,), Z2) = exp {i'l'(zz - z,)/2'l} 

[ "" ( ) (1 x,(z,) - X,(ZI») _ ( 0,5C'l-.IX) 'S( ., X Jt_ Z1, Zz . - --, 0'0 e :;,;. L 

2 1 + x,(z,) 
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+ "" ( ) (1 + X,(Z,)-X,(ZI»)cr + ( 0.5Cx-.Jx ) e-'S('.,.".,,) ""+ Z" z, 2 0 -1 + x,(z,) , 

~Il ± l(z,) I 'f. 6x~(z) ( ) 
f1l±(z"z,)= 1 ±1(zJ ,l(z)=~, 3.10 

sex"~ z" z,) = (1- ~1)( z, - Z, - + r dz x/(z) ) 

" 

+ J dZ[ x,(z) aa~x~:z) i,(Z)U(xo,z»), (3.11 ) 

" 
In (3.10) and (3.11), the x-ray field is determined ac­
curate to a phase factor. We note that the next higher 
terms in the expansion 

x(z) = E x fn ' (z) 
n=1 

would lead to the appearance of terms with POl raised 
to the third and higher powers in the eikonal and in the 
amplitudes. . 

Thus, formulas (3.9)-(3.11), and also (3.1) and (3.3), 
solve the problem of the scattering of x-rays by a dis­
location within the framework of geometrical optics, 
and make it possible to construct the wave field along 
trajectories whose minimum distance from the core of 
the dislocation is Po"" I Xo I > 1. 

By way of example, we shall consider below the 
scattering of x-rays by a dislocation under anomalous 
trans mission conditions, when min (I z 1 I, z 2) > 11.01• 

4. EDGE DISLOCATION PERPENDICULAR TO 
THE X·RAY SCATTERING PLANES. THE 
BORRMANN CASE 

Under dynamic scattering conditions, when the sam­
ple thickness t » 11.0\ a Borrmann x-ray wave field 
propagates in the crystal. The contribution of the 
strongly absorbed x-rays (the plus sign in (3.2» can 
then be disregarded in the scattering picture. 

Assume that the crystal contains an edge dislocation 
perpendicular to the scattering plane, with a Burgers 
vector b II K1• In accordance with (3.1), the distortion 
components U1,1 and U1,3, which determine the local 
deviation C\' (x) from the Bragg condition, are equal to 

bX, ( 2X,' ) 
U =, 2v-1----

',' 4n(1-v)(X.'+X,') X,'+X,' ' 
(4.1) 

bX, ( 2X,' ) 
Ul,'='4n(1._v)(X,'+X,') 3-2v- X,'+X,' . 

Substituting (4.1) in (3.3) and taking (3.9) into account, 
we obtain the trajectories of the weakly absorbed 
x-rays: 

x(z)-xo= (G ) [C,s+ (A +!..) arctgs+ Bs ], (4.2) 
2 1 - " 2 2 (1 + 5') 

where 

G=~ 
2n ' 

1 + 2v 
A=2v-1+~ B=-2(1+ k

1,), 

kz 
k=ctgO, s=-, 

x, 
k- I, - S, 2 2 

C,= k(l+s,') (1-2v+ 1+ s,') - k'(1+ s,') . 

(4.3) 

The shapes of the trajectories become much simpler in 
those regions of variation of the argument ~ where 
I b I, I ~ 1 I » 1 and I b I, I ~ 1 I « 1 (nearby and remote 
trajectories, respectively). Thus, at I bl, I ~11 « 1, 
corresponding to longitudinal distances from the dislo­
cation axis that are much larger than the crystal thick­
ness, we have 
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x-x, ",,_G_6_(A +B+ 1-2V) (4.4) 
2(1-v) k' 

and the ray trajectories are straight lines, x = xo, ac­
curate to I ~ I « 1. In the opposite limiting case, when 
I ~ zl, I ~ 11 » 1, the trajectories flow around the core of 
the dislocation and then rapidly straighten out, thereby 
experiencing a finite longitudinal displacement 

,1x = X2 - Xo 

G [2V-1Z, 
"" 2(1-\» -k-~ (4.5) 

+~(A+~)]. 
The trajectories of weakly absorbed x-rays in a 

crystal with a dislocation, constructed in accordance 
with the general formulas (4.2) and (4.3), are shown in 
Fig. 1. 

Expressions (4.1)-(4.3) permit a direct integration 
of the equations along the trajectories (2.15) and (2.16) 
for the eikonal Sex) and the amplitude E(x) of a Borr­
mann wave field. It is easily seen that the explicit form 
of the real part of the eikonal is immaterial for deter­
mination of the intensity of the scattered radiation (see 
(3.10) and (3.11), where the wave field of the strongly 
absorbed x-rays can be neglected). 

Substituting (4.1)-(4.3) in (2.15), (2.16), (3.10), and 
(3.11), we obtain expressions for the imaginary part 
of the eikonal q(x) and for the amplitude E(x): 

q(x, z) = w(x, z) - W(XI, Zl), 

1 kyG' { ( 1 5 3 w(x,z)= --yz + Cl's + -A'+-B'+-AB 
2x 4nx(1- \»'xo 2 16 4 

s "3 
+2AC, +BC,) arctgs+ [A'+~B'+-AB+2BC, 

2(1+ S2) 8 2 

+(AB+~B,)_1_+ B']} (4.6) 
12 1+s' 3(1+s')' ' 

£(xz)= _(0,5Cx-h)( 1 x,(Z)-x'(ZI»)i1l ( ) 
, 00 1 + x, (z) 2 - ZI, Z 

X exr{-X;: (z-zl)-q(x,z)}. (4.7) 

If I ~ 1 \, I ~ I » 1 (nearby trajectories), we obtain 

q(x,z)=-.!.(z-zl)+~' (4.8) 
2x 21xolx 

nkG' (1 , 5 , 3 ) g= -A +-B +-AB+2AC, +BC, , 
4(1-v)' 2 16 4 

E( )- _(0.5Cx-h) {XO"(Z-ZI) ( )} (4.9) x, z - 0, 1 exp - 2x - q x, Z • 

It follows from (4.6)-(4.9) that the intensity of the 
x-rays scattered by the dislocation under conditions of 
normal transmission behave in the following manner. 
Behind the dislocation, in the region I Xz\ < Y g X -\ there 
is produced a shadow whose width does not depend on 
the crystal thickness. The intensity of the transmitted 
and diffracted waves varies exponentially: 

10 •, (x,) ~exp(-yglx,-L'lxl-I). (4.10) 

The change in the local density of the trajectories 
\ OXl/0XZ\ is negligibly small (a nearly uniform trajec­
tory distribution is established at large distances from 
the dislocation core) and does not influence the con­
trast of the dislocation. 

Figure 2 shows the intensity distributions Io,l(xz) 
plotted in accord with the obtained formulas for ano­
malous-transmission conditions. We assumed in the 
calculations e = 22°30', Y = +0.04x, ZI = -100, Zz 
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FIG. I. Trajectories of weakly 
absorbed x-rays scattered by an 
edge dislocation perpendicular to 
the scattering plane. 

x 

10., /1 packgr 

~~ 
0.75 

0.5 
-100 100 

.1:2 

FIG. 2. Intensities Io(x2) and II (x2) of the transmitted and dif­
fracted waves, respectively, scattered by an edge dislocation perpendi­
cular to the scattering plane under anomalous-transmission conditions: 
I-Burgers vector b = (1/2)[ 110], G = 2; 2-b = [110], G = 4. 

= 50 (Ge Single crystal, JJ. ° t = 6, reflection (220), 
MoKa radiation). We see that the character and dimen­
sion of the shadow are determined completely by the 
exponential factor exp (-q(xz)), A similar structure of 
the Borrmann image was observed experimentally[13]. 
The general form of the Io,l(xz) curve is adequately 
described qualitatively by the asymptotic expressions 
(4.8)-(4.10). 

Thus, within the framework of geometric optics we 
can construct the wave field of x-rays scattered by a 
dislocation. The limits of applicability of the considered 
geometrical-optics approximation coincide with the 
conditions for the smallness of the "relativism" 
parameter for a particle moving along a trajectory, 
namely *z« 1. Violation of this condition occurs in a 
narrow region of impact parameters \ Xo 1:5, 1. To esti­
mate the intensity of the scattered x-rays which do not 
satisfy the criterion for the applicability of geometrical 
optics, one can use the influence-function methodES]. 

It turns out(S] that the scattering of the Borrmann 
wave field propagating in a narrow region I Xo I ::, 1 
must be taken into account when the distance from the 
dislocation to the lower surface of the crystal is 
smaller than the photoelectric-absorption length, Le., 
JJ.oZz < 1. This gives rise to interference bands (the 
so-called Pendellosung), the form of which is deter­
mined by the influence functions. If JJ. ° Z z > 1, as in our 
problem, the interference bands vanish and the picture 
of the dynamic scattering of x-rays by a dislocation can 
be adequately described in the geometrical-optics ap­
proxi mation . 
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