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An exact solution is obtained of the problem of the transformation of an electromagnetic 
wave into a sound wave on the surface of an alkali metal in a normal magnetic field. It 
is shown that the amplitude of the transverse sound wave, polarized perpendicularly to 
the external electric field, depends nonmonotonically on the magnetic field strength. 
The results of the calculation are in agreement with the experimental datay,2J 

1. The excitation of sound by an electromagnetic 
wave in metals at low temperatures has been studied in 
many experimental researches (the literature is given 
most completely in the paper of Turner et alYJ). In
vestigations have been carried out on various metals 
(tungsten, silver, aluminum, indium, tin, potassium, and 
others) both in a constant magnetic field H and at H = O. 
It has been found that in a longitudinal magnetic field, 
whose direction is the same as the direction of propaga
tion of the wave k and is normal to the surface of the 
sample, a transverse sound wave is excited with ampli
tude u proportional to the magnetic field H. One should 
distinguish between two geometries of the experiment: 
in one the displacement vector in the sound wave is 
parallel to the electric field Eo (uE) and in the other 
the vector u is perpendicular to it (uH). In a strong 
magnetic field, when spatial dispersion does not playa 
significant role and at kR « 1 (R is the cyclotron rad
ius of the electron), generation of the sound wave is due 
to the Lorentz force. In this case the sound is polarized 
perpendicularly to the field Eo and its amplitude in
creases linearly with increase in the magnetic field H. 
In weaker fields, when kR;: 1, the picture is consider
ably more complicated. The force acting on the lattice 
as a consequence of the deformation interaction of the 
conduction electrons with the acoustical vibrations be
comes comparable with the Lorentz force. In this region 
one can expect a departure from linear dependence of 
the sound amplitude u ex: H. Observation of such non
linear dependence uH (H) in magnetic fields, where 
kR ~ 1, has been reported by Turner et al. [1] Wallace, 
Gaerttner and Maxfield, l2] have observed a nonmono
tonic variation of the sound amplitude UH. In both ex
periments, potassium was studied, which has a spheri
cal Fermi surface. In alkali metals, the interpretation 
of the results is not complicated by the anisotropy ef
fects that arise in the case of a complicated dispersion 
law E(p) for the conduction electrons. 

The previously published theoretical papers of 
Quinn l3J and Kazanov[4 J do not explain the experimental 
results[1,2J and are qualitatively in agreement with them 
only in the region of strong fields kR« 1. It is there
fore of theoretical interest to explain the nonmonotonic 
dependence of u(H) by solving the problem of the elec
tromagnetic excitation of sound in a longitudinal mag
netic field in a metal with a spherical Fermi surface. 
In the present work we have succeeded in obtaining 
theoretically H.e nonmonotonic character of the sound 
amplitude uH (H) and in elucidating the reasons for the 
differences in the experimental results. [1, 2J 

2. The complete set of equations that describe the 
electromagneti:~ and sound waves in a metal consists of 
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Maxwell's equations, the linearized kinetic equation for 
the conduction electrons, and the equations of the lattice 
vibrations. We choose a set of coordinates such that the 
z axis is directed along the normal to the surface of 
the metal, which fills the half-space z > 0; the vectors 
Hand k are parallel to the z axis; the y axis is paral
lel to the displacement vector u( z). In the different 
geometries of the experiment the vector of the external 
alternating electric field Eo is directed either along the 
z axis (the polarization UH) or along the y axis (the 
polarization UH) or along the yaxis (the polarization 
uE). We have 

a'E.(z) _ 4n a;.(z) (_ ) -----a;z---;;;--a-t- a-x,y, 

ax ax ax _. --at + v''"""d;+ Q~+ to "1.= g(p,z) 

"'" e IE (z) +.;.-! iliJ } v + A., (p)u.,(z) , 

2e 2n 

;.(z)= (2nh)' S mdp, f dw.(t)x(t,z) , 

.. a'u 1 a 2 " 
PU = A."ora;} - -;;;$ +-a; (2nh)' S mdp, f d-rA" (p)x(p, z). 

(1 ) 

(2) 

(3 ) 

(4) 

Here E( z) is the electric field in the metal, j the cur
rent density, f = fo - xof%E the distribution function 
of the conduction electrons, X the nonequilibrium con
tribution, T the dimensionless time of motion of the 
electron along the orbit in a magnetic field, e the charge, 
m the effective mass, v and p the velocity and momen
tum of the electron, and Aik( p) the deformation poten
tial, which, for a metal with a quadratic isotopic dis
persion law, takes the form 

A..(P)=A( v~~. -+1> .. ), A=-~v'. 
On the right side of Eq. (4), the second component 
represents the induction force and the third the defor
mation force. The Stewart-Tolman effect has been 
neglected in Eqs. (2) and (4). 

(5 ) 

The boundary conditions for this set of equations are 
the following: 1) reflection of the electrons from the 
boundary; 2) equilibrium of the forces acting on the 
surface of the metal; 3) continuity of the tangential 
components of the alternating electric and magnetic 
fields. The last two conditions lead to the relation 

au(O) 2 •• 
A''''-a-z-+ (2nh)'S mdp,S d-rA.,(p)x(p,O)=O. (6) 

o 

The set of equations (1)- (6) can be solved exactly 
for the case of specular reflection of the electrons 
from the surface of the metal. The distribution function 
is of the form 
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, [ 1 J" ] [ 1 + iol't. 1 X=Q-IJ d"C,g Z+Q"_oov,d"C, exp ~("C,-"C) , 

where a is the cyclotron frequency of the electron and 
To is the relaxation time. In the expressions for the 
change in the energy g( T, z), there should be left only 
the component produced by the electric field 
(g = eE(z)' v). The remaining terms lead to small 
corrections proportional to m/M (M is the mass of 
the ion), which describe the electronic renormalization 
of the velocity and the damping of the sound. 

For solution of the Maxwell equations, it is conven
ient to introduce the circularly polarized field E± = Ex 
± iEy . Then 

a'E.(z) 

az' i~I dtE.(t)k" (I z ~t I) , 
where the subscript s denotes "plus" or "minus" 
polarization, 1 is the free path length, 

8n2 (U p2e2 

~ = ---;z- (2nh)' , a± = (Col ± Q)"C.; 

(7) 

and kas are the kernels of the conductivity operator: 

00 1 1 
k,,(u) = J dy (--,-) exp[ - (1+ ia,) yu]. (8) 

, y y 

After substitution of Eqs. (3), (5), (7) and simple trans
formations, the equation of lattice vibrations (4) is re
written in the form 

d'u(z) , d 
--+k u(z)=/oCz)+-j,(z), 

dz' dz 
(9 ) 

(here k = w(p/)...yzzy)I/2 is the sound wave vector). The 
first term on the right arises from the induction force, 
the second is due to the deformation force: 

H np'e' \"l Joo y' - 1 Joo 
=---i.... dy-- dyE.(t)ell'p[-l'.ylt-zl], 

J. y", (2nh) 3 y' 
8 1 _00 

i np'e' A \"l 00 y' _ 1 00 

f,(z)=---, -ldsigns J dy--, -J dtsign(z-t)E,(t) 
AyHy (2nh) ev y 

8 1 _00 

xexp[-r.ylt-zl], 

where rs = (1 + ias )/l. 

(10) 

(11) 

3. The integro-differential equation (7) is solved by 
the Fourier method. We continue the field Es(z) into 
the region z < 0 in even fashion: 

1 00 

0(p)=2 JdzE(z)cospz; E(z)=---;;J dp0(p)COSpz. (12) 
o • 

The solution takes the form 

E (z) =.!.... J d -2E.' (0) e'" 
, 2n p p' + i~K,,(p) , 

1-' > Imp >0, 

Kas (p) is the Fourier transform of the conductivity 
operator (8): 

K •• (P)=K •• (-p)=.!....{2 r. + [1- (r,)'] In 1 +iP/r,}, 
Ip Ip Ip 1- !plr, 
-1-' < Imp < I-I. 

(13 ) 

(14) 

NOw, knowing the right side of the differential equation 
(9), it is easy to write down its solution. We are inter
ested in the amplitude u( 0) of the sound wave on the 
surface of the metal. It is equal to 

U(O)=_.!....{j fo(t)e-ik'dt+ikj f,(t)e-ik'dt} 
~k 0 0 
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. ,-

(15 ) 

E •.. ·(O) Joo K •• (p) 1 
S.=-i-- dp • 

n _00 p'+i~K.,(p)p-k 
(16) 

T =-i E.'(O) J~ dp '/,-r.K •• (p) _1_ 
• n _00 p pZ+i~K •• (p) p-k 

(17) 

4. Calculation of the integrals (16), (17) is conven
iently carried out by transforming to the complex plane. 
The integrands have two branch points connected with 
the presence of logarithms in the function Kas( pl. 
They are located at p = ± (as = i)/ l. Moreover, there 
are poles which are the roots of the equation 

(18) 

Taking into account all the Singularities of the inte
grand and choosing the integration contour in the upper 
half-plane, we obtain 

S, = Eo' (0) ['l' •• - «ll,.], T. = E,' (0) ['l'2. - «ll,.], 

where ~1s and ~2s denote the sums of the residues of 
the corres ponding integrands of (16) and (17), and <P 1 s 
and <P2s are the integrals over the edges of the cut 
(irs 00; irs). 

Equation (18) contains the large parameter j3 » 1 
and is solved approximately. Using the asymptotic form 
Kas(P);.>j 11/\ P \, which is valid for \ p \ » 1, we find 
Pk = (1311)1/3 exp (in 11/6), n = -1, 3, 7. In the upper 
half-plane, tpe variable p has the single root PI 
= (1311 )1/ 3 ei11/ 2. Consequently, 

2i _ 8 + 2 1 + ia, 1 (19) 
.plo=3j3' 'l"'-!Jn~ 3~ -il- (~rt)'/" 

The integrals along the edges of the cut take the follow
ing form after uncomplicated transformations; 

«ll,.=~J dt t'(1-t') 
I<'\l; 0 t - i~l. [1 - i1;.t'<p, (I) J' - Vt'q:,' (t) , (20) 

2; f dt t'(1-t')['I,t1;,t'-1] 
«ll,. = - k'-;;7 0 t - i~l. [1- i;,t'rp, (I)]' - ~.'t'q:,'(t) (21) 

Here 
1+ia. 

f.'. =-k-l - = a ± ix, a = (kl) -', 

~ 
£S=-k' 3' f.', 

1+t 
<P.(t) = 2t +(1- t')ln--, 

1- t 

(22) 
<p, (t) = n (1- t'). 

In the range of magnetic fields of interest to us, 
x oS 1, we have \ ~s \ » 1. Here the quantity <P1s is 
small in comparison with <P2s(<P1s/<P2s ~ \ ~s \-1), and 
<P1s can be disregarded. IntrodUCing the functions ~s 
and <Ps, we rewrite the sound-wave amplitude u(O) in 
the form 

i 3Ne • { A 
u(O)=-, --8-E, (0) x['l'.++'l'.-]--, [('l"+-'l',-)-(«ll,+-<<ll,_)]} 

J..i/HJj mv 

1 3Ne • { A 
- -, - -8- E, (0) x['l'.+ - '1"-]--, [('1',+ + 'l',-)-(<D,+ + «ll,_)]}. 

AYZZ!I mv 

(23) 

Separating the real and imaginary parts in the expres
sions for <P2s, we get 

1 
<D,+ - <D,_ = T(F. - iF,), 

32' t(1- t') 
F =-axJ dt 

• 3 0 (<p,'+<p,z)[(t'-a'-x')'+4a't'] ' 
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16 ' (1 - t') (a' + x' - t') 
F, = - x S dt -;--:;-:-'--;-:-;--:-7'--:--~-:-':--;-~ 

3" (rp,' + rp,') [(t' - a' - x')' + 4,,'['] , 

16 J' (1-t')(a'+x'+t') 
F, = - " dt --;--c;-;--;-:;-;--;-';;-'--;-----:-;-:;--;--;-;-:;-;--

3 0 (<p,'+<p,')[(t'-a'-x')'+4a't') 

(24) 

After substitution of the values of l/!s and <I>s and 
neglecting the small components, the expression for the 
amplitude of the sound wave takes the form 

u(O) = - uOlEx' (0) [x - 3/, (F, - iF,») - u"E,' (0) (0.565 + F,), 

4 c'p 3 (25) 
UOI === 3/_

lJ
l.l11 81twe ' U02 == 4 UOto 

The integrals (24) cannot be calculated in explicit 
form for arbitrary values of the parameters a and s. 
It is not difficult to obtain their asymptotic expressions, 
if we assume a « 1, in the limiting cases x » 1 and 
x « 1. For x » 1, the functions F 1(a, x), F 2 (a, x), and 
F 3 (a, x) fall off rapidly: 

F, = 0.18 ax-', F2 = 0.283 x-', F, = 0.283 ax-'. (26) 

The wave amplitude uH(O) increases in strong fields 
with increase of the field H (Le., of x), asymptotically 
approaching the linear relation 

lun(O)1 =ll"E'(0)x[1-0(lIx'»), x»1, (27) 

and the quantity UE (0) approaches saturation: 

Ill, (0) I = ll"E' (0) [0.565 + 0 (1/ x') ), x » 1. (28) 

In the range of small x, when the inequality x « a « 1 
is valid, the asymptotic behavior of the integrals (24) 
is described by the following formulas: 

F, = 0.534 a-' x, F, = 0.987 x, F, = 0.84. (29) 

The dependence of the amplitude of the wave on the mag
netic field in the limiting case (29) takes the form 

IUff(O) I =u"E'(0)x'j/0.16 a '+0.068. 

I UE (0) I = u"E' (0) ·1.405. 

(30) 

(31 ) 

As is seen from Eqs. (27) and (30), the amplitude of 
the wave I uH(O)1 increases linearly with increase in 
the field H, both in the region of weak magnetic fields 
x « 1 and in the region of strong fields x » 1. How
ever, the coefficients of proportionality of the asymp
totic forms are different. For x » 1, the coefficient of 
porportionality is less than unity. For x « 1, it de
pends on the parameter a; it increases as a decreases 
and can become larger than unity. The amplitude uE( 0) 
for x » 1 and x « 1 tends to constant values, which 
differ in the cases of strong and weak fields. Thus, in 
the region x ~ 1 and a « 1, one must expect a de
parture from the linear dependence and the appearance 
of nonmonotonicity of the function uH(x). This conclu
sion is in agreement with the experimental results. 

The functions Fdx, a), Fz(x, a), and F 3(x, a) were 
tabulated on a high-speed computer for three values of 
the parameter a: 0.1,0.5 and 1. Their plots are shown 
in Fig. 1. It is seen that in the region of magnetic fields 
in which x » 1 the functions F 1, F 2, and F 3 are con
nected with the deformation forces, are small, and can 
be disregarded, whereas in weak magnetic fields 
(x ;S 1) they can play an important role. 

Figures 2 and 3 show the dependences of the dis
placement amplitudes UE and uH on the magnetic field 
for two values of the parameter kl: 2 and 10. For kl 
= 2, the function UH(x) departs appreciably from a 

518 Sov. Phys.-JETP. Vol. 37, No.3, September 1973 

1.0 

. F,(I } k/=IO 

0.5 

o 
• 1.0 

F,!XI 

0.5 

r--
!k/=Z 

/'" ~ 
kl=1 I 

1.0 I z,e 

kl=IO 

---H=Z ~ 
I~ kl=1 

... 0 _ 1.0 I Z.O 
~ork-l-=~-O'----'---'---' 

o L~---:-~~~ 
1.0 I Z.O 

FIG. I 

o '-'<----' __ --L __ -'--_ 

I Z.O 

FIG. 2 

FIG. I. Plots of the functions F J (x, a), F2 (x, a), and F3 (x, a) for 
values of the parameter a = (kIf!: 0.1, 0.5 and I. 

FIG. 2. Dependence of the displacement amplitudes IUEI on the mag
netic field and IUHI for the value of the parameter kl = 2. The abscissa in 
each case is the quantity x = (kRfJ. 

FIG. 3. Dependence of the displace
ment amplitude IUE and IUHI on the 
magnetic field for the value of the para
meter kl = 10. 

straight line in the range of values x r:; 1, but ap
proaches it at x » 1. It is natural to compare the ex
perimental data of Turner et al. [1] with the calculated 
curve. With increasing kl, the value of the deforma
tion force increases and the maxima of the functions 
Fl (x) and F 2 (x) increase along with it. This leads to 
the appearance of a nonmonotonic dependence of uH on 
H, which has been observed by Wallace, Gaerttner and 
Maxfield.[2] It is seen from a comparison of the UH(H) 
curves obtained by them and our curves of Fig. 3 that 
the value of kl in the experiment is in all probability 
much greater than assumed in [2]. It is possible that the 
di vergences are due to the nonspecular character of 
the reflection of the electrons from the surface of the 
sample. So far as the dependence UE(H) is concerned, 
our calculation agrees qualitatively with the experi
mental data. 

Unfortunately, a more detailed comparison with ex
periment becomes difficult because insufficient experi
mental information is contained in [2]. 

For real metals, one ought generally take into ac
count the nonspecular character of the reflection of the 
electrons from the boundary. In the case of diffuse 
scattering of the electrons, the exact solution of Max
well's equations is obtained by the Wiener-Hopf method 
and has a much more complicated form than for specu
lar reflection. The expression for the sound-wave am
plitude u(O) contains, in comparison with Eq. (15), 
additional components due both to deformation and to 
induction forces. It has not yet been possible to find 
simple asymptotic expressions for them. Computer 
calculations also turn out to be very cumbersome. In 
our opinion, allowance for these components should not 
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lead to any significant change in the character of UH( H) 
arid uE(H). 

Thus, on the basis of the free electron model, it is 
possible to explain the singularities of the production 
of ultrasound in potassium in a magnetic field. These 
singularities are due to the nonomonotonic dependence 
of the deformation force on the magnetic field, and also 
to the competition of the induction and deformation 
mechanisms of transformation of the electromagnetic 
wave into sound vibrations. 
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