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The nonlinear susceptibilities of a degenerate gas located in a quantizing magneti field 
are determined. The generation of sound second harmonics and the nonlinear direct 
current in the fields of sound and electromagnetic waves are studied. It is shown that 
the nonlinear susceptibilities experience oscillations of the giant-quantum or geo­
metric -resonance type. The effects considered can be used to study the electronic 
spectra of solids. 

Propagation of sound and electromagnetic waves in 
conductors located in a quantizing magnetic fie ld gi ves 
rise to a number of pronounced resonance effects which 
can be observed: giant oscillations of the absorption coef­
ficient, oscillations at geometric resonance, oscillations 
of the sound velocity in an oblique magnetic field, and 
so forth (see, for example, (l J). All the listed effects 
are linear in the sound amplitude. The abundance of 
such effects is connected with the multi-component 
character ?f the electron system in a magnetic field. 

In the present work we consider resonance effects 
that are quadratic in the field of the wave and whose 
existence is also connected with the multi-component 
character of the electron system. However, the non­
linear susceptibilities, which describe these effects 
contain more information on the electron system than 
the linear susceptibilities. To calculate the effects of 
interest to us, such as frequency mixing, frequency 
doubling, and generation of a static current, it is neces­
sary to find the nonlinear contribution to the concentra­
tion and to the nonlinear current in a completely de­
generate electron gas located in a quantizing field. W.e 
assume that the condition WT » 1 is satisfied and that 
the nonlinearity is connected with the resonance distor­
tion of the electron density matrix in the field of a 
sound or electromagnetic wave. We assume also that 
the spectrum of the carriers is isotropic and quadratic. 

1. To calculate the nonlinear susceptibilities, it is 
convenient to use the equation of motion for the electron 
density matrix in the field of an electromagnetic or 
sound wave. 1) In second order in Hint, the corrections 
to the current and to the concentration of electrons take 
the form . 

<j(x) > ~ i S dt'<Win,(t')J(x) P 

, ,. -J dt'J dt"( [Hin,(t") [Hi"' (t')j (X) ] p, (1 ) 

, " 
(6n'2) (.X» ~ - S dt'S dt"<[O:n,(t") [Hi",(t')n(x) ll>, (2) 

where Hindt) is the Hamiltonian of the electrons in the 
field of an electromagnetic or sound wave in the inter­
action representation; J(x) and il(x) are the current 
and density operators in the interaction representation. 
Averaging in (1) and (2) is carried out over the ground 
state of the electron system. 

To find the nonlinear effects in the propagation of 
electromagnetic waves, it is necessary to use a gauge 
with a scalar potential CfJ = O. In this case, we have 
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j(x)~ \"1 { _e_[q:;p q:,. - <jl" p q:,] 
~ 2m . ". 

e' } A ~ ---q:;'f,·(A + Ao) exp(- i(E,. - E,)tJa,+a,., 
me 

(3) 

Hi",(t) ~ \"1 { - i- [A(P - ~A,,) ~ (p --=-Ao) A] 
l--d _inC C c ~A' 

)ie' 

e'} A A +--.. (A')". exp(- i(e,· - E,)t}a,+a,., 
2mc-

(4) 

where Ao(-Hy, 0, 0) is the vector potential of the con­
stant magnetic field, H the field intensity, A the vector 
potential of the electromagnetic wave, e the charge, 
m the effecti ve mass of the carriers, c the velocity of 
light, CfJ.\(r) = CfJnpxpz(r) the wave functions in the 
magnetic field, E.\ = En(Pz) the energy eigenvalues, 
and a~ and a.\ the creation and annihilation operators 
(Planck's constant is ti = 1). 

We first find the quadratic increment of the current 
in the field of two plane waves 

Carrying out the averaging in (1) over the ground state 
of the electrons and transforming to the q, W repre­
sentation, we get the amplitude of the nonlinear current, 
after rather cumbersome calculations: 

,,' 
i"(2)(q ~ qi .~- ,!,; «) = '''1 + "'2) cC h'm'c' AI~A2Y P (r",q"g; ",,",y) 

~<L, rk-exPj iJ (g"Q2(J-g,xgI!ll} 
mll11l 

x (~dp,X~", (q, p,) X~n, (- qh p, f g,) X;',n (- q2, p, + g2,) 

[ I [En (p,l] c. j ['n1 (p,'- q,,)] (5) 

t- [em (p, + q,) E'nl (P, r Q2,) "'1 i6] [Em (p, T q,) - En (p) '" i61 ] 

__ Mmn(-q) 6 Id X~m(q'Pz)li[em(pz-i-q,)]-j[En(p,l]] 
I 2, ,1), ~ pz E'.m(pz+Qz} E'.ntPz} w- i6 

__ 1_ U nm (q) 6 'i d X;;'n (- q, P, + q,) [j [em (p, + '1,,)1 -- fiE" (p,)]j } 
r .l.(3J pz e ll4 (p z -: fJ'lZ) Bn{p z) w~ i6 I 

where P(Wl, qlP; wzqzY) is the permutation operator, 
Y = c/ eH the square ofthe magnetic length, f LEn (pz )] 
the distribution functions of the electrons, and A~ and 
A ~ the components of the vector potential in the first 
and second wave. In obtaining Eq. (5), we used the 
expression for the matrix elements of the operator 

v,~, = o(Px-P: +gx)o(p,- P: +q,) 

x exp(iypxgu + '/,iyg,q,,lx""", (q, p,), 
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(6) 
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where ,\ is the set of electron quantum numbers. 

Calculating the quantities ~m (q, Pz), we get 

X:m (q, p,)= M"", (q) (p, + '/,q,), 

q m + 1 'I, , ( m ) 'I. 
X;", = -~M",,,(q) +i(--) iIl"",+,(r[)- i -,,- .11",,,,_,(q), 

2 ~ 4 

q (m + 1 ) 'I, m 'I, (7) 
x~" = -~M",,(rl)+ -,- M" ,(q)+ (-, -) M"",_,(q), 

2 2y 2V 

M"", (q) = 2-'n-""I'[sign(m - nh'I'q, - iq.dl'l'''-''''L''''~~'~',''''(fl) e- p/', 

1/ (~ 2 ) I n-m I . L where p = /21' qx + qy and Lmin(n,m) 1S a aguerre 
polynomial normalized to unity. Using the Hermitian 
property of the operator p - eAo/ c, we can obtain the 
following relation: 

v..':..(q) = V:::(-q). (8 ) 

Then, with account of (6), we get the symmetry relation 
for the matrix elements ~m(q, pz): 

Xnm'(q, p,) = Xmn"(-q, p, + q.), 

X"","(-q, p.) = Xmn"'(q, p. - g,). 
(9 ) 

As H - 0, the expression (5) is transformed into the 
similar formula obtained by Cheng and Miller[3J for the 
nonlinear current. 

To study the nonlinear effects in the propagation of 
sound, we find on( 2) and j(2) in the field of a longitudinal 
sound wave. Taking into consideration only the defor­
mation interaction, and neglecting the induction inter­
action, we write out the Hamiltonian in the form 

fi,,,,(t) ~ l: ~,+~,. v". exp{- ire, - f,·)l}, (10) 

'" 
where V,\,\' are the matrix elements of the operator 
A div u over the wave functions of the electron in the 
quantizing magnetic field, 11. is the constant of the de­
formation potential, and u is the displacement vector 
of the lattice. 

Averaging over the ground state of the electron sub­
system and transforming to the q, W representation, 
we get the following expression for the nonlinear con­
tribution to the current in the field of two plane waves 
u, expli(q,'r - W,t)) +u2expLi(q2'r - W2t)j: 

mn!!., 

x ~ dp,X~m (q, p,)Jf m", (- II d .If",,, (- q,) (11 ) 

xl i 18 " (pz)1 - I /'", (I', + ",,\I 
l [e 'll (p z " fJ2z) - f::'n (p z) - W2 -- ~61 [em (P z -+- 'I) -- en CU.) -- (j) --/Oj 

f I'm (I', + '1,)1 --! Ie", (1', -; 'I"IJ } 
- --;-I'-',.---:(-P,--",7:)J---'-·,,---:, (---:1''::', ,'-,!-(J~.) - WI - /("\] [em (P z . 1/:;) - en (Pzl- (() -/OJ 

The matrix elements Mnm and Xfun in (11) are deter­
mined by Eq. (7): V,,~ = 1I.q',2U',2 and 11. is the con­
stant of the deformation interaction. 

For the nonlinear contribution to the concentration, 
we get similarly[4J 
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The singularities of the integrands of (11) and (12) 
correspond to the creation of electron-hole pairs by 
each phonon, and also by two phonons simultaneously 
when the laws of conservation of energy and of the z 
component of the momentum are satisfied. The matrix 
elements Mnm(q) in (11) and (12) describe the approxi­
mate conservation of the transverse component of the 
momentum. 

2. We now proceed to the calculation of some con­
crete nonlinear effects, which arise in the propagation 
of sound and electromagnetic waves. 

We first discuss resonance effects in the generation 
of the second harmonic of sound. We introduce first the 
nonlinear susceptibility X(2)(WI + W2; q, + q2) with the 
help of the relation 

on'''(r, t) =x"'V,V,exp {i[(q,+q,)r- (w,+w,)t]). (13) 

Setting W, = W2 and q, = q2 = q in (12), we find 

x(2)(2w, 2q) = -2mq-'[II(q, w) - II (2q. 2",)] (14) 

for q II H; here II (q, w) is the "longitudinal" polariza­
tion operator in the quantizing magnetic field. The ex­
plicit expression for X (2) (2w, 2q) is of the form 

He X ,'J (2"" 2(1) 

=~~[2Jnl (k,,+q/2)'-(mwlq)' 
2n'q'y "7" (k" - q(2)' -(mw/q)-

1 1 (k,,+q),-(mwlq), I] 
- n (k,,-q)'-(mr,)/q), _. 

1111 X''! (2",,2'1) 

=~ ~ {2(f[e n (p,,)]- /[en(p" + q)]) 
nq 1 " 

- (f[e" (p,.) 1- If e"(p,, + 2,,) ])}, 

(15 ) 

where kn is the maximum momentum of the electron 
the n-th tube, and P1z and P2z in (15) are determined 
from the conservation laws 

f,,(p,,+q) -f,,(p,,) -«)=0, 

e"(p,, + 2q) -- ",,(p,,) -:2", ~ o. 
(16) 

In the absence of a magnetic field, it is not difficult 
to obtain the following expression from (14) by expand­
ing the corresponding expressions for II (q, w) in q/2po 
at q/2po « l;lSJ 

x'" (2w, 2q) = - 3m' 12np,. (17) 

If the synchronism condit,ions are satisfied, then, as is 
well known, the amplitude of the second harmonic will 
increase linearly: 

u'" ~2).-' I X"'(2w, 2q) I·\'(qu"')'x; 

where ,\ is the elasticity modulus. 

(18 ) 

The dimensionless parameter that characterizes the 
amount of the nonlinearity is given by 

/0 ~ 2A -, I x'" (2"" 2q) I ,\'. (19 ) 

For metals, po ~ 108 cm~l, m ~ 10~27g, and A = 10 eV. 
In this case {3 ~ 10, i.e., the electronic nonlinearity is 
of the same order as the lattice nonlinearity (see[sJ), 
and consequently both nonlinearity mechanisms must be 
taken into account at the same time. It can be shown 
that under these conditions the nonlinear terms that 
arise in the expansion of the energy of the electron in 
powers of the deformation tensor above the first lead to 
corrections of the same order as the terms considered 
above. 
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In a quantizing field at qR ,< 1, when the resonance 
condition is satisfied only for transitions An = 0, the 
principal contribution to X(2)( 2w, 2q) is made by the 
difference of the imaginary parts of [l (w, q) and 
IT (2w, 2q). In that (q, w) region where the conditions 
(16) are satisfied, we get from (15) 

11 = m',\" / ,['lq'fl"!c. (20) 

At the usual values of the parameters entering into (20), 
the nonlinearity f3 exceeds the lattice nonlinearity by 
many orders of magnitude. The temperature broadening 
of the distribution function and the broadening of the 
spectrum due to collisions greatly decrease the value 
of f3. In pure metals and semimetals, where the tem­
perature broadening predominates, it is necessary for 
the determination of j3 to substitute 1m [l ( w, q) at a 
finite temperature in (15): 

m'Q (w) ,[ (mw/'j- q/2)' - Ie,,' ] Imll(w,q)=---sh ;-'~ ('Ii ----'-,-;----- --, 
4rrq, 21 1m 1 

I -,I [ (mwl'l + q,'2)' - k,,' ] 
XC I , -. '. 

1mT 

(21) 

Expanding 1m [lew, q) and 1m n(2w, 2q) in wiT, we 
get the additional factor (wIT)3 in (20). Estimates show 
that for q = 10- 5 cm-t, H = 10 5 De, T ~ 10 K, m ~ me, 
and A ~ 10 e Y the nonlinear parameter is f3 ~ 10 2-10 3 • 

Another nonlinear effect connected with the propaga­
tion of sound is the appearance of a constant electric 
current. Formulas for the current j~) in the direction 
of the magnetic field and the current j~) perpendicular 
to H are obtained from (11) at qI = -q2 = q(~, 0, qz) 
and WI = -W2 = w. Replacing l Em(Pz + qz) - En(Pz) 
- w - iii] by -iv(v = 1/7 is the collision frequency), 
we get 

where 

. [2' 2e q, '. ( ), =----l-Illlll w,q), 
'V m 

(22) 

is the imaginary part of the polarization operator; pz 
in (22') is determined from the conservation laws. 

In obtaining the expression for j(2) from (11), it is 
necessary to keep the following in mind. The matrix 
element X~m is pure imaginary (qy = 0), and MlllllI 
and MnIn are real. Therefore, it is clear that the 
current will be different from zero whenever the inte­
gral with respect to Pz has an imaginary part. Using 
(6) and (7), we get 

.(0' lelV' ~{( n )' !, ~- ::--- -;;-: l! ,-, ", (-- II) .vI"" (I[) 
"'1, -) 

""1 

- (~~ ) 'I, ;If",_, "(q)M,,,.,(- II) + (n~~) ':' .11,,, (- IIpr" ", (II) (23) 

( n+1)':' } - ~-- M"" (q)Jf", ,,( - q) {/[E" (p,)]- I[F", (p, -+ '1,)]l. 

In the region of wave vectors qR < 1 (R is the Larmor 
radius), where the contribution to the damping is made 
only by transitions with An = 0, we get from (23) 

= -lelq"'I" I II( ) 
~lm - m q.w. (24) 

We have taken into account here the relation 

( n + 1 ) 'I, (n ) ", . qx 
-,- M",,_,,(q)+.- M"" ,(II) = '2 M ,('I), 

:1.1 21 

which follows from the fact that X~n (q) = 0 (see below). 

514 Sov. Phys.-JETP, Vol. 37, No.3, September 1973 

It is easy to understand the physical meaning of Eqs 0 

(22) and (24) by separating the following factors: the 
factor 2y2Im [l, which determines the number of pho­
nons absorbed per unit time; the factor qz I mv -the 
distanc e traversed by an electron with the additional 
moml'ntum qz in the z direction; the factor qx/mn­
the displacement of the center of the orbit in the x 
direction following absorption of a phonon with momen­
tum qx and carrier charge e. 

The nonlinear current jy) at qR « 1 has been ob­
served experimentally l7 J for sound propagation in Bi in 
a quantizing field. The current oscillations correspond 
entirely to the giant oscillations in the sound absorption 
(see l8 1). 

In the absent of a magnetic field, the factor 

m'w 
1m II (II, w,lI = 0)= ,--9(2p" - k), 

2Jtq 
(25) 

should appear in (22), where e(x) is the theta function 
(see[21). 

According to Eqs. (22)-(24), the oscillations of the 
current amplitude following a change in the quantity H, 
and also following a change of the angle between q and 
H, will be synchronous with the oscillations of the ab­
sorption coefficients. 

It must be noted that in a two-component plasma the 
oscillations of the current are due to resonance absorp­
tion by carriers of different types belonging to a definite 
Landau level, and the direction of the current jz will 
change if the signs of the carriers are different and 
resonance does not begin simultaneously. Measurement 
of the current can give more information on the spec­
trum of the carriers than the giant oscillations of the 
absorption coefficient. In a nonquantizing field, the 
currents associated with the absorption of phonons by 
electrons and holes cancel each other in the z direc­
tion and are additive in the y direction. 

If the angle between q and H is close to 1T/2 
(cos e < sl vF ), then one can have not only the oscilla­
tions of j(2) that are connected with the threshold in the 
production of electron-hole pairs, but also oscillations 
of the geometric-resonance type. These oscillations 
are described by the factors 1 Mnn( q) 12 in (24). With 
the help of (23), it is not difficult to show that current 
oscillations can be observed at q 1 H if the conditions 
of cyclotron resonance w = nn are satisfied. 

In a nonquantizing magnetic field, obviously, an 
abrupt change of the static current ought to be observed 
if the resonance condition is satisfied for the electrons 
and holes (the tilt effect): 

VI":" cos H = s, 

where v~h is the Fermi velocity, s the sound velocity, 
and e the angle between q and H. 

Of course, to observe all the enumerated effects, it 
is necessary that the sound damping over the length of 
the sample be small. 

We did not take into account above the fact that the 
electrons interacting resonantly with a longitudinal 
wave can be trapped by the wave at sufficiently high 
sound intensities; this corresponds to strong distortion 
of the distribution function in the region of resonance 
momenta. Interesting papers have been devoted to the 
consideration of the corresponding effectsy,lOJ The 
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intensity threshold at which effective capture of the 
carriers begins is determined by the condition 

W"T» 1, 'uo ~ qY/\m-' div u, (26) 

Upon satisfaction of the condition (26), the absorption 
coefficient can be appreciably decreased;[10 1 in a quan­
tizing field, this leads to a decrease in the amplitude of 
the resonance oscillations. If TWo::' 1, then electron 
capture can be disregarded. At sufficiently high sound 
amplitudes, one nonlinear effect is still possible in a 
quantizing field-the change in the number of filled levels 
in the field of the wave. This effect should also lead to 
a weakening of the oscillations. Simple estimates show 
that these effects are important at sound intensities 
:::'10-1 - 1 W/cm 2if W ~ 109_10 '0, T = 10-9 sec, and 
H ~ 105 G. 

Heating of the carriers can also lead to such a blur­
ring of the oscillations. To take this heating into ac­
count, we need to introduce the temperature Teff. It 
was shown in [10J that heating of the carriers by the 
sound wave is usually negligible without a magnetic 
field. Calculation of Teff in a quantizing field is a very 
complicated problem. The first experiments on the non­
linear sound effects in a quantizing field[7,8J show that 
oscillations of the nonlinear characteristics are clearly 
evident at powers on the order of 10-1 - 1 W/ cm 2. 

Thus, it follows from numerical estimates and ex­
perimental data, that our theory is valid at intensities 
;S10- 1 - 1 W/cm 2. 

3. We now find the constant current which arises 
upon propagation of low-frequency.electromagnetic 
waves, for example, helicons, which interact in resonant 
fashion with the electrons (this effect was considered 
in[llJ for a nonquantizing field). From Eq. (5), at W, 

= -w 2 = wand q, = -q2 = q, we get the current density 
created by the transverse wave having vector-potential 
components A(3 and propagating along the magnetic 
field: 

(21 2eq, 
j, =---ImA'A"a,,(q,w), 

me\' 
(27 ) 

where ua/3 is the conductivity tensor (j~') (q, w) 
Ua/3(q, w)A(3)' It follows from (27) that in an isotropic 

metals, where transitions with An = 1 are realized, we 
should observe a burst of current at the boundary of the 
Doppler-shifted cyclotron resonance. The current 
oscillations associated with the transitions An = 1 are 
difficult to resolve. 

If the wave is propagating at an angle to H in an iso­
tropic metal, or parallel to H in an anisotropic one, 
then j~) will oscillate even under the conditions of giant 
quantum oscillations (An = 0). 

Now let the electromagnetic wave propagate in the 
(x, z) plane. We calculate the constant current flowing 
along the y axis. The electromagnetic wave propagat­
ing at an angle to the magnetic field is elliptically 
polarized, and one of the axes of the ellipse is perpen­
dicular to the plane of q and H, i.e., it is directed 
along the y axis. Consequently, the component Ay of 
the vector potential can be taken to be imaginary, and 
the remaining components Ax and Az to be real. Inas­
much as qy = 0, the quantities Mnm(q) are real and 
consequently X~m (q) and X~m (q, pz) are real. The 
matrix element XKm (q) is pure imaginary. it then 
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follows that A/3~m(q, pz) and A *J3~m(q, pz) are real 
quantities. Then, as follows from Eq. (5), all the com­
ponents of the current j~) are pure imaginary if the 
integrals with respect to pz have no imaginary parts, 
i.e., if wand q do not lie in the region of collisionless 
damping. Consequently, if the wave is not damped, then 
the constant current j~) = O. With account of (9), after 
some transformations, one can then obtain an expres­
sion for j~). We give the formula here only for the 
case in which the transitions with An = 0 are possible: 

( n + 1 ),/, , , 
- -_. X" "+I(-(IoP,)X,,,,(-lj.p.) 

2, (28) 

M. } [ _. -'J -M,,,,(- q)X",,(- q,p,) {f[e,,(p,)]- f e,,(p, - q,) ]1, 
-1 

e,,(p,) -e,,(p,-q,) -Ol~O. 

In obtaining these formulas, we have also taken it 
into account that X~I). (q) = O. It is not difficult to estab­
lish this. Since xfin t q) is a real quantity, it follows 
from (9) that it is an even function of ~. It follows 
from the explicit expression (7) for X~n(q) that ~n(q) 

is also an odd function of qx' Hence X~n(q) = O. 

I) Similar calculations can also be carried out with the aid of the method 
used in [2] to calculate the linear conductivity, In our case, it is necessary 
to take into account the next terms in the expansion of the S matrix. 
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