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The time correlation function QK( t) of selected (e .g. locat'br quasilocal) nonlinear oscil
lations interacting with the medium and the spectral representation QK( w) are deter
mined. The general case of an arbitrary relation between nonequidistance of the vibra
tional state levels, due to nonlinearity, and their inverse lifetime, due to interaction with 
the medium, is considered. The problem is solved by means of an integral operator 
equation which reduces to a partial differential equation. It is shown that asymptotically 
for large times, QK( t) can be expressed in elementary functions and QK( w) in quadra
tures. The shape of the spectral distribution and its fine structure are investigated in 
various cases. 

1. INTRODUCTION 

The quantum theory of a harmonic oscillator inter
acting with the medium was developed in a number of 
papers[I-4]. The kinetics of the variation of the quantum 
states of the oscillator was investigated in detail and 
the time-dependent correlation functions of its coordi
nates were determined. The results obtained for har
monic (linear) oscillators can, however, be modified in 
many respects on going over to nonlinear detached os
cillators. The reason is that the levels of nonlinear 
oscillators become non-equidistant. Therefore, neglect
ing the interaction with the medium, the spectrum of 
the absorption or scattering of waves by a nonlinear 
oscillator will consist of a set of lines corresponding to 
quantum transitions from different levels and separated 
by an amount ~Q.w that characterizes the degree of 
nonlinearity (and not of one line, as in the case of a 
linear oscillator). 

Allowance for the interaction with the medium, just 
as for the linear oscillator, leads to quantum transi
tions between levels, to a finite lifetime 1 of the states, 
and to line broadening. Depending on the relation be
tween 1-1 and Q.w, the indicated set of lines will make 
up a somewhat smeared fine structure or else will 
coalesce into a single broadened distribution. The shape 
of the resultant spectral distribution was considered in 
a number of papers[5,6] by the Green's function method, 
but only the limiting cases Q.w « 1-1 and 1-1 = 0 could 
be investigated. The use of the asymptotic methods of 
nonlinear mechanics and of certain results of the 
theory of random processes has also made it possible 
to construct a complete classical theory of the spectral 
distribution of nonlinear oscillations [7]. 

The classical theory, however, is valid only at high 
temperatures and does not make it possible to investi
gate the fine structure-which is purely quantum in 
nature-of the spectral distribution. A quantum theory 
is needed to investigate the fine structure at low tem
peratures. Such a quantum theory, valid for arbitrary 
relations between Q.w and 1- 1 (but under the assump
tion that Q.w and 1-1 are small in comparison with the 
frequencies w K of the detached oscillators), will be de
veloped below with the aid of a special method based on 
the use of an operator integral equation that reduces to 
a partial differential equation that can be solved in 
terms of elementary functions. In some respects, it is 
simpler that the classical theory. 
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2. FORMULATION OF PROBLEM 

We consider the time-dependent correlation function 
QK( t) of the annihilation and creation operators aK and 
a~ of detached oscillators K, and its spectral repre
sentation QK( w ): 

1 ~ 1 ~ 

Qx(w) = - S Qx(t) ei • t dt = - S Re Q.(t)e i • t dt. 
21t It 

o 

Here 11 = 1, Z = Tr exp (-AH), A = (kT)"\ aK = aK(O), 
and H is the Hamiltonian of the system. 

If, for example, the considered detached oscillations 
are local or quasilocal vibrations in crystals, then 
QK( w) determines, apart from factors that depend little 
on the frequency, the spectral distribution of the absorp
tion or scattering of infrared radiation or inelastic 
scattering of neutrons. It is precisely the function 
QK( w) that can change qualitatively when nonlinearity 
effects are taken into account. The nonlinearity gives 
rise to only small corrections, ~Q.W/WK' to the corre
lation function (n K( t) nK( 0) > (UK = a~aK)' and also to 
the probabilities of the transitions between leve ls. 

We choose as the model of the medium a system of 
harmonic oscillations k with frequencies wk belonging 
to a continuous spectrum. The Hamiltonian of the de
tached oscillations interacting with such a medium is 
expressed in the form 

II = II, + II" Hi = ~ II, (a, + a. +) + 4-~ H", (a, + a. +) (a" + a,,+), 
II. kit' 

'\1 - 1'\1 -~ '\1 ~ 
Ho = L..JUlxn><; + 2 L..J Vx>.;' nxnx, + .L..J 0hnk , 

xx' h 

II. = ~ Vx,(ax + ax+) + ~ V .. ,,(ax+a.+) (ax, +a/), (2) 
,,' 

II" .. = ~ V xh., (a. + a.+) + ~ V,,'kk' (ax + ax+) (ax' + a/), 
xx' 

This Hamiltonian is a satisfactory model for the de
scription of local and quasilocal vibrations of weakly 
bound impurity atoms in crystals. It can, however, be 
used to investigate the considered effects also in a 
more general case of such vibrations in defects with 
inversion centers (arid also in other systems with de
tached oscillations). We note that we have left out of 
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the Hamiltonian (2) certain "nonresonant" terms (for 
example, of the type a~a~), which lead to corrections 
of higher order of smallness. 

We confine ourselves henceforth to the case of cen
ters of low symmetry, in which the frequencies of the 
detached oscillations do not coincide (w K ". W K') and 
are not close to each other. In addition, we exclude the 
cases of resonant situations of the type W K "" W Kl ± W Kz 
or w K ± wK' "" WKl ± w Kz' The nonlinearity of the oscil
lator is assumed to be small (I V KK' I « W K)' 

It is convenient to calculate the trace in formula (1) 
with the aid of the complete system of the eigenfunc
tions (nKland (nkl (or (mKI and (mkl) of the opera
tors UK and Uk for the detached oscillations and for the 
continuous-spectrum oscillations. We change over to 
the interaction representation, i.e., we introduce the 
operator 

U(t)= em,' e-Hn = Texp {- i j H,(-.:)d-.:}, H,(-.:) = e'H" Hi e- iH,,, (3) 
o 

where T is the chronological-ordering symbol. Then 
expression (1) for QK( t) takes the form 

Q.(t) = exp[ -i «(Ox - 1/, V xx ) t]oxp (Aw.) Qx(t), 

Qx(t)= ~. .E m.F(mx.,t)exp ( -A .Em"w,'-i.E vxx.mx.t), 
.. ,m",..... ,..' ",' 

x (mx ', m, I U(t) I nx·, n,)exp (- A.E mhwl.) , 
h 

We have discarded here small terms of the order of 

AI VXX ' I iix ' < I Vxx ' I wx'-' «: 1 (fix = [e'"x -1]-'). 

(4) 

The operator U- l( t + iA) = U+( t - iA) can be calculated 
by a formula similar to (3), in which T is replaced by 
the operator T -, which carries out the chronological 
ordering in the opposite direction, and in which the 
sign of the argument of the exponential is reversed and 
t is replaced by t + iA. 

To calculate QK( t), we exc lude the oscillations of the 
continuous spectrum. We consider first a simple case 
when processes in which two oscillations of the contin
uous spectrum participate can be neglected in the 
Hamiltonian (2), Hkk' = O. The analysis is then general
ized to include the case Hkk' ". O. 

In this case U(t) (or U-l(t + iA)) breaks up into a 
T-ordered product (with respect to k) of factors of the 
type 

exp {- i f H,(-.:)[ah(-':) + ah+(-':) ld'll (5 ) 
o 

The operators Hk( T) contain the small factor (1/N)U 2, 

where N is the number of atoms of the system. This 
enables us to confine ourselves to quadratic terms in 
the expansion of the exponential factor (5), to calculate 
directly the matrix elements on the functions (nk I and 
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(mk I, and to carry out statistical averaging over the 
occupation numbers mk. Then, reducing the product 
over k to an exponential function of a sum over k, we 
obtain the following expression for F( nK', mK'): 

F (n •. , mx .) = (n •. - 0 ... , mx • I TT _ exp G I mx • - 0 ... , nx.), 

t+i" t 

G= .E{ f f H,(-.:,)Hh(T2)<P'(-':2--.:,)d-.:,d-.:2-
• 0 0 

t+i1o, 't. , 1:1 

- f fH ,(T2)1l,(-.:,)<p,(-':2--.:,)d-.:,d-.:2- f fH,(-.:,)H'(-':2)'P'(-':'--':2)dt ,dT'}, 
I) I) I) I) 

<P,,(t) =ii,ei",' + (ii, + 1)e-i",', ii, = (e'"I. -1)-'. (6) 

We have introduced here a symbolic notation according 
to which the operators Ilk (with superior bar) are ex
pressed as matrices of the first functions in the matrix 
brackets to the left and to the right of the operators, in 
our case the functions (nK' - 0 KK' I and I mK' - 0 KK'), 
and the operators Hk (without the superior bar) are 
expressed in terms of the second functions, in our 
case on the functions (m K' I and InK')' The ordering 
operators T and T_ pertain respectively to Hk(r) and 
Ilk(T). 

In the derivation of (6), we used only the transition 
to the limit N - 00, and these formulas are valid inde
pendently of the smallness of the interaction of the de
tached oscillations with the oscillations of the continuous 
spectrum. In the more general case, when Hkk' "'0, 
analogous expressions can be obtained by assuming that 
this interaction is small and the Hkk' contain a small 
parameter. Calculation shows that F(nK','mK') is also 
determined in this case by formula (6), and in second 
order in the interaction constants (in both Hk and Hkk') 
it is necessary to add to the term G in (6) a term G' 
equal to 

1 t t+i). 

G'=-T i L,(2ii,+1) [SH,,(t)dt- f llhh(t)d-r] 
• 0 0 

1 '+0. t 

+T.E{ f f 1l".(-.:,)H"'(-':')'P,,'(T2-T,)dt,d-.:, 
IIR' I) I) 

I+i" '[I 

- f f ll,,· (-.:,)ll,.,. (T,)<p".(-':,-t,)dt, d-':2 (7) 
o 0 

-JIll",. (,!;,) H",· (-.:,) <p,,' (t, - T,) dT, dT,} ; 
00 

<p,,' (T) = ii,ii,·exp{i(w, + W,')T} + (1 + ii,) (1 + ii,·) exp{-i(w, + w,·) T} 

+ 2 (ii, + 1)ii,· exp {-;(w, -w,·),;}. 

3. DETERMINATION OF THE TlME·DEPENDENT 
CORRELATION FUNCTIONS OF THE DETACHED 
SELECTED OSCILLATIONS 

We determine the correlation function QK( t) from 
formulas (4) and (6) first for the simplest case, when 
Hkk' = 0 in the interaction Hamiltonian, and the coef
ficients V KK'k vanish in Hk, i.e" 

H,= .EVxl.(ax+ax+). 
x 

This case corresponds, for example, to nonlinear 
quasilocal vibrations of a weakly bound impurity atom 
or molecule in the case of harmonic interaction with 
the oscillations of a continuous spectrum. 
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The region of the peak of the spectral distribution 
Qd w) is determined by the behavior of the function 
QK(t) (or QK(t» at long times, considerably longer 
than the period of the selected oscillations and of the 
continuous-spectrum oscillations: 

(W m is the maximum oscillation frequency in the con
tinuous spectrum). The calculation will therefore be 
performed from now on for the asymptotic case of such 
long times. Accordingly, we shall take into account in 
the formulas the terms of the type Et/to, where E are 
small constants due to nonlinearity and interaction with 
the medium, and small terms ~E are not taken into 
account. This means that we investigate the shape of 
the spectral distribution of the peak QK(W), but not the 
attenuation of its intensity (which is small in the con
sidered case of smail E). 

The functions F( mK', t) determined by formulas (4) 
and (6) can be calculated by expanding exp G in (6). The 
first two terms of the expansion, according to (6) and 
(4), are given by 

F(m,., t) = 1 + FI') (m.., t), FO) (m,., t) = -b,(m..) t 
, 

+ 2 ~r,,(m., - (')..,) (n" + 1) I exp (iV,,,'t) d, 

" 
, (8) 

+2 ~r,,(m,,+ 1)n"S exp(-iV,,,T),/-r (t;:}>to), 

" 
b,(m,·)= 2 ~r"m"(2n,, + 1)+ 2 L. L,n" - r, + ii',. 

" 

Here r K and P K are the damping and the shift of the 
selected oscillation K, due to its decay accompanied by 
phonon production (and calculated without allowance for 
the anharmonicity). For the considered interaction 
Hamiltonian we have 

r,=n ~V:'Il(Cil'-Cil'), (9 ) 
k 

The symbol P denotes that after changing over from the 
sum over k to the integral, the latter must be taken in 
the sense of the principal value. 

In (8), taking into account the smallness of the inter
action Hamiltonian Hi and the smallness of Iv KK' I, 
we could discard terms of order 

neglect the deri vati ves d r K / dw K and dP K / dw K together 
with r d and P K t (it is implied that the frequencies 
W K do not lie near the singular points in the continuous 
spectrum), and replace t + iA in the limits of the inte
grals by t. Following these substitutions, the operator 
G can be represented in the form 

G = G(t)= j J A (t" T,)dT, dT" 
00 

A (", '2) = .E [D, (,,) 'P' (,' - ,,) - 11" (,,) 'P'(" - '2) ] [H, ('1'2) - D,( '1'2) ]. 

• (10) 
In the second term of the expansion of exp G 

+ S S A (T" T,ldT, dT, +.JJ A (Tg, T,)dT, dT, ] 
T ~ 0 1: ~ t 2 

(11 ) 
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we need retain in the considered asymptotic theory only 
the first term. Indeed, in the Significant time region 
where F(1)(mK', t) ~ 1, this term also becomes of the 
order of unity after TT_ ordering and matrix formation. 
On the other hand, since A(T1' T~) contains rapidly 
oscillating factors of the type expi (Wk - WK)(T 1 - T2), 
and in the second term the regions of integration with 
respect to T3 and T4 do not intersect, this term is of 
the order of dr K / dw K «1 at these values of the time. 
The third term, on the other hand, turns out to be small, 
because the aforementioned factors oscillate rapidly at 
large I T 1 - T 21 (no such situation arises in the first 
term, since the internal integral depends only on T 2 

and we can choose T1 to be close to T,2). 

Retaining only the first term in (11) and taking (10) 
into account, we obtain the integral equation 

1 ~ 'fl 

-G'(t)=SS A(Tt,t,)G('t,)dT,dT,. 
2 0 0 

We obtain in similar fashion a recurrence formula for 
the p-th term of the expansion of exp G and an operator 
integral relation for exp G: 

1 '" 1 
-, GP(t)=SS A ('t"T,)-( _ )' Gp-' (T,)d't,dT" 

p. 00 pl. 

, " (12) 

expG(t)= 1 + S SA(T"T,)exPG(T,)d'ttdT'. 
o 0 

From (12) and from the operator-ordering rules pre
sented above it follows that the operators without bars 
in A(T1' T2) are on the left of GP-1(T2) or expG(T z), 
and the operators with the bars are on the right. It can 
be assumed here that the operators without the superior 
bar act to the left on the functions (mK' I, and the 
operators with the bar act to the right on the functions 
ImK' - oK/);the functions InK') and (n K' - OK/, on 
the other hand, are not affected. As a result, it becomes 
easy to calculate the sums over n K' and to obtain an 
integral difference equation for the function f( mK', t) 
defined by formulas (4) and (6): 

t 

F (m,., t) = 1 - b,(m,.) SF (m,., ,) dT 

t 

+ 2 L. r" (m" -0",) (;,;, +, 1) f cxp (i V",T)F ( ... , m" - 1, ... , T) dT 
" 0 

, 
i'21:r"(m,,+l)n,,S exp(-iT',,,T)F( ... ,m,,+l, ... ,T),h. (13) 

Here f( •.. mK1-1,.",T) == F(m1, mz, ... ,m K1 
-1, ... ,T). 

As seen from (4), to find the sought correlation func
tion it is necessary to know not the quantities 
F(mK', T) themselves, but their sum over mK' with a 
certain weight. We therefore consider a function of 
continuously varying parameters XK' 

F(x,.,t)= 1: m,F(m,.,t)exp ( -1: m,.x,.). (14) 
" 

It follows from (13) and (14) that this function satis
fies a linear partial differential equation of first order 

iiF(x",t) +~ 
iit - I~!-I', 

iiF(x,., t) 
c,F(x,., t) (15 ) 

" 
with initial condition 

F(x,·, 0) = .E m, exp (- I:m,.x,) 
... ,m,,,,... x' 
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=(exp(x.)-1l-IIT (1-exp(-x.,))-I, (16) 

.' 
We have introduced here the notation 

Jl><, = -21\ [2n., + 1- (n., + 1)exp(iV .. ,t - x")- n., exp(-iV .. ,t + x,,)], 
(17) 

c. = - 0.(0)+ 21: rw(ii" + l)exp(iV .. ,t - x.,) - 2r,ii, exp(- iV .. t + x,). 

" 

Equation (15) can be solved by the method of charac
teristics (see the Appendix). The correlation function 
Qdt) is determined, in accord with (4) and (14), by the 
value of F(xK', t) at 

x" = 00,). + iV .. ,t. 

Substituting this value, we obtain the following expres
sion for QK(t): 

Q,(t) = ii.'Y;,'(t) IT 'Y':~ (t) exp[r"t - iP,,6 .. ,t 

" 
(18) 

+ '/,iV .. , (1- 6 .. ,)1], t:> to. 

Here 

[ V .. , ] r" 'Y,,'(I)=cha,..t+ 1+i--(2n., + 1) --sha,,'t, 
2r., a", (19) 

ax:, = r:, + ir" V .. ' (2ii" + 1) - 'I, V:.,. 

Formulas (4), (18), and (19) determine in explicit 
form the time-dependent correlation function for the 
considered simplest case of the interaction Hamiltonian 

Hi = 1: V",,(a, + a:J (a. + a.+). ,. 
It corresponds, for example, to nonlinear quasilocal 
oscillations that interact with the oscillations of the 
continuous spectrum (with phonons) in accordance with 
a harmonic law. By a perfectly similar analysis it is 
easy to verify that the presented formulas remain in 
force also in the more general case, when anharmonic 
interaction with phonons also plays an important role 
in Hi (just as in the case of local oscillations): 

H,=+ 1: V"".,(a.+a,+) (a. +a.+) (a k , +ak ,+), 
"",' 

The interaction is linear in the operators of the de
tached oscillations, but one can neglect, as before, the 
interaction quadratic in these operators, i.e., one can 
put V KK'k = 0 and V KK'kk' = 0 (see below). Allowance 
for the indicated terms produces in Hi only the new 
terms r K' and P~, which are added to the expressions 
(9) for the damping and shift of the detached oscillations: 

r: = ; 1: V"':.' [ (ii. + ii., + 1)6(00,- (il.- (il.') 

kk' 

4. INVESTIGATION OF SPECTRAL DISTRI
BUTION OF DETACHED OSCILLATIONS 

It is seen from (4), (18), and (19) that the time
dependent correlation function QK( t) is expressed in 
the case considered here in terms of elementary func
tions, i.e., it can be determined in explicit form for 
arbitrary relations between V KK' and r K'. As already 
noted, the spectra for the absorption or scattering of 
waves by detached oscillations are determined by 
Fourier components of this function QK( w). According 
to (1), (4), (18), and (19), QK(W) can be expressed in 

509 SOy. Phys.·JETP, Vol. 37, No.3, September 1973 

terms of quadratures. For any specified set of parame
ters, this spectral representation can be determined 
easily by numerically integrating with respect to t, as 
was done for the c1assicallimit in[71. Unlike the classi
cal problem, however, the spectral distribution obtained 
can now have a fine structure. 

The integral that determines QK( w) can be calcu
lated analytically in a number of different limiting 
cases. We consider first the case of strong nonlinearity, 
when 

\ V .. ' \ :> [,(1 + 2n.) 

and the spectral distribution has a pronounced fine 
structure. Expanding aKK' in (19) in powers of 
r K' Iv KK' and retaining the quadratic terms of the ex
panSion, and also expanding 

'¥,:~ (t)exp(a .. , I) and ,¥:' (l)exp(2a .. t) 

in infinite series in exp (-aKK't), we express QK(t) in 
the form 

(J,(t) = ~(1- 4.i~-n. ) IT { (1- 4.i..!:::.ii" ) tm,exp [1'..1 - iP,.o .. ,1 
Z, V" V" 

x' 1H".=1 

If there is only one detached oscillation or if it is pos
sible to neglect the interaction between the considered 
oscillation and the others, then all that remains in the 
product of (18) is a single factor with K' = K. Substitut
ing expression (21) in (1) for this case, we obtain a 
spectral distribution that consists of a set of narrow, 
almost equidistant lines: 

Q ( ) _ 1 i1 [J. ( 1)1r.(m)cosa,(m)-~2,(m)Sina.(m) 
, (il --~ ~ m exp - (il. m - r '( ) + () '( ) 

rt '" I x m __ Yo m 

In the limiting case rKlVKK - 0 we have 

cos a.{m) "" 1, sin a.{m) -+ 0, 

Le., the individual lines have Lorentz shapes with 
widths r K(m). At noticeable values of the ratio 
r K Iv KK, and also at large values of m, it is necessary 
to take into account also the term n K( m) sin O! K (m) in 
the numerator of (22), so that the lines become some
what asymmetrical (and the more so the larger Cl'K(m)), 
and their maxima shift somewhat relative to the points 
ndm) = O. We note that the terms discarded in the de
ri vation of (22) give rise to corrections of order 
r~m/V~K in rK(m), and r~m/V~K in Cl'K(m), 

The widths of the individual small bands increase 
linearly with increasing line number m and increase 
with riSing temperature, particularly as a result of the 
factor 2nK + 1. 

Although the fine-structure line widths are propor
tional to the usually defined decay width r K of the de
tached oscillation, they can in no way be reduced to it. 
It is easy to verify that these widths are equal to the 
sums of the reciprocal lifetimes of the upper and lower 
levels between which the transition corresponding to 
the considered line takes place. This result agrees with 
the Weisskopf and Wigner general theory of the widths 
of spectral lines [8J. 
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Fine structure of spectral distribution QK(W) (ilK + I r 1 for V KK = 
28f K at different temperatures. On the abscissas we have nK = w-
wK - PK + V KK/2. Curve I corresponds to nK = 3/8 and kT = 0.77 WK, 

curve II to IiK = 1/2 and kT = 0.91 WK, and curve III to fiK = I and kT = 
1.44 WK' With increasing temperature, the contribution of the maxima 
of higher orders increases and the intensity oscillations decrease. 

At sufficiently large m, the widths r K( m) are com
parable to the distance between the lines I V KK I, and the 
narrow bands should overlap. At very low temperatures 
(kT « w K ) the spectrum consists in practice of only one 
line (corresponding to m = 1 in formula (22)). At some
what higher temperatures, there appear at first very 
weak lines corresponding to m = 2, 3, ... With further 
rise in temperature, an increase takes place, on the 
one hand, in the number of narrow bands of noticeable 
intensity with large m, and on the other hand, in their 
widths. Therefore the fine structure becomes smeared 
out to an ever-increasing degree and will gradually 
vanish, starting with the violet end (at V KK > 0) or the 
red end (at V KK < 0) of the spectrum. 

At sufficiently high temperatures, such a structure 
can vanish completely. We note that in some cases the 
fine structure will thus appear only in a limited interval 
of intermediate temperatures, and to observe it it is 
necessary to perform experiments at such temperatures. 

To illustrate the vanishing of the fine structure with 
temperature, the figure shows the spectral distribution 
curves for a definite set of parameters at different 
temperatures. 

In the case of several interacting detached oscilla
tions at I V KK' I » r K' (1 + 2nK), it follows from (1) and 
(21) that QK( w) is gi ven by 

( _ exp(oo.A) f, 
Q. (0)- "Z ~ 

x 
r.(m.·) cos a.(m.·) - Q.(m •. ) sin a.(m.·) (23) 

v.. \"1 Q.(m.,)=oo-oo.-P,+-,)--~ V .. ,m.,-

" r 2 

- "* ~-'-' n., (ii., + 1) (1 + 2m., - 6 .. ,), 
" V .. , 

1'. (m,,) = .E 1'.,[ (1+ 2m., - 6 .. ,) (1 + 2ii.,) - 1]. (24) 

In this case each of the lines with mK = 1, 2, ... gives 
rise to a series of lines with mK' = 0, 1, 2, ... , which 
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are located at a distance V KK' away. The line widths 
are determined by the values of r KI of all the detached 
oscillations, and depend linearly on mKI and nKI . We 
note that if I V KK' I » r K' for certain detached oscilla
tions, then such oscillations drop out of the sums (24). 

In the opposite limiting case when I V KK' I « r K', 
the fine structure of the spectrum vanishes and the 
spectral distribution turns out to be smooth. Expanding 
aKK' and WKK'(t) in (18) and (19) in powers of 
I V KK' I/r K' up to terms of second order inclusive, sub
stituting the result of the expansion in (1), we obtain a 
single smooth distribution 

1 {r. ~ Ii: •. Q.(w)=~(ii.+1) ----+ --11.,· (ii,· 
" 1'.' + Q/ . 1,1'..' . 

(25) 

The first term corresponds here to the usual Lorentz 
distribution with width 2r K, which is determined by the 
finite lifetime T K = r~l of the detached oscillation. 
The second correction term has a non-Lorentz shape. 
The corresponding contribution to the broadening is not 
determined directly by the finite lifetime and has a 
modulation character. We note that formula (25) for the 
limiting case of small I V KK' I agrees with the analogous 
formula derived in[15] by the Green's-function method 
(the formulas in [5] differ in form from (25), but can be 
reduced to the same for'm when account is taken of the 
condition I V KK' I « r K' ). 

At high temperatures kT» W K and at I V KK' I 
< r K' kT I W K, when there is no fine structure, one can 
go to the classical limit and obtain a general formula 
for QK( w), valid for both large and small ratios 
I V KK' II r K' 0 To this end we take into account the fact 
that actually V KK' is proportional to the Planck con
stantn (VKK' =nYkk' (1- 6 KK'/4)lw KwK', where YK{ 
are the classical nonlinearity constants introduced in 7]), 
and, assuming 

I V, •. ' I ~ L·kT I w", 

we neglect the last term in formula (19) for a ~K" Then 
formulas (1), (18), and (19) lead to the same spectral 
distribution that was obtained in [7] by a significantly 
different method within the framework of the classical 
theory and was investigated in detail there. The width 
of the resultant distribution can in this case greatly 
exceed r K = T~l. 

In the formulas presented above, the damping r K 

= T~\ which is connected with terms of the type aKak 
or a~kak' in Hi. is due to the finite lifetime of the 
detached oscillation. In the case of high-frequency de
tached oscillations, expressions (9) and (20) for the 
r K connected with these interactions vanish or are 
small, and the principal role can be assumed by damping 
due to the interaction 

Hi = ~ \"1 Ii,,,,,, (a, + a.+)' (a. + a.+) (a., + a.,+), 
2~ .... 

which is not connected with the finite lifetime and which 
has a modulation character (we assume here that I W K 

- wk' I > 2wm at K'" K', and therefore disregard terms 
of the type aKa~'akak' with K'" K'). According to (7), 
these terms introduce in F(l) (mK', t) an increment of 
the form 
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-P • .'it - f.\t - iP .. "(m,.)t, 

P",' = 1: V,," (2n. + 1), C, = 4" ~ V:.",n.(n. -t- i) 0 (<>lh - w/,'), 
/,h' 

and P~4 ~ ~ V~Kkk' /wm leads to a small correction 
. kk' 

in comparison with the third-order anharmonicity, and 
will be disregarded. 

By arguments similar to those given above we find 
that the considered interaction leads to a renormaliza
tion of the frequency W K by P~4 and to the appearance 
of a~ additional factor exp (-r K4t) in expression (18) 
for QK(t). This means that the resultant spectral dis
tribution is a convolution of the distribution QK( w), 
investigated above, and a Lorentz distribution with 
width 2 f K4. Accordingly, r K( mK') in formulas (22) 
and (23) is increased by r K4. 

The allowance for an interaction that is nonlinear in 
the coordinates of the detached oscillations (of the type 
aKaK'ak or a~K'akak') is a more difficult special prob
lem, since the partial differential equation of the type 
(15) contains second derivatives. We therefore do not 
consider this interaction here in the general case. If, 
however, we confine ourselves to the case when WK 

+ wk' > wm and I wk - W K' I > wm at K;J! K', then we 
can easily verify that an interaction of the type 
aKaK'ak leads only to a renormalization of the non
;!!nearity parameters V KK' and to a shift of P K in 
QK(t) (WK - V KK /2 in formula (4), which connects 
QK(t) with QK(t), is not renormalized): 

L"~V"'+4(1-~ILx')~{V':"h[ 1 _ 1 
2 ~ (t)x+W",'-Wh w,,+(t)K,··j-Wh 

and the foregoing investigation of the shape of the 
spectral distribution remains applicable. 

APPENDIX 

The system of ordinary differential equations that 
determine the characteristics of the partial differential 
equation (15) is of the form 

dt 
7.=1, 

dF 
Ts=c,F, (A.1) 

where s is a parameter that varies along the charac
teristic curve; /l K 1 and c K are defined by formulas (17). 
According to the initial condition (16), the Cauchy prob-
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lem corresponds to the determination of an integral 
surface passing through a line, on which 

teO) = 0, xx,(O) = X.", F(O) = F(xx'" 0) (A.2) 

(the xK 10 describe the line in parametric form). 

To solve the system (A.1) with non-separable vari
ables, it is convenient to introduce the change of vari
able 

(A.3) 

Following this substitution, we obtain a system with 
separable variables y K 1 ' Solving this system, we obtain 
in implicit form the dependence of y Kl on s and on 
Y K 10 = XK 10 - WK/': 

B." th(y./2) + r., - axx, 

B." th (Yx/2) + C, + Q", 

~ .. ,th(Yx,,/2)+r.,-a.x, (2') 
B"x, til (Yx",/2) + 1'., + a", I'Xp ax.,s, 

(A.4) 

where {3KKI = 2rK/2nKI + 1) + (%liVKK , and a KK is 
given by (19). 1 1 

With the aid of (A.1), (A.2), and (A.4), we can express 
F in explicit form as a function of s and of the parame
ters YK 10. To determine the correlation function QK(t), 
as already noted, it is necessary to know F at XKl 

= W KIA + i V KKlt, i.e., at y Kl = O. Recognizing that s = t 
according to (A.O and (A.2), the condition YKl(S = t) = 0 
and formula (A.4) determine y K 10 as a function of t. 
Substituting these values of YK O(t) and s = t into the 
obtained expression for F, we bbtain the function 
F( XK' = W K'A + i V KK' t, t) = ZiQK( t), given in formula 
(18). 
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