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It is shown that dispersion of the nonlinear susceptibility of dielectrics should exist in 
association with relaxation processes. A specific system, lithium impurity ions in a KCl 
crystal, is investigated theoretically and experimentally. It is shown that the experimental 
results can be explained if relaxation processes are taken into account. 

1. INTRODUCTION 

In studies of the polarizability of dielectrics it is 
customary to distinguish a dynamic subsystem (DS) that 
interacts with a dissipative subsystem to establish 
thermodynamic equilibrium. Speaking generally, this 
equilibrium is established at a rate which is character­
ized by several relaxation times that can be divided 
roughly into two classes. The first class contains 
"longitudinal" (or energetic) relaxation times that de­
scribe the relaxation of the populations (diagonal ele­
ments of the density matrix. A longitudinal relaxation 
time is conventionally denoted by T 1 . The second class 
contains transverse relaxation times, which determine 
the relaxation of off-diagonal elements in the density 
matrix of the DS, or the classical mean "dephasing" 
time of the oscillator corresponding to a given transi­
tion. A transverse relaxation time is conventionally de­
noted by T 2. 

It is easily seen that the linear characteristics of a 
system (the dielectric or magnetic susceptibilities) can 
in general1 ) be used to determine only the transverse 
relaxation times. In some cases, on the basis of theo­
retical considerations T 1 can be determined when T 2 
is known. However, a direct experimental determina­
tion of T 1 is generally possible with the aid of nonlinear 
experiments. For example, in paramagnetic resonance 
T 1 can be measured with the aid of the saturation effect. 

In the present work it will be shown that low-fre­
quency dispersion of nonlinear susceptibilities exists 
in association with longitudinal relaxation, and this 
dispersion will be investigated both theoretically and 
experimentally for a specific system. 

The existence of this dispersion can be understood 
from simple considerations. Let Tl be the relaxation 
time of the dynamic subsystem of present interest. In 
an external field of frequency w « T~l the DS is char­
acterized by isothermal susceptibility. If w » T~l the 
interaction with the dissipative subsystem can be 
neglected and the susceptibility is determined by the 
equations of motion of the DS. In this case the state of 
the DS is not described by a definite temperature. We 
can expect the isothermal susceptibility to differ from 
the susceptibility of an isolated system. In general, how­
ever, this difference appears only in the nonlinear sus­
ceptibility (NS) of the DS. Indeed, let us consider 
polarization of the DS in the two limiting cases 
w» T-11 and w « TIl and let w « Wo (wo is the char­
acteristic resonance frequency of the DS). The polari­
zation can then be represented by 
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where ni is the population of the i-th energy level and 
Pi is the polarization of the system on the i-th level. 

Since w « wo, Pi is independent of w, but the popu­
lations ni will depend on w. Indeed, if DS is nonlinear 
its spectrum depends on the electric field (the Stark 
effect). If then w « T~l the populations at each instant 
will be determined by the spectrum of the DS, which 
depends, in turn, on the instantaneous strength of the 
electric field. If w » T~l the populations will not 
"succeed in following" the changing spectrum and will 
equal their thermodynamic equilibrium values in the 
absence of the field. In a sufficiently weak field we can 
write 

Pl = p?) + PI(t) + Pi(2) + Pi(S) + ... , ni = n~O) + n: 1} + nj(2) + n:S) + ... , 

pit) = l: (p~t) n~O) + p~O) n:t)), 

Pi') _ ~ ( (') (0) + (t) (t) + (0) .(2») -..::... Pi n, P, n, P, n, , 

• 
PI') _ ~ ( (') (0)+ (') (t)+ (t) (2) + (0) (.») 

- ..::... Pi ni Pi ni P, ni Pi ni . 

• 
Here the indices in parentheses label quantities that are 
proportional to the corresponding powers of the field. 
In most cases of practical interest the system possesses 
a center of inversion and experiences a quadratic Stark 
effect. Then 

P(') =0, 

P(3)_~( (.) (0)+ (1) (2») 
-..::... Pi ni Pi n, 

when w » T? we have n1 2) = O. When w « TI\ how­
ever, ni 2) ;#. 0 and it is determined by the instantaneous 
electric field strength. Thus the nonlinear susceptibility 
(NS) differs in these two cases, Le., relaxational dis­
persion of the NS exists. When w ~ T~\ the NS depends 
on T 1• 

In some cases relaxational dispersion of the linear 
susceptibility is possible (at frequencies w «wo). For 
this effect the non vanishing of pia) and n~l) is required 

(see also footnote 1). This is possible, for example, in 
the presence of an external static field, or in ferro­
electrics below the transition point, as mentioned in [1] 

The remainder of the present paper is devoted to a 
theoretical and experimental investigation of tunneling 
lithium impurity ions in a KCl crystal. This system was 
selected because of its anomalously high NS.[2,3] In 
Sec. 2 the NS is calculated in the approximation of weak 
coupling between the tunneling ions and acoustic phonons 
playing the role of a dissipative subsystem. In Sec. 3 it 
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is shown how relaxation can be taken into account phe­
nomenologically, and the theory is compared with 
experiment. In Sec. 4 the experimental procedure is 
described. 

2. RIGOROUS CALCULATION 

Lithium ions that are substituted for potassium ions 
in a KCl crystal have eight equilibrium positions along 
the [111] directions. At sufficiently low temperatures 
the lithium ions tunnel between their equilibrium posi­
tions. [4J We shall hereafter consider, as is customary, 
a one-dimensional model in which the ion motion is de­
scribed with the aid of its effective spin. The spin inter­
acts with the lattice phonons, which play the role of a 
dissipative subsystem. The Hamiltonian is[5J 

H~~S,+ Lw.a.+a.+iSxLW.(a.-a.+)-2~IES" (2.1) 

where;). is the energy of tunnel splitting, Wq denotes 
the phonon frequencies, Wq is a quantity determining 
the interaction of the spin with a phonon of wave number 
q, E is the external field, and iJ. is the dipole moment 
of the ion; for the Planck constant we let Ii " 1. The 
equations of motion derived from (2.1) are 

(2.2) 

In the approximation of weak spin-phonon coupling (Wq 
is a small parameter), from the operator equations 
(2.2) we derive equations for the mean quantities Si 
;: (Si) and Gi. = ( Siaq): 

e, ~ -~G, - iw.G, - 'I,.w., 
e, ~ ~G, + iWqS,(nq + 'I,) - iruqG, + 2ftEG" 

e, ~ -iWqS,,(nq + 'I,) - 2ftEG, - iwqG,. 

(2.3) 

(2.4) 

(2.5) 
(2.6) 
(2.7) 

Here nq ,,( aqaq) " [exp (wq/kT) - 1]-1 denotes equili­
brium pnonon numbers and Wq " Wq - ia; in the final 
result a - +0. 

We must obtain the linear susceptibility ~P)(Wi) and 
the nonlinear susceptibility X(3)( wi, W j, wk) that deter­
mine the ionic polarization: 

2ftS. ~ x(O (w,)E(w,) exp {iw,t} 

+ XC') (w" ill;, w.)E(w,)E(w;)E(w.)exp{i(,o, + ill; + w,) t}. 

For this purpose we shall solve (2.3)-(2.7) to order E3. 
In the absence of a field (E ,,0), from (2.6) we obtain 

(0) Wq[~/4+w.S,")(n,+'/2)J (2.8) 
G2 ~- ~" . 

-w. 

Inserting (2.8) into (2.4), in the limit a - +0 we obtain 

(2.9) 

i.e., when the interaction with phonons is taken into ac­
count we arrive at a correct equilibrium value of the 
difference between the populations. 

Solving (2.3)-(2.7) accurately to the first power of 
the field, we obtain 

x(l) (ru) ~ - 4ft'~ (S:O) + 6S,(0» I [1'.' - w' - wR (ru) ]; (2.10 ) 
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R(ru) ~ R' (w) + iR" (w), R'(w)~-R'(-w) 

=." W.'(n.+'I,) (_1 ___ 1_), 
~ Wq - W Wq +w , 

R"(Ul)~R"(-w)~"L, W q2 (n,+ ~) [O(Wq-Ul)+O(Wq+w)], 

, (2.11) 

6S;0) ~ - L wq ' [~ + Ul,S;O) ( nq + ~ ) ] 
• 

. _1_(~1_+_1_). 
A'-wq' Ulq-ft) w,,+ft) 

In the weak-coupling approximation we have oS~o) 
« S~o) and this quantity may be neglected. Hereafter we 
shall neglect corrections of this type. R' ( w) determines 
the frequency shift that accompanies the interaction with 
the dissipative subsystem; R" (w) determines the lines 
widths and energy dissipation. The solution of (2.3)­
(2.7) to the third power of the field yields 

P) _ lOft'w,S;O) ~ 
X (w", (')2, w,) - - [~' _ ru,2 _ w,R(w,) JAB 

lG~L'AC (w" w,) 

AB 

where 
A ~ [1' - (w, + ")2 + W,)2 - (w, + u), + w,)R (w, + (oJ, + ft),)], 

B ~ [w, + ft)2 + 'j,R(w, + W2 -~) + '/2R(w, + w, +~)], 

C" ( ) R" ( .• ) ,--f (,--~_-:-w...:,_-_w...:'.:...) 
(1'1,0.12 = L.1 - (iJl - W2 -

~-w, 

+R"(~+"J,+w,) f(~+w,+w2) +R"(w,)f(w,)~, 
I'.+W2 ~ -W2 

f(x) =[M4 + xS~O) (n. + 'I,) J/2(~2 - x') (n, + '/ 2 )' 

(2.12) 

Before considering certain special cases, we shall 
briefly outline the calculation of R" (w), which deter­
mines the dispersion of the susceptibility. For the case 
of interaction with acoustic phonons, in the Debye model 
of lattice vibrations the state density can be written as 
D(Wq) " 9N(wq/WD)2 and Wq can be equated to 
(2WoWqWD/3N)1/2.[5] Here N is the number of lattice 
nodes, wD is the Debye frequency, and Wo is the inter­
action parameter. From (2.11) we obtain 

11" (w) = 3reWo (~)2 w e, .. /kT + 1 
lUD el1w/kT - 1 

In the case of practical interest with hw « kT we have 

R"(w) ~ 6reWo (~)'!!!... 
WD Ii 

We shall now analyze the expression derived for x( 3). 

At field frequencies W « R" ( ;).) we have 

') 8ft' [(0) as;O) ] 4ft' [ ~~ ] x( (ft)"W2,Ol,)=-- S, +~-- ~- ----th(AI'.) . 
1'.' iJ~ A' ch2(~M t' 

Here f:! " 1/2kT. In this case x( 3) describes the iso­
thermal susceptibility of the system, as can be shown 
by a direct calculation. On the other hand, at frequen­
cies ;). » W R"(;).) we have 

x(')(w, '0, w) = -4ft'th(~~) I~' 

which describes the response of an isolated system. In 
the intermediate frequency region the NS depends on the 
frequency. In this region the frequency dependence of 
the NS depends on the properties of the dissipative sys­
tem and on the character of its interaction with the DS, 
and can be determined from (2.12). It should be noted 
that X(3)(Wi, wi' wk) will be frequency-dependent if 
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Wi + W j +wk ~ R. This can even occur if I wi I, I W j I, 
and I wk I » R. 

3. PHENOMENOLOGICAL TREATMENT. 
COMPARISON WITH EXPERIMENT 

In Sec. 2 the relaxation processes were taken into 
account rigorously. However the derived equations hold 
true only for the case of weak coupling between the im­
purity ions and phonons. To explain the experimental 
results it is also necessary to determine the response 
of the system in the case of strong coupling. This can 
be accomplished by a phenomenological description of 
the relaxation using the relaxation time. This nonrigor­
ous procedure is justified by the fact that its results 
agree with the rigorous calculation in the limiting cases 
of high and low frequencies of the field. This approach 
also accounts reasonably for the experimental results 
and yields relaxation rates in agreement with those ob­
tained by other authors. [61 We shall assume that the 
relaxation leads to thermodynamic values of the effec­
tive spin components at a given instantaneous electric 
field strength (the method of Mandel'shtam and Leonto­
vich [7)). Also, following[6), we assume that the rates of 
longitudinal and transverse relaxation coincide, i.e., 
Tl = Tz =0 r- 1 . Then the equations of motion with relax­
tion terms added become 

Here 

S. = -11ft- IS, - (S. - <S.» r, 

Sy = I'l/i-IS. + 2fth-IES, - Syr, 
S, = -2fth-IESy - (S, - <S,» r. 

1 I'l 
<S')=Tw th(~W), 

W=ll'l'+ (2ftE)', 

<S)= ftEth(PW) 
• 2W 

~=1!2kT. 

(3.1 ) 

If r» ~/li, only the relaxation terms are important 
in the equations of motion. In this case the equations 
will describe the behavior of an ion having two equili­
brium positions separated by a potential barrier. The 
polarizability will be relaxational in character. In the 
presence of an external field one of the equilibrium 
pOSitions will be preferred and polarization will be 
established accordingly by thermal "flipovers" of ions 
above the barrier; the rate of this process is charac­
terized by r. If ~/fi » r a particle tunnels from one 
equilibrium position to the other and polarization does 
not require thermal flipovers, i.e., it is of dynamical 
character. In this case r determines the line widths 
and lifetimes of excited states of individual lithium ions. 

Sol ving (3.1) to the third power of the field, we obtain 
the linear and nonlinear susceptibilities of the system 
(calculated for a single ion): 

(1)( )-2 ,th(BI'l) Ol.'+r(iOl+r) 
x ol - ft I'l D.' (3.2) 

. (') _ ,{ - 2iOlOl. th (~Ll) 
X (ol, ol, ol) - 4ft /i'D,.D.(2iOl + r) 

+ r<p(pl'l) [ol.' + (3iOl + r) (2iOl + r) l.}. 
I'l'D,.(2iOl+r) . I 

(3.3) 

Here 

D.= [ol.' + (iOl+r)'], 'P(~I'l) =~l'l/ch'(~I'l) -th (~I'l), Ol.=I'l//i. 

When f3~ «1 we have cp,::; -2/3 (f3~)3. 

The first term inside the curly brackets of (3.3) de­
scribes X( 3) when r « w, and the second term when 
r » w. (In both limiting cases the results agree with the 
rigorous calculation in Sec. 2). For kT » ~ and 
w« Wo these terms equal 2JJ.4/kT~2 and JJ.4/3(kT)3, 
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respectively, and are represented by the lines band c 
in Fig. 1. 

For the investigated KCI: Li system at 4.2°K we 
obtain X3(W» r)/X3(w « r) = 6(kT/~)Z "'" 75.[4) It is 
convenient experimentally to fix the frequency while r 
is varied bychangingthe temperature T. As T rises, r 
increases so that the NS at low T should be described by 
line b, and at high temperatures (with r» w) by line 
c (see Fig. 1) In the intermediate region the NS de­
pends on r in a manner that provides for the transition 
from line b to line c. 

Let us now compare the theory with our experimental 
results (curve a in Fig. 1). In our experimental work 
the resonance condition w,::; wo/3 was satisfied and 
the NS had to exceed its value at lower frequencies 
(line b). This higher value depends on the nonuniform 
broadening r*. (Because of elastic deformations the 
different ions have different tunneling frequencies.) If 
it assumed, in accordance with[6], that a nonuniformly 
broadened line is Lorentz-shaped with the width r* 
= 3 x 109 Hz and we use the values Wo = 217 X 2.4 X 10lD 
sec- 1 and 3w = 217 x 2.7 X 10lD sec-t, we find that the NS 
is doubled as a result of the resonance. We take the 
experimental value of I X( 3) I at 4 .2°K to be 4JJ. 4/kT ~ 2, 
which we use as our unit. Accordingly, line b in Fig. 1 
begins below the experimental curve. In the investigated 
temperature range the second term inside the curly 
brackets of Eq. (3.3) is much smaller than the first 
term and may be dropped. This term would describe the 
NS at higher temperatures for which r» w. However, 
our experimental apparatus was not sensitive enough to 
reach this region. 

We shall hereafter be interested in the temperature 
region for which r > r*, where nonuniform broadening 
may be disregarded and (3.3) may be used. Then 

x(') (T) = -8ft'i",Ol. th (~I'l) I /i'D,.D. (2iOl + r), (3.4) 
x")(T) 

x") (T = 4.20 K) 

4.2 O.4x' 
= T [(1 + 2.3x' + O.7x')(1 + 4.7x' + O.1x') (1 + O.6x')]," . 

Here x = wo/r and we used Wo = 2.6w. The form of 
the last expression is convenient for calculating r if 
r> Woo Using curve a in Fig. 1 and (3.4), rand r- 1 

=0 T 1 can be determined. The temperature dependence 
of Tl is represented by curve a of Fig. 2. Curve b 
represents measurements in[6], where the line width of 

(]J 
I X I , reI. units 

FIG. I 

,'Z 
"'K 

10 -1Z 1~5 ----!zu:;;-----;;z 5=--;y,';;O:­
T,'K 

FIG. 2 

FIG.!. Temperature dependence X(3)(T): a-experimental with nU = 
3 X 1017 cm- 3 ; b-theoretical for r ~ w ~ Wo; c-theoretical for r}> w. 

FIG. 2. Temperature dependence of the lifetime T I: a-present work; 
b-results in [6J. 
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paraelectric resonance was measured in an external 
electric field with Wo = 211 x 3.5 X 1010 sec-I. We note 
that despite the arbitrarily chosen shape of the non­
uniformly broadened line the values obtained for T 1 are 
quite accurate for T > 20o K. Thus, a change of r'" by a 
factor of two [r'" enters into X (3) (T = 4.2°K)] leads to 
only 15-20% change of T 1. 

The experimentally observed sharp drop of l3) can 
be fully accounted for by the effects of relaxation pro­
cesses. 

4. EXPERIMENT 

The magnitude of NS was determined from the ef­
ficiency of the generation of the third harmonic of a 
powerful uhf wave. The KCl: Li sample, cut in the form 
of a 1.2 x 5 x 19-mm plate, was cemented to a 3 x 5 
x 19-mm plate of pure KCl. Figure 3 is a schematic 
drawing of the bimodal resonator with the sample. The 
cross sections of the resonator were 5 x 19 mm in its 
broad part and 5 x 10 mm in its narrow part, with a 
tapered connecting part. This connecting part was be­
yond the cutoff for the pumping field, which was there­
fore concentrated in the broad part of the resonator. 
However, at the signal frequency the field (TE lOn, 
n ~ 20) was distributed throughout the volume of the 
resonator. This deSign permits tuning of the resonator 
signal frequency Ws to satisfy the condition Ws = 3w 
(w is the pumping field frequency) without changing the 
pumping frequency. The pumping source was a pulsed 
magnetron that produced 1O-6-sec pulses, thus avoiding 
heating of the sample. The pumping frequency was 
W = 211 X 9 X 109 sec-I. The resonator was coupled with 
the signal wavegUide by means of an inductive diaphragm, 
and to the pumping waveguide by a slot (Fig. 3). The 
3w signal emitted by the crystal along the signal wave­
guide was fed to a superheterodyne receiver having 10-10 
W sensitivity. Relative changes of I X(3) I were deter­
mined from the relation 

I '1.(3) (T) I [ Ps(T) ] ,(, 
'1.(n (T = 1,.20 K) = i's (T = 4.20 K) , 

where P s is the signal power. 

The signal power was proportional to the cube of the 
pumping power. The power of the pumping pulses did not 
exceed 20 W, and the Signal power reached 10-4 W (at 
lithium concentration nLi = 3 x 1017 cm-3 and T = 4.2U K). 
The dependence of the signal power on the Li ion con­
centration was measured, and also the power of the 
harmonic from samples without Li and with Li con­
centrations nLi = 10 17 cm- 3 and 3 x 1017 cm-3 • No 
generation of the harmonic was observed in the control 
samples without Li. As was to be expected, the power 
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FIG. 3. Schematic drawing of the resonator 
with the sample. I-KCl sample, 2-KCI: Li sam­
ple, 3-flanges, 4-coupling slot for the pumping 
field, 5-signal-frequency tuning rod, 6-induc­
tive diaphragm for coupling with the signal 
waveguide, 7 -signal waveguide. 

7· / 

J 

o 
5 

of the harmonic was proportional to the square of the 
Li impurity concentration. 

The "laminar" form of the sample was chosen to 
reduce the effect of the lithium impurity on the reso­
nator Q without reducing the signal power. Measure­
ments were performed on samples with nLi = 3 x 1017 

cm- 3 • The resonator Q in both modes was ~500; this 
value did not change during the measurements. The 
pumping field and the harmonic field were parallel to 
the [100] axis of the crystal. 

1) An exception is the case of a nonvanishing diagonal matrix element of 
the dipole moment. 
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