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It is demonstrated that the stationary energy distributions of relativistic electrons in a 
turbulent plasma located in a magnetic field can be described by a power law ~t-Y. An 
equation for Y is obtained, which takes into account the anisotropy of the electron dis­
tribution and of the electromagnetic radiation interacting with it in a uniform magnetic 
field. It is shown that for a distribution function not averaged over the directions of the 
magnetic field there is a single solution of the equation, which yields for Y, the uni­
versal value 3. 

1. In [1, 2] it was shown that the stationary distribution 
of relativistic electrons in a turbulent plasma is a 
power-law distribution ~1/ t Y and that Y = 3 when there 
is no magnetic field. Because of a number of mathemat­
ical difficulties, we considered in [1,2j a simplified prob­
lem in which the effect of the reabsorbed radiation on 
the particles was averaged over the direction of the 
magnetic field. This way of stating the problem is of 
interest for astrophysical applications, since cosmic 
magnetic fields often are random. In the limit of very 
weak magnetic fie Ids the result Y = 3 did, of course, 
not depend on this averaging. It is of considerable in­
terest to have the exact solution of the problem for the 
case of a uniform external magnetic field. The present 
paper is devoted to the solution of that problem. As­
suming that the magnetic field is uniform means that the 
direction of the magnetic field does not change along the 
path length of the appropriate reabsorption of the elec­
tromagnetic radiation of the relativistic electrons, 
which in the actual cases of a number of astrophysical 
objects can correspond to rather large sizes. (These 
sizes depend, of course, on many parameters, in par­
ticular, on the plasma denSity n, the density n* of the 
re lati vis tic partic les, the magnetic fie ld strength, and 
so on; see[31.) Moreover, the reabsorption length is the 
larger the higher the frequency, and hence also the 
energy of the particles interacting with the radiation. 
The requirement of the uniformity of the magnetic field 
may thus be a very stringent one for high-energy parti­
cles. 

The present investigation shows that the distribution 
of relativistic electrons in a uniform magnetic field 
becomes anisotropic. The distribution of the reabsorbed 
radiation also becomes anisotropic. Therefore, if the 
direction of the magnetic field would change over dis­
tances less than the reabsorption length (for instance, 
for high-energy particles) the equilibrium form of the 
distribution would, even though the anisotropy may be 
weak, not correspond in one section with a uniform mag­
netic field to the equilibrium form of a neighboring sec­
tion of the magnetic field. This shows that the distribu­
tion function of the relativistic electrons in the case of 
a random magnetic field must be anisotropic over a 
length characteristic for the change in direction of the 
magnetic field. The authors consider that taking this 
"local" non-uniformity into account for an isotropic 
distribution function of the relativistic electrons which 
is averaged over directions is one of the most important 
problems for further studies. 
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The present paper refers only to the rigorous solu­
tion of the problem of the form of the distribution func­
tion of the relativistic electrons in a strictly uniform 
magnetic field. We give here a proof that the distribu­
tion function of the relativistic electrons under those 
conditions is a uni versal function of the energy, fE 
~ 1/ E3, i.e., Y = 3. The value Y = 3, obtained here, lies 
very close to the average Y = 2.7 for the majority of 
cosmic radio-sources. The dependence of the electron 
distribution on the angle with the magnetic field remains 
an arbitrary one, but we assume that this distribution 
does not change significantly over a characteristic angle 
1:.fJ "" mc 2/E and, in particular, we exclude the case when 
all electrons move at a small angle 1:. e « mc 2/ t along 
the direction of the magnetic field (this case was shown 
in[3j to lead to y = 2). 

2. The assumed limitation on the anisotropy, 1:. e 
» mc 2/ t, allows us to neglect in the kinetic equation 
for the electrons the derivatives with respect to the 
angular variables. We shall write down that equation, 
taking these derivatives into account (here and hence­
forth c = 1): 

Of of 00 1 

~+v~= ~ S wdwJ dyI' ot Or ~ •• 
0=1,2 0 
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In this equation we have taken into account terms of 
order mit, but neglected terms of order m 2/t 2. More­
over, in (1) x is the cosine of the angle between the 
direction of motion of the relativistic electron and the 
magnetic field, y is the cosine of the angle between the 
electromagnetic wave vector and the magnetic field, and 
W~ w x y the sum of the probabilities for the emission 
of a ../;aJe in Compton scattering by any turbulent oscil­
lations and in the synchrotron mechanism. The relativ­
istic electron distribution function is normalized as 
follows: 

• 1 

J de J dx f.,r = n., (2) 
o _I 

where n* is the total relativistic electron density. 

The second term on the right-hand side of (1) de­
scribes spontaneous losses and the first term, which is 
proportional to the radiation intensity I~,y describes 
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the general case are distributed anisotropically. (8) is 
thus a very general relation and A a in (8) must corre­
spond to the sum of all mechanisms described in which 
we must yet include Compton scattering by low-frequency 
radiation. 

The domain of applicability of (8) is restricted by the 
assumption that the €-dependence of U is strictly the 
one indicated. This assumption loses its validity for 
steeply anisotropic particles when their distribution 
changes appreciably within a solid angle m 2/ €2. In that 
case the maximum emitted frequencies are also not 
proportional to €2 but to the first power of € (see[3]). 
However, for the case considered Eq. (8) includes prac­
tically all cases of interest. We note that the quantities 
A a (q, x) can be written down for practically all turbu­
lent waves if we use the tables in[3]. 

4. We now give a proof of the power-law nature of 
the distribution of the relativistic electrons with y = 3, 
using (8). We write 

R.'(x) = S q'I'A'(q, x)dq 

and we shall look for a solution of the equilibrium 
kinetic equations (4)- (7) 

iJ t"x A(e,x) t"x 
k7--D(e,x)7' 

in the following form 
const ( m ) ,(x) t"x=-- - 'p(x)n., 

m e 

(15 ) 

(16) 

(17 ) 

where y(x) is the exponent of the power-law spectrum, 
which may depend on the cosine x of the angle with the 
direction of the magnetic field, while cp(x) is the angu­
lar part of the distribution function of the relativistic 
electrons. One sees easily that Q~,y and y~,y can then 
be expressed in terms of the function RZ which we just 
introduced, in the following way: 

a canst (2w ) ("1'-_1)/2. 

QW'Y=~4 ' <jJ(Y)w p,' -'-" R,~,(y)n., 
:It (t) 

(18 ) 
(1 -const ( 2ffipe ) (yH )/2 

YWY=~'r(Y) (y+2) ---;;;-- w,,,R,'(y)n •. 

This proves the universality of the % law for the in­
tensity of the radiation under reabsorption conditions: 

, wp ,' ('W )'I'R,'!..,(y) 
Iw,y= n'(y+2) 3wp , R,'(y) m. 

(19 ) 

Substituting this expression into the diffusion coefficient 
D( €, x) we can also express the resulting integral in 
terms of R~: 

wpe"' e:1 \""1 R~~t (x) 
D(e,x)= n'(y+2) m,9'l,(x), 9!',(x) = ~ R,'(x) R,'(x) . (20) 

0]=1,2 

We similarly find the spontaneous losses: 

0=1,2 

Hence, Eq. (16) for the distribution function 

~~=_(Y+2)9!',(x) 1.. 
fie e' 9!',(x) e' 

(21 ) 

(22) 

gives, indeed, the power-law solution (17) where y(x) 
must satisfy the equation. 

9!',(x) =9!',(x). (23 ) 

The solution of this equation is a y-value which is inde­
pendent of x and equal to 3. We have thus proven our 
statement. 

446 Sov. Phys . .JETP, Vol. 37, No.3, September 1973 

In connection with the theorem just proven the prob­
lem may arise whether this solution is the unique solu­
tion of Eq. (23). This problem can be considered by 
using concrete expressions for the ~. 

5. Let us illustrate this by the example of the sum of 
synchrotron emission and Compton scattering by plasma 
oscillations with high phase velocities. In that case the 
evaluation of R~ gives 

(24) 

and Eq. (23) can be written in the form 

C'(1)x'+C'(1, s)x'+C'(1, s)x+Co(1)(2s )>+t=O. (25) 

The coefficients CII can be expressed in terms of the 
earlier introduced all, b~,2, and ~ for the case ~ « 1 
as follows: 

C, = 2a,(a,a, .. , - a,a,) , C, = C,'(2s) (Hili' + C," (2s)', 

C, = C.' (2s) '+1/' + C/' (2S)'I,+v, 

C.' = a,[b,~,b,' + b,~,b,' -(b,' + b,') (b,' + b2~)], 

C." = a,(b:_,b,' + b~_,b,'), 
(26) 

C,' = a,a,(b,~, + by:,), C," = - a,'(b2' + b,'), 

Co = b,'b:_,b,'+ b,'b:_,b,' - b,'b,'(b,' + b,'). 

Finally, all and bt;2 have in this case the following 
actual form: 

V' + 6'1 + 16 
av = (;+-2"-)"-( ,,-+---'4'-) (.,.-,,-+----,-,6)-' 

(27) 

of (2-+~) [2-+~± '1+ 2] _1_. 
4 6 4 6 4 '1+2 

We have constructed all six coefficients Co, C~, C;, 
C~, C~, Cg graphically as functions of y when y varies 
within the limits 1 < y < 10. The graphs of these coef­
ficients are given in Figs. 1 and 2; they show that when 
the parameter y changes within these limits these co­
efficients are smooth functions of y while Co, C l , C 2, 

and Cg vanish for ~ « 1 in the single point y = 3 which 
shows the uniqueness of the solution found within these 
limits of y and when ~ « 1 and for the above-mentioned 
sum of two emission mechanisms. 

6. It is important for astrophysical applications to 
know which mechanisms can change this value of y. 
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the induced acceleration. The index a describes the two 
possible polarizations of waves, while I~,y is normal­
ized as follows: 

~ . 
f' = S dw S dy f :y, (3 ) 

o _. 

where I a is the denSity of the electromagnetic radiation 
with polarization a (fi = c = 1, Le., I~,y differs from 
the radiation intensity used normally in astrophysics by 
a factor 21T). From the mathematical point of view it is 
important that the factors y-x stand next to the proba­
bility W~ W x y. The quantity y-x can in that case be 
estimated usi~g the fact that the emission probability 
for relativistic particles is appreciable only in a narrow 
cone along the direction of the motion of the particles, 
Le., y-x ~ m/E. This enables us to drop all derivatives 
with respect to the angular variables in (1), i.e., to 
write the kinetic equation in the standard form: 

at.,x + at"x =..!-.[ 'D( )..!-.~+A( )t] at v 8r 8e e E, x 8e 8 2 8, X t,X , 
(4) 

where 
~ . 

D(e,x)= 1:. S wdw Sf.~.W,~ro,x"dy, 
"=1,2. (I (5) 

A(e,x)= .E j (::)2 dw s'dY W,~.,x". 
a_I,20 _I 

Similar arguments enable us to write the equation for 
the transfer of radiation which acts on the particles in 
the form 

2. a fE,S' «j3 fOG I a (J CJ a 
xwe a~' +-(2)' de SW"ro,x,yj"xdx = lro..I.,,+ Qro,v 

e e :rt 0 _I 

(6) 

(Vgr is the group velocity vector). It is convenient for 
further calculations to use the fact that the emission 
probabilities of relativistic particles have a steep max­
imum at x = y so that to a good approximation we can 
take out from under the integral signs the functions 
which stand in front of the probabilities, putting x = y 
in them, i.e., 

D(e,x)= 1:. SUYdwl:,.U:.,., 
0=1,20 

\""'l S~ '@'dw, 
A(e,x)=.l..J (2:rt)' U"ro,%, 

0=1,2. 0 

(7) 
• S~ "a t." 

,\,(0),11=00 deUt,b),yE 0-' ' 
, e e 

Q:. = (2:;' I de U'~.,vf.,", 
where ~ W x is the integral of the appropriate probabil­
ity over the angle y. The results of a calculation of the 
probabilities in the indicated apprOximation are the 
same as the well-known expressions obtained by averag­
ing over all angles y. [3] 

3. Using these formulae we can gi ve a general proof 
for the existence of power-law solutions fE ~ 1/ E Y with 
Y = 3 using only the general expression for the proba­
bility in the form 

(8 ) 

where A a is a function of H, n, me, the intensity of the 
turbulent oscillations, and of the other plasma parame-
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ters. Of importance is here the way the probability de­
pends on the frequency (which for the sake of conven­
ience is written in the dimensionless form w/ wpe) and 
on the energy (in the dimensionless form E/m). One 
could have included the parameters m 2 and wpe in Aa, 
The parameter q determines the emission condition 
and is proportional to w/ E2. Moreover, we shall put, 
introducing dimensionless quantities 

U) m'.!. 

q= 2w" 7' (9) 

Written in this form, the parameter q is appropriate 
for the Compton emission mechanism in scattering by 
Langmuir oscillations with large phase velocitiesYJ 
The emission condition in this case has the form q < 1. 
However, for all other emission mechanisms the appro­
priate parameters q are proportional to (9). This means 
that other emission mechanisms can also be described 
by the chosen q, but its magnitude will accordingly not 
vary between the limits 0 to 1 but within other finite 
limits, depending on the plasma parameters. We shall 
give two examples which illustrate this fact. For syn­
chrotron emission 

:rt e' { ~ } 
N"(q, x)= ----=-- fK'h(1--)d1-- =F K'I,(ql'S) 

2f3 w,'/ "~I' 
(10) 

where ~ = 3eH f(T - x2)/4mwpe. In this case q prac­
tically changes from zero to ~, Le., to frequencies of 
the order of wmax ~ eHE2/m 3 • For Compton scattering 
by plasma oscillations with large phase velocities we 
have in the case of isotropic turbulence 

e2Jt2x 
N,'(q,x)=-, -, (1-2q+2q'), (11) 

.io(l) pc ~ 

where K = W /nm is the ratio of the total turbulent en­
ergy density to the electron rest energy density. In this 
case the probabilities are the same for both polariza­
tions. However, the use of (8) is not restricted to the 
case of isotropic turbulence. Inl4J it was shown that 
even in a weak magnetic field the plasma turbulence 
may be anisotropic, and, in particular, plasma oscilla­
tions are oriented parallel and antiparallel to the mag­
netic field direction. In this case, also for large phase 
velocities, the probabilities for different polarizations 
turn out to be different :[3 J 

Jt 2e2x 
N(q,x)= 2wp/1-2q+3q')(i-x'), (12) 

n 2e2x 
N(q, x)= --" (1- 2q + q') (1- x'). 

2Ctljlt: w 

Equation (8) covers also the case of plasma oscillations 
with small phase velocities when for isotropic turbu­
lence[5 J 

(13 ) 

± 3 wP:' q' (1 _ ~ q + In W p
, q )] . 

k.' k, k. 

Here 0 < q < kl/wpe. It is clear that one can similarly 
also take the anisotropy of the turbulence into account. 
Then 

N"(q, x)= S W"" dk, d; N·'(q, k" S, x), (14) 

where ~ is the cosine of the angle between the wave 
vector of the turbulent oscillations and the direction of 
the magnetic field or any other direction determined by 
the conditions for the excitation of the oscillations. It is 
also clear from this that Eq. (8) is retained also for all 
other kinds of turbulent oscillations (in particular, for 
Alfven waves, whistlers, or ion-sound waves) which in 
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Available observations on the spectra of many cosmic 
sources show that the y-value found here lies very 
close to the average observed value y = 2.7 while the 
spread around this average value is not very large: 
1. 7 < 3.2. In this connection one must emphasize that 
there are at least three possible causes for the spread 
in the observed values of y: 1) a change in y within 
the limits of the source of the relativistic electrons 
itself; 2) a change of y when the particles leave the 
source; 3) a change of the effective value of y due to the 
loss of energy of relativistic electrons beyond the limits 
of the source. 

We understand here by the term "source" the region 
which is optically thick for the radiation by relativistic 
electrons and which produces the power-law distribu­
tion function. The first possibility is connected with the 
possibility that the magnetic field in the source is in­
homogeneous, mentioned already in the Introduction to 
the present paper. A particular limiting case of this 
inhomogeneity is a random magnetic field, i.e., a mag­
netic field the magnitude and direction of which change 
rather often along a reabsorption length. This must also 
lead to an inhomogeneity of the electron distribution 
along a length of the order of the characteristic size of 
the magnetic field inhomogeneity. Formally it is already 
clear from Eqs. (4) and (6) that in that case one can not 
eliminate the gradient of the distribution function fE x 
or the gradient in the equation for the radiation inte~sity . 
If we average, however, the distribution over distances 
appreciably longer than the characteristic size of the 
magnetic field inhomogeneity, the averaged relativistic 
particle distribution can be close to isotropic for a 
random magnetic field. Of course, this changes the 
value of y. The second possibility is connected with the 
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fact that when the relativistic particles leave the source 
they must diffuse strongly through the turbulence and 
the radiation and this may change their distribution. 
The problem thus consists in finding the connection be­
tween the value of y within the source and beyond its 
boundaries. 

We note in conclusion that the power-law solutions 
we obtained of the equations which we wrote down are 
not the only ones as there are also equilibrium solutions 
corresponding to the Maxwell distribution. The power­
law distributions are stable only for a well-defined 
level of turbulence. Finally, in the general form we 
need a detailed analysis of the problem of the uniqueness 
of the solution y = 3 taking into account all forms of 
turbulent oscillations and their spectra, in particular, in 
a strong field; » 1 and also taking into account differ­
ent kinds of low-frequency oscillations. 
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