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The gas-kinetic problem of the motion of the vapor of a condensed body during the non
stationary vaporization of the body into a vacuum is solved. The transition from the free
molecule vapor expansion regime, which obtains at the initial stage of the evaporation, to 
the regime in which the vapor moves like a continuous medium is studied. The time of 
transition to the limiting flow regime in which the motion of the bulk of the vapor is de
scribed by the equations of gas dynamics is determined. Boundary conditions on the sur
face from which the evaporation takes place are determined for the gas-dynamics equa
tions. The reflux of atoms to the surface of the condensed body due to collisions in the 
gaseous phase is computed. 

INTRODUCTION 

The rate of evaporation into a vacuum of a condensed 
body of temperature much less than the binding energy 
of the atoms is determined by two processes: the de
parture of atoms from the surface owing to the thermal 
motion and their return to the surface owing to collisions 
in the gaseous phase. For a sufficiently slow evapora
tion into the vacuum, the vapor density near the surface 
is small and the second process can be neglected. In 
fact, in papers devoted to the kinetics of the evaporation 
of solids and liquids only this simplest case is con
sidered[l-3J. An effective method for computing the 
probability of escape of an atom from the surface turned 
out in this case to be a method based on the theory of 
absolute reaction rates [3 J. 

For an intense (as well as prolonged) evaporation, the 
neglect of the reflux of atoms becomes incorrect. Such 
a case is realized, for example, during the action of a 
high-power laser or electron beam on the surface of a 
solid['). Under conditions typical of such experiments, 
the motion of the bulk of the vapor can be described by 
the equations of hydrodynamics. Two questions then 
arise as to: 1) what the "pure" evaporation rate is and 
2) what boundary conditions the solutions of the gas
dynamics equations should satisfy at the vaporizing sur
face. The second question is connected with the fact that 
the hydrodynamic approximation is clearly inapplicable 
in a thin (a few atomic mean free paths thick) Knudsen 
layer at the surface of the SOlid, where the distribution 
function strongly differs from the locally stable distri
bution function. From the hydrodynamic point of view 
the Knudsen layer is a discontinuity surface. In order 
to obtain the effective boundary conditions at such a 
discontinuity, we must find the velocity distribution 
function for the atoms inside the Knudsen layer. The 
solution to this problem was given in(5) and was subse
quently confirmed by a more circumstantial computa
tion carried out in[6) (see also chapter IV of the book[4J). 
It was established that the vapor temperature at the 
outer boundary of the Knudsen layer is roughly equal to 
O.67To (where To is the temperature of the condensed 
phase), while the vapor density is close to O.31no (no is 
the equilibrium vapor density at the temperature To). 
From this it is easy to obtain the magnitude of the re
flux during evaporation into a vacuum. It is approxi
mately equal to j- = O.2j+, where j+ is the flux in the 
absence of collisions. Thus, the relative jumps in the 
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variables in the Knudsen layer during evaporation into 
a vacuum turn out to be of the order of unity. Such a 
result seems reasonable, since the problem does not 
contain any small parameters. 

It should be noted that allowance for the boundary 
conditions given above is extremely important in the 
study of the evaporation of solids under the action of 
light. In this case there arises the question of light ab
sorption in the vapor stream and of screening at the 
vaporizing surface['). Since under conditions of weak 
screening the absorption coefficient very strongly de
pends on the vapor denSity and temperature, even a 
slight error in the boundary conditions will entail a con
siderable error in the determination of the optical thick
ness of the vapor layer l ). 

The description of the flow by the equations of gas 
dynamics with effective boundary conditions is possible 
in the case when the mass of the evaporated matter is 
sufficiently large and a hydrodynamic motion of the 
bulk of the vapor has been formed. This phase is pre
ceded by a transition process the analysis of which re
quires the solution of the kinetic problem of vapor mo
tion not only for the Knudsen surface layer, but for the 
entire flow. A hydrodynamic expansion regime will be 
established in a region where the density is fairly large. 
However, in an expansion into a vacuum the rarefaction 
wave always has a "tail" in which the flow remains a 
free-molecule flow. Therefore, the hydrodynamic de
scription of the expansion of a gas into a vacuum always 
contains an inaccuracy connected with the fact that the 
vanishing of the density and pressure at finite (for finite 
t) distances that follows from the hydrodynamic solution 
is, strictly speaking, incorrect (for a discussion on the 
correctness of the hydrodynamic formulation of the 
problem of gas expansion into a vacuum, see[B)). 

Thus, the correct approach to the problem of evapor
ation into a vacuum presupposes the solution of the 
kinetic equation for the expanding vapor over a suffic
iently large time interval. Such a solution allows us to 
fOllow the transition from the free-molecule disperSion 
of the vapor to the hydrodynamic dispersion, to deter
mine the nature of the flow in the lOW-density region, 
where the equations of hydrodynamics are inapplicable, 
and to find the effective boundary conditions on the 
vaporizing surface. Such a solution is obtained in the 
present paper by a numerical method. Since the nu
merical solution of the kinetic equation with the Boltz-
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mann collision term requires an extraordinarily large 
expenditure of machine time, we thought it advisable to 
carry out the basic computations for the so-called BGK 
model of the collision integral [9]. The considerable 
number of kinetic problems solved with such a model 
allows us to conclude that the model is highly accurate 
in a wide range of Knudsen numbers (see l10J )2l. 

We restricted ourselves to the solution of the one
dimensional non-stationary problem and assumed the 
surface temperature and the distribution function of the 
particles emitted from the surface to be time independ
ent. The simultaneous solution of the heat equation for 
the solid phase and the kinetic equation for the vapor 
would have corresponded more closely to the experi
mental conditions. Such calculations do not require a 
fundamental complication of the formulation adopted in 
this paper for the problem and they are carried out at 
present. 

1. FORMULATION OF THE PROBLEM 

We shall consider the evaporation into an initially 
vacuous half-space of a semi-infinite solid of tempera
ture To. Let us choose a system of coordinates in which 
the phase interface is at rest. The solid phase occupies 
the half-space x < 0 and the gas, the half-space x> O. 
The motion of the gas is described by the Boltzmann 
equation 

of 
~t+(v, 'V)f=I(f). (1) 

We assume for the collision integral the model expres
sion[9J 

I(j)=v(j.-j), (2 ) 

where 
f.(x, t, v) = n(x, t) [a(x, t)! n]'/'exp{-ca(x, t) [v - u(x, t) n, 

a(x,t) =M/2kT(x,t). 

The functions n(x, t), u(x, t), and T(x, t) entering into 
(2) are not known in advance and are determined in 
terms of the function f(x, t, v) by the integral relations 

n=Jfd'v, nu = J vfd'v, 
(3 ) 

3nkT + Mnu' = m J v'f d'v. 

The collision rate 1/ = A( T) n entering into (2) depends 
on the law of interaction between the atoms. We shall 
henceforth consider the rigid-sphere model, for which 
A ~ .fT. As the boundary condition for (1)-(2), we 
must specify the distribution function of the atoms en
tering into the half-space x> O. In accordance with[2J, 

we shall assume it to be Maxwellian for the particles 
with vx> 0: 

where O!o = M/2kTo, M is the atomic mass, To is the 
surface temperature, and no is the equilibrium vapor 
density corresponding to this temperature. Since the 
evaporation of a metal is of the greatest practical in
terest, we assume the probability of sticking of the 
particles to the surface to be equal to unity. Besides 
(4), there are the obvious conditions which can be im
posed on the function f(x, t, v): 

limf(x, t, v) = 0, lim f(x, t, v)=O, /(x, 0, v) =0. 

(4) 

It is convenient for what follows to go over to dimen
sionless variables. Let us introduce them in the follow
ing fashion. As the unit of length, let us choose the 
atomic mean free path at the density no; as the unit of 
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velocity, the quantity (20!ofl/2; we shall measure tem
pe rature and density in units of To and no res pecti ve ly . 
Since we shall henceforth use only dimensionless quanti
ties, we preserve for them the same symbols as for the 
dimensional quantities. The problem can then be formu
lated as follows: 

Of of 
lit + vxa;=" (to - f), 

10 = n (2nT) -'I,CXp[ - (v - u) '/2T], 

f = (2n)-'I'exp(-v'/2), v=nFt. 

The dimensionless expressions for nand u coincide 
with (3); the relation determining T will be written 
out below (see (6)). 

The integration in the formulas (3) is over the entire 
velocity space, Le., the integrals in (3) are, with allow
ance for the symmetry of the problem, double integrals. 
It is convenient, bearing in mind the numerical solution 
of the problem, to go over from f(x, t, v) to new un
known functions which depend only on one component Vx 
of the velocity. We can formulate a closed system of 
equations in terms of these equations and compute all 
the hydrodynamic variables that characterize the vapor 
stream. Let us introduce the new functions If(X, t, vx) 
and if!(x, t, vx ) according to the relations 

tp(x, t, vx) = J f(x, t, v)d'vJ., 

'p(x, t, vx) = J f(x, t, v)vJ.'d'vJ., 

where the vector VI has the components (Vy, vz). 
equations for 'P and if! have the form 

atp atp -
lit + vXih= nl'T(tpo - tp), 

d<{J a<{J -
lit + vXih = nl'T(,po - <{J). 

Here 
~'o = n(2nT) cxp r - (vx - u)'/2T], <{Jo = 2III'o, 

The 

(5) 

while the function T(x, t) is defined by the relation 

T(x, t) = (3n) -I {l v'-tp(x, t, v)dv 

(6) 

+J-'P(X,t,V)dV-n-' L~vtp(X,t'V)dV ]'}. 

For n(x, t) and u(x, t) the relations (3) remain 
valid, except that f is replaced by if! and the integration 
is a single integration over vx. 

2. METHOD OF SOLUTION 

To solve the system of equations (5) numerically, we 
use an iterative method for the collisions. As the 
initial approximation in each time spacing, we shall use 
the distribution functions computed for the previous 
spacing. 

For small times the dispersion of the vapor takes 
place without collisions, and therefore the values of the 
distribution functions along the characteristic curves 
dx/dt = Vx are conserved. In the presence of collisions, 
the variation of the functions If and if! along the charac
teristic curves is determined by the collision term. Be
fore expounding the procedure for integrating Eqs. (5), 
let us write out the solution for the collisionless case, 
since this solution will be needed below. Taking the 
conservation of If and if! along the characteristic curves 
into account, and using the boundary conditions at x = 0 
and t '" 0, we easily derive the following formulas for 
the hydrodynamic averages: 
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n (x, t) = 1/2 erfc!.t, U (X, t) = (2/ n) 'I, (e"' crfc !.t) -', 

2 -
T(x, t) = 1 + --=(e"' edc f1)-'[!.t - (l'n e"' erlc!.t) -'j, 

3Yn 
(7) 

For x » t 12 we obtain the following asymptotic distri
butions for the variables: 

t (X' ) , n(x,t)---=-exp --
xY2n 2t' 

,,(x,t) -x/t, T(x,t) -'I,. 
Notice that the mean energy density T(x, t) of the 

thermal motion in the free-molecule dispersion tends 
at large distances from the surface not to zero (as 
would have been in the hydrodynamic solution), but to %. 
The reason is that in the absence of collisions, only the 
longitudinal component of the velocity of the thermal 
motion contributes to the kinetic energy of the ordered 
motion of the vapor. The "transverse" temperature 
remains "frozen." 

The free-molecule motion is evidently self-similar 
and depends on the variable x/to The hydrodynamic 
motion, which subsequently develops, is a centered 
rarefaction wave. It is also self-similar and depends on 
the same variable. However, the profiles of the func
tions computed on the basis of both approximations sub
stantially differ from each other. 

To solve the system (5), we iterate with respect to 
the collisions. After integrating (5) along the character
istic curves, we can easily derive the formulas: for 
x> vxt 

ljJ(x, t, vx) = IjJ (x - Vxt, 0, vx)exp [ - S v (Sh t,)dt, 1 , 

+ J ljJo (s" t, Vx) v(s" t,) exp [ - J V (1;" t,)dt,] dt" 
, " 

(8 ) 

and for x < vxt 

'1'(/,1.1',)'0'1'(111 < ,1',)"'1'[ - J\(.",.lj,)f~~'-J 

where ~h = x - vx(t - th); Ijk = t - VX1 (x - xk) and the 
quantities n, u, and T are given by the relations (3) 
and (6). 

Similar expressions can be written down for the func
tion cpo Given the values of the functions I/i(x, t[+1, vx ) and 

T 
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FIG. I. "Temperature" distribution at different moments of time. 
I-t = 0.5; 2-t = 3.0; 3-t = 15.0. 

FIG. 2. Vapor density distribution: I-t = 0.5; 2-t = 15.0 
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cRx, t[+1, vx ) at t = t[ as the zeroth approximation to them, 
we can solve the system (5) by iterating with respect to 
the collisions. These iterations, however, converge rela
tively slowly, and, to hasten the convergence, we use a 
quasi-diffusion type of procedure[llj. As an intermediate 
step in the iterations, we solve the "quasi-gas-dynamic" 
system 

oj ow 
-+~=O 
dt Ox ' 

where = nu is the particle flux density and 

(9 ) 

The use of (9) enables us to substantially shorten the 
computation time and to obtain a solution to the kinetic 
equation over a long interval of time. A detailed expo
sition of the mathematical method will be given in a 
separate article. 

3. DISCUSSION OF THE RESULTS 

The qualitative picture of the solution is as follows. 
At the beginning of the process, when t < 1, the motion 
of the vapor is colliSionless, and the profiles of the 
variables are given by the formulas (7). Then the col
lisionless profiles begin to get distorted, owing to the 
collisions, and a hydrodynamic flow begins to form at 
distances from the surface of the order of unity. The 
hydrodynamic flow gradually encompasses a larger and 
larger spatial region and assumes more and more the 
structure of a centered rarefaction wave. It is interest
ing to follow how the energy-density profile for the 
thermal motion of the atoms varies (in the equilibrium 
state this quantity is called the temperature, and we 
shall, for brevity, call it thus in the nonequilibrium 
case being studied here). Figure 1 shows the tempera
ture profiles at different moments of time (the time is 
indicated by the numbers on the corresponding curves). 
It can be seen that at t = 0.5, the temperature profile 
corresponds to a free-molecule dispersion: the tem
perature varies monotonically from the value 0.78 
at x = 0 to 0.67 when x - 00. For t> 1 the curve 
T(x, t) has a minimum. The minimum evidently arises 
because a portion of the "transverse" energy of the 
thermal motion is converted as a result of collisions 
into kinetic energy for the ord.ered dispersion, so that 
the vapor temperature turns out to be less than the 
temperature in the collisionless motion. As time goes 
on, the minimum of the temperature profile becomes 
deeper. The temperature profile approaches the 
Riemann solution for a rarefaction wave. At the same 
time the flow in the region of large x remains, as be
fore, a free-molecule flow _ In particular, the asymp
totic value of the temperature for x - 00 is equal to % 
for all moments of time. 

The dashed curve in Fig. 1 shows how the tempera
ture in the centered rarefaction wave varies. Compari
son of the hydrodynamic solution with the true kinetic 
solution shows that the former is valid in about half of 
the region between the surface of the solid phase and 
the "front," where, according to hydrodynamics, the 
temperature should vanish_ If we extrapolate the hydro
dynamic solution to the surface x = 0 (where the solu
tion is, in fact, incorrect), then the limiting value of the 
temperature turns out to be equal to 0.69, which is in 
good agreement with the asymptotic solution obtained 
in [5,6j for the Knudsen layer. 
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FIG. 3. Flux density of the vaporized atoms at the surface. 
FIG. 4. The distribution function 1/J(v) at t = 5.0 for I-x = 0 and 

2-x = 5.0. 

Figure 2 shows the density profiles corresponding to 
different moments of time. It can be seen that the 
density profile as a function of the self-similar variable 
x/t does not change very drastically on going over from 
the free-molecule dispersion to the centered rarefac
tion wave_ The change amounts first and foremost to a 
reconstruction of the surface Knudsen layer and to the 
formation at large x of a low-density "tail." 

Atomic collisions in the vapor lead to the appearance 
of a reflux and a decrease in the "pure" evaporation 
rate. Figure 3 shows how the flux density of the vapor
ized atoms varies in time. The highest flux density that 
corresponds to a collisionless flow (equal in our units 
to 0.398) decreases by roughly 20 % during the transition 
process. This is also in good agreement with the results 
of[ 4-6J• The time during which stabilization of the reflux 
occurs is about 20 times the mean free time. This time 
may be conventionally regarded as the establishment 
time for the hydrodynamic regime of the motion of the 
vapor. In fact, the hydrodynamic regime is attained not 
inside the Knudsen layer, but in the "tail" of the rare
faction wave. However, since an exponentially small 
portion of the vaporized matter moves in the "tail," 
and the energy contained in this region is small, the 
asymptotic motion can be described with sufficient ac
curacy by the equations of gas dynamics with the bound
ary conditions obtained in[5,6). Thus, the flow structure 
proposed in[5) is, in fact, attained after a fairly pro
longed evaporation. The establishment time for such a 
flow is much longer than the mean free time of the 
atoms near the surface of the condensed phase; there
fore, in an impulsive heating, conditions can be realized 
when the hydrodynamic evaporation regime does not set 
in at all. The last remark pertains, for example, to the 
evaporation of absorber bodies under the action of laser 
pulses obtained in a Q-modulated regime. 
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The variation of the distribution function 1JI( x, t, v) 
of the atoms in the course of the dispersion is shown in 
Fig. 4. At large distances the reconstruction of the dis
tribution function is connected only with the kinematic 
transformation of the flow. At small distances the pri
mary changes are due to collisions. 

In conclusion, we express our sincere thanks to Yu. 
I. Lysikov, who performed a great deal of the work at 
the initial stage of the present investigation. 

J)Touching upon the screening problem, we must note that, in general, 
its correct solution falls outside the framework of the simple one
dimensional gas-dynamical problem. For example, in the initiation 
of a luminous breakdown of the vapor, an important role may be 
played by liquid drops, which are, according to [7] , often observable 
in the stream even at the initial stage of the evaporation. 

2) An additional justification for using the model follows from the good 
agreement of the results of [5] and [6]. 
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