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A quasilinear theory of a magnetoactive plasma irradiated by an intense beam is de­
veloped with the aid of the equation for the pair correlation function of plasma particles. 
The general points of the theory are illustrated by solving the quasilinear equation set 
for the case of the electron oscillation amplitude in the field of the pumping wave which 
is small compared to the perturbation wavelength of a strongly magnetized plasma at 
frequencies of the lower hybrid resonance and slow magentic sound. The time dependences 
are obtained for the parametric growth rate, spectral energy density of parametrically 
excited plasma perturbations, and electron distribution functions. The appearance of an 
appreciable number of fast electrons (about a tenth of a per cent of the total number) is 
observed. The turbulent conductivity of a magnetoactive plasma at the pumping wave 
frequency is high compared to the laminar conductivity due to collisions. 

The theory of paramagnetic resonance [1-5J explains 
qualitatively the main processes occurring in a plasma 
subject to the action of powerful radiation. A quan­
titative comparison of the theoretical conclusions with 
the presently accumulating experimental data [6-15] calls 
for an appreciable extension of the theory. The present 
paper is devoted to one of the aspects of the theory of 
parametric resonance, namely the theory of quasilinear 
relaxation of a parametrically excited plasma situated 
in a constant and homogeneous magnetic field. 

Anomalous absorption of high-power radiation by 
collisionless plasma [6,8,10-12] can be understood within 
the framework of the theory of nonlinear interaction of 
parametrically unstable oscillations [4,5,16] of a plasma 
with a speCified particle distribution function. To the 
contrary, such phenomena as heatin!f. and acceleration 
of the plasma particles by radiation 7,8,9,12,15] can be 
explained only by studying the variation of the total dis­
tribution function. The equations for the joint evolution 
of the distribution function of the particles and of the 
spectral energy density of the parametrically unstable 
plasma oscillations without a magnetic field were formu­
lated in [17]. They were used, in particular, to investigate 
theoretically the previously-predicted[2J rapid heating of 
plasma by radiation. The theory was subsequently de­
veloped [17J as applied to the case of a relatively weak 
pumping field [18 ,19]. A plasma-electron redistribution 
was obtained [19], whereby the number of the fast elec­
trons increases. 

The experimental studies [7 ,9-14J were devoted to para­
metric resonance in a magnetized plasma. The measure­
ment results [7,9J make it possible to determine the dis­
tribution function of the fast plasma electrons along the 
external magnetic field, and in [12] it is indicated that fast 
ions are present in a parametrically unstable magnetized 
plasma. The quasilinear effects in such a plasma were 
first discussed theoretically in (2 oJ , where a quasilinear 
theory was used to obtain the consequences resulting 
from the hypothesis that the parametric instability be­
comes stabilized by raising the electron temperature in 
the weak pumping field. The explanation presented below 
will show that the quasilinear saturation of the para­
metrically-growing noise in a magnetoactive plasma in a 
weak pumping field is the result of a deformation of the 
electron velocity distribution function in a relatively 
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narrow interval of above-thermal velocities, when the 
heating can be completely neglected. 

The paper is divided into two sections. In the first 
we give the quasilinear equations of a parametrically 
excited magnetoactive plasma and discuss in detail the 
concrete quasilinear relaxation equations that appear 
in the case of a weak pumping field. In the second sec­
tion we obtain the evolution of the electron distribution 
function, of the increment, and of the spectral energy 
denSity of parametrically excited slow magnetic sound 
and of the lower hybrid resonance. 

1. EQUATIONS OF QUASI LINEAR INTERACTION 
OF POWERFUL RADIATION WITH MAGNETO­
ACTIVE PLASMA 

We consider a fully ionized plasma situated in a con­
stant and homogeneous magnetic field with intensity B. 
The external radiation acting on this magnetoactive 
plasma is assumed in the form of a high-frequency 
spatially homogeneous monochromatic electric pump 
field 

E(t) ~ Eo sin wnt (1.1) 

with frequency Wo and intensity Eo. The equations de­
scribing the quasilinear relaxation of a parametrically 
excited m agnetoactive plasma can be obtained by starting 
from the system of equations for the distribution func­
tion f(p, t) of particles with momentum p at the instant 
of time t and the pair correlation function [21J. Just as in 
the case of an isotropic plasma [17J, we can write as a 
consequence of such a system the relation 

U J { 1 } 01 a S dk (1.2)* -+e E(t)+-[vBl -~-e- --E(-k,t)6/(k,p,t), 
dt C Up dp (2n)o 

u of DO{ { 1 } dot i) I -_+v--+e E(t)+-[vBl --~-eE(r,t)-, ut Or c Up dp 
(1.3) 

divE(I',t)~4:teS dpO/(I',p,t). (1.4) 

Here e is the particle charge and c is the speed of light 
in vacuum; in the right-hand side of (1.4), summation 
over the difference source of plasma particles is implied. 
The Fourier transforms of the quantities are defined in 
the usual manner. For example, for the fluctuating 
electric field E (r, t) we have 

S dk 
E(r t)= --E(k t)e'k'. 

, (:In) " ' 
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Taking into account the explicit form of the character­
istics of the differential operator in the left-hand side 
of (1.3) (h == (BIB) is a unit vector along the magnetic 
field) 

we can eliminate the quantity of from (1.2) and (1.4). As 
a result, the system of equations for the distribution 
function of the particles 

F(P;,t)=f(p,+eld~W"(-~)Ej(t+~),t ) 
and for the field potential E(k, t) = - ikcp(k, t) of the 
natural oscillations of the plasma takes the form 

liF(p, t) e iiF(p, t) ii S dk SO 
--iit-+~[vBlap-= e' lip, (2n),k,k,cp(-k,t)_oo d~cp(k,t +~) 

iiF(p(T,V);t+T) f. 
x exp Ilk,p'i(~)Vj 

iipj(~,v) t 

+ i : L d~' kip,,( - ~') [Ej(~' + ~ + t)- E,(~' + t)]} , (1.6) 

4ne'k SO S &F (p, t + -r) 
(p(k,t)=i~_oo dnp(k,t+~) dp &p 

(1. 7) 

x exp { ik,p,,(~) Pi + i ~ L d~' k,p,,(- ~') [Ej(~' + ~ + t) - Ej(-r' + t) l}. 

Here n = e~/mc is the gyroscopic frequency and 0ij and 
eisj are Unit tensors of second and third rank, re­
spectively. For the high-frequency field (1.1) we have 

: J d-rk,p,,( - -r)Ej(-r + t) = a sin(wot + ¢), 

where the role of the amplitude of the particle oscilla­
tions in the field is assumed by the quantity a: 

a "" ~ {(k[Eoh])' ( ~oQ ,,)' + [(kh)(Eoh)+~([khl [Eoh])]'}"'. 
mwo ffio -~.:; 000 _ Q2 

acos¢"" --;{ (kh) (Eoh)+~([kh][Eoh])}, 
mffio (1)0 -Q 

. e woQ 
asm¢=-(k[Eoh])---. 

mWo2 w02 _ Q2 

We expand the potential qJ(k, t) of the fluctuation fields 
in the plasma and the distributions F (p, t) in terms of 
the harmonics of the frequency Wo of the external field 

+w 

cp (k, t) = .E CPn (k, t) e- ino,., (1.8) 

excited with increment y,. 

cp(k)=cpo(k,w(k,t),t)=cpo(k,t)exP{i j dt'w(k,t')} 
o 

and are described by the zeroth harmonic (n = 0) of the 
expansion (1.8). The frequency W and the growth in­
crement yare determined from the dispersion equation 

1 L 1 -,--~-,--- + In'(a).------- = 0 (1.11) 
bE,(W + iV, k, t) ,,~_oo 1 + bE,(W + nwo + iV, k, t) , 

in which I n (a) is a Bessel function of order n with argu­
ment a, and the partial longitudinal electric constants 
0Ei and DEe of the ionic and electronic components of the 
plasma are determined in the usual manner [22,23]. 

For the zeroth harmonic n = 0 and m = 0 of the ex­
pansion (1.9), which is a slowly-varying part of the 
electronic distribution function F~O,O) (vz , v 1, t) 
== Fe(vz, V1, t) of the parametrically unstable plasma, 
we obtain from (1.6) and (1.7), taking the expansions 
(1.8) and (1.9) into account, the following relation 
(see. [20]) 

OF, e' .E+w S dk ( a sQ, ii) (k.LV.L) -=---;; --, k,-+-- I.' -- Icp(k)I'In'(a) 
iit m (2n) av, V.L iJV.L Q, 

",8=_00 

, 6e,(w +i1,k,t) ,'[ x n6.(w + nwo - sQ, - k,v,) -1 (k, t) 
1 + 6e,(w + nwo + i1, k, t) 

{) p ] ( a sQ, &) 
x~. k,-+-- F,(v"vJ.,t). 

aw w+nwo-sQ,~k,v, av, VJ. &VJ. (1.12) 

Here e and m are the charge of the electron and its 
mass, ne is the electron gyrofrequency, kz = (k . h), 
and k~ = [k xh]2. The first term in the square brackets 
of the right-hand side of (1.12) (the ii-function) corre­
sponds to resonant interaction of the electrons with the 
plasma perturbations, while the second is due to non­
resonant adiabatic interaction (P is the principal-value 
symbol). The direct action of the radiation on the ions 
can be neglected in view of their large mass, mi» m. 
Therefore the equation for the ion distribution function 
Fi (vz , v 1, t) takes the form of the usual quasilinear 
equation in a magnetoactive plasma not subject to the 
action of powerful radiation. 

We note that (1.12) is only a part of the consequences 
of the general relations (1.8) and (1.9), which lead to a, 
system of coupled equations for the harmonics Fr, m). 
We have confined ourselves here to formula (1.12) for 
the zeroth harmonic of the electron distribution Fe (p, t), 
since this is the only one we shall need for the concrete 
applications that follow below, in the case of a weak 
(a <<. 1) pump field. In a strong pump field (a» 1), 
the coupling between the harmonics F(n, m) is ap­
preciable. 

The high-frequency conductivity a, which character­
izes the rate of energy loss of the external radiation 
(1.1) in a magnetoactive plasma, is given by the 
expression 

1 S dk k' 
Z-oEo' = 000 (2n)' -:r,;-lcp(k)I'16e,(w+i1,k,t)I' 

+00 
X \' nl,,'(a) 1m bE,(W + nwo + iV, k, t) " 

,f::!oo 11 + lie.. (00 + nwo + i1, k, t) I 

(1.13) 

In formula (1.9) we used the harmonics Ftn, m) of the 
distribution F(p, t) also with respect to the azimuthal 
angle qJ of the gyroscopic rotation of the particle around 
the magnetic field B (in a cylindrical coordinate system 
with z axis along B); pz = (p . h), Pt = [p x h]2. Equations 
(1.7), (1.8), and (1.9) lead (see[17,21) to the field equation 

As a concrete application of the system of Eqs. (1.10) 
(1.10) and (1.12) derived above, let us consider the evolution () 

aTlcp(k) I' = 2y(k, t) Icp(k) I' 
of the electron distribution function Fe, assuming the 

for low-frequency (w « wo) almost-periodic (y « w) ions to have a Maxwellian distribution with a thermal 
magnetoactive-plasma oscillations that are parametrically velocity vTi and a temperature Ti, and assuming this 
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distribution to be constant in time, as is justified by 
the large inertia of the ions . .Investigating Fe, we are 
interested only in that part iT e which determines the 
distribution of the electrons along the constant magnetic 
field (see the results of the experiments[7,9,10,12)), 
assuming the electron distribution function across the 
magnetic field to be Maxwellian with temperature T 1: 

The rationale for such an approximation of the sought 
function may be the experimentally established fact 
that in a magnetoactive plasma subject to the action of 
powerful radiation the rise of the electron temperature 
across the magnetic field is much smaller than the rise 
of their temperature along B. After integrating with 
respect to the transverse velocities, we can rewrite 
(1.12) in the form of an equation for :1 e: 

afT, e' rJ L1 J dk" 0 

-- = -. - -;-----:,k, h (Id 1- A, (kJ -p,.-). 
(}t m~ Or \,~.rl) 

2 / IlE,(w-i- i1,k) /'[ xl" (a) .' :rll(,,) Cr/(",,-sQ, --k,['.) 
1 + oe.,«,) + nul"~ + {'(. k, t) 

a p ] ( " sQ,. ) -1(k,t)-~--·---------- k,---, fT,(v"t), 
rJU) (r)+nh)(l·--s~l,-·/<·.u, r)u, l'"I'_L- (1.14) 

Here vT 1 = (nT 1/m)1/2 is the thermal velOCity of the 
electrons across the magnetic field (K is Boltzmann's 
constant), Pe = vT 1/Qe is their Larmor radius, and the 
function As(z) = e-Zls(z) is determined by a modified 
Bessel function Is with integer index s. 

We confine ourselves to a case of experimental 
interest (see[7,9-14]), when the pumping-field frequency 
Wo is close to one of the hybrid resonance frequencies, 
Wo 0:::: wres (11 is the angle between the wave vector k of 
the plasma oscillations and the magnetic field B, and 
wLe = (41TNee2/m)1/2 is the Langmuir frequency of the 
electrons with denSity N e): 

(1.15) 

For the distribution function in the sum over the 
frequency harmonics of a relatively weak (a « 1) ex­
ternal field, the terms that are not small in the right­
hand side of (1.14) are those with n = 0 and ±1. Retain­
ing in the dielectric constant OEe (w ± Wo + iy, k, t) the 
terms proportional to the small detuning bowo = Wo - wres 
and proportional to the high -frequency damping decre­
ment Y, we obtain (OEe and OE~ are the real and imag­
inary parts of OEe) 

21l 
1 + 6e,(w ± Wo + iV, k, I) ""-Uwo ± w + i'l(k, t)+ iy(k,t) l. 

"'0 (1.16) 
6=~[aw6e'_'(w,k) 1 w 

2 Clw 'I(k,t)= 2; of/'(wo,k,t), 

For the partial dielectric constants OEe i at low 
frequency w we shall use the expressions (hi is the 
gyrofrequency and wLi = (41TNieUmi)1/2 is the Langmuir 
frequency of the ions with charge ei and density nil 

( k) w, ,." { +Joo dv, afT, (v" t) 
6€e UJ, ,t = -7 P --;-- 'uu 

._,,- z z 

[ afT, (v" t) ] } +in ---- signh-, , 
au;. 1· =wll;. 

which are valid in a plasma with sufficiently cold ions 
W» IkzlvTi and hot electrons W « IkzlvTe (T e» Ti).1 
The magnetization of the ions and of the electrons 
kip~ i« 1 ensures one-dimensionality of the quasi­
linear relaxation. Under these conditions, Eq. (1.14) 
for fTe becomes much simpler: 
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afT, a e' l dk, , I" 
--=--- --I; -1'r(k)I-llle,(w,k) -

dt 'Iu, tn' 1(2J1)" -

x{ 11 + oe(w, k) 1_' [:10(0)- k'V')-1(k,t)~--P--] 
(}(u (U - kzuz 

The low frequencies (compared with (1.15) of the 
natural oscillations of the magnetoactive plasma in the 
case of a parametric decay instability are given by the 
equation 

1 { '+0'-[( '+''')' 4 '0' 'OJ'!'}'!' (118) (I) ~ (j)1,~ ==; -=- (I)" _., + u), ;:':::, - (00 ~.I cos , • 
12 

in which the subscripts 1 and 2 correspond to negative 
and positive values of the square root, Ws = kvs 
== kWLirDe is the frequency of the long-wave ion­
acoustic oscillations. The low-frequency damping decre­
ments )'1,2 in a non-isotropic plasma (Te » Ti) are 
determined by the electronic distribution function fTe 
if the ion-ion collisions can be neglected (t = 1 + oq): 

(1.19) 

We consider next the case of resonance between the 
pumping field and the plasma oscillation at the frequency 
of the lower hybrid in a magnetized plasma (n~ » wLe) 

(1.20) 

when the parametric-buildup increment y reaches its 
maximum value. We can then neglect in the high-fre­
quency decrement y(see (1.16) the contribution of the 
small cyclotron damping. In addition, assuming the 
plasma to be suffiCiently hot and rarefied, we neglect 
also the electron -ion collisions. As a result, the high­
frequency damping decrement y is determined only by 
the inverse Cerenkov effect on the electrons (Landau 
damping): 

_() :r (",,0),.,' [ afT,.(v"t) ] . k 
'\' k, t = - --;,--,- sign ,. 

.... k avz t', =wo/Io z 

(1.21) 

Assuming the electron distribution function fT e to be 
even, we consider below the region of positive value of 
the velocity Vz > 0 along the magnetic field B. 

An essential feature of quasilinear relaxation of a 
parametrically unstable plasma is the presence of not 
one but of many intervals of electron diffusion, due to 
the Cerenkov effect at the harmonics of the pumping­
field frequency (cf. [19J). In particular, in the weak-field 
approximation (a« 1) and in a magnetized plasma, there 
are two such diffusion intervals (see Eq. (1.17)). Elec­
trons with low velocities Vz 0:::: W Ikz diffuse as a result 
of resonant interaction with low-frequency plasma per­
turbations, while the diffusion of the faster electrons, 
with velocities Vz ~ wo/kz, is due to the Cerenkov reso­
nance with the high-frequency plasma oscillations (at 
the frequency Wo of the pumping field). We confine our­
selves here to the study of quasilinear diffusion of 
relatively fast electrons Vz ~ wo/kz due to their resonant 
interaction with the first harmonic of the weak pumping 
field, and show that even within the framework of this 
mechanism alone it becomes possible to stabilize the 
parametric instability2). Equation (1.17) for the re­
laxation of ;Fe reduces, with the aid of formula (1.21), 
by differentiating both halves, with respect to vz, to the 
equation for the high-frequency damping decrement y: 
V. V. Pustovalov et al. 431 



(j (wo) ,{}' ne'wo' ((~O )s dk "I (k) I' 
-{}t '1 -, t = v, -{} '-16 ' • '1 -, t -(9,) "k, a 'P 

V z Vz m Vz V z ... ::1 

{ b(Wo+k,v,) 6(wo-k,v,)}, 
xI6e,(w,/i)I' (W-L'1wo)'+('f+Y)'+ (w+L'1w,)'+(V+Y)' . 

(1.22) 
Integration with respect to the wave vector k of the 

plasma perturbations is conveniently carried out by 
choosing as the independent variables the longitudinal 
component kz, the detuning ~wo connected with the total 
angle B by the relation (1.20), and the azimuthal angle. 
Being interested later in the case when the electric-field 
intensity vector of the pump (1.11) is parallel to the 
magnetic field we see that the oscillation amplitude 
a = Ikz(VE . h)jw~l (VE == eEo/mwo) and the integrand in 
the right-hand side of (1.22) do not depend on the azimuth, 
so that we are left only with integration with respect 
to the detuning ~wo. 

For the parametric instability corresponding to the 
decay of the pumping wave into a high-frequency os­
cillation wres = wLe leosBI and one of the low-frequency 
oscillations 

W = w,. , = &.>0 > max {y, '1, y,. ,}, (1.23) 

we choose from among the two branches W 1 and W 2 the 
slow magnetosonic wave W = W 1 = jkzlwLirDe == wslcosBI, 
which have the maximum growth increment in a strongly 
magnetized plasma: 

1 1 [ 1 v' ]'1' 
y .. ox=--('f+Y,)+- ('f-y,)'+----;.wow, . (124) 

2 2 4 Vro • 

After expanding the increment')' in the vicinity of the 
maximum value (1.24) 

1 (j'y 
y(L'1 wo) ""y(w')+'2(L'1wo-w,)'aw,' ' Y(W')""Ym,.. (1.25) 

and integrating in the right-hand side of (1.22) with re­
spect to the detunings AWo with allowance for the field 
equation (1.10), we describe the quasilinear relaxation 
of the parametrically unstable magnetoactive plasma by 
a system of nonlinear partial differential equations: 

{j V x' a'{< _[ Woii¢]-'[ a~ (V 1a¢)]-'h} --=---, e G(~h '1+-- 1-- -+--c- ; 
,h; Wo 2 i)x' 2 a, a, Wo 2 a, 

(~+2~) (~+2~) = 2C, a~ (~+~+ V)' =£; 
liT Wo i), '"0 x a, liT "'0 ,"0 X 

1 v.' WL' ( '! 1 a¢) [ a~ ( V 1 a¢)]-' C",,--_' ~""~ -+-- 1-- -+--,- . 
2 vT / WLt" Wo 2 aT 8't (00 2 D-r 1 

(1.26) 

The high-frequency damping decrement y(x, T) is here 
a function of the dimensionless velocity x = (VzlVTe) 
and the time T = :.lot, while the function l/J(x, T) is de­
termined by the maximum growth increment 

-cl'~o 

",(x,,)= -lnAx'+2 I dt'yC::,. ,w"t'), 

(OLe V Te 2 .1 
A = 16--N,.rv" 

000 V E 2 

(1.27) 

and Hx, r) characterizes the second derivative of the 
increment in the expansion (1.25). 

From the condition (1.23), which was used essentially 
in the derivation of the system (1.26), it follows that the 
latter is valid at electron velocities Vz that greatly ex­
ceed the thermal velocity (x» 1). Thus, the resonant 
interaction of the electrons with the first harmonic of 
the pumping field, which is taken by us into account here, 
exerts an influence on that part of the distribution func­
tion f1F e (vz, t) which describes the fast (above-thermal) 
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electrons. Since the fraction of the fast electrons in the 
plasma is small (on the order of 1% or less), we assume 
the electron temperature Te to be constant during the 
entire quasilinear-relaxation process. Neglecting the 
quasilinear diffusion in the interval of low velocities 
Vz ;::::: W /kz , we can assume the frequency w 1 and the low­
frequency damping decrement ')'1 = .fii78(wLiwI/wLe) to 
be independent of the time, thus simplifying the analysis 
of the system (1.26). As the initial value of the spectral 
energy density W s (k, t) of the slow magnetosonic wave 
we used in (1.26) the density Ws(k) = KTe. 

The system (1.26) must be solved with the initial 
conditions 

¢(x, 0) =-lnAx'; ~(x, 0) =0; 

a",,(x,,) J =2.y(~,o), [a~(x,,)] 
a, ,~o "'0 xvT , 'h ,~o (1.28) 

=£[21 (~,o)+ 1, +V (~,o)] -, wo'. 
X XV1"" XUre 

The second pair of these conditions is determined by the 
initial value of the increment y(k, t = 0) of the parametric 
instability and by its second derivative with respect to 
the detuning. The formulation of the boundary conditions 
for the system (1.26) requires a description of the quasi­
linear relaxation in a wider range of velocities, and 
allowance for the contribution made to the relaxation by 
other natural oscillations of the magnetoactive plasma, 
which continue the slow magnetosonic wave into the 
region of large and small wave numbers. 

2. aUASILINEAR STABILIZATION OF A 
PARAMETRICALLY UNSTABLE PLASMA 

Assume that at the initial instant of the quasilinear 
relaxation the high-frequency damping decrement y ex­
ceeds')' and ')'1. We shall show that the time evolution 
of ')' and y can be represented in this case by the curves 
of Fig. la (at y(x, 0) > ')' 1) and Fig. lb (at y(x, 0) < ')'1). 
Indeed, the system (1.26) then becomes 

rJ Vex,,) 1 ,f)' e' 
---=--=-x ----=-, 

()t Wo 2Y n ax' l'!; 

a", V C iJ~ Cwo' 
(2.1) 

~~=7' 8,= xy:l . 

Making the substitution l/J = 7J + In(2/lTf) and verifying 
that the quantities l/J and 7J vary with time at approx­
imately the same rate, 8l/J/8T ;::::: 971/8T, we arrive, with 
the aid of (2.1), to one equation for 7J(x, T): 

uT) x'~xe"=C'. (2.2) 
,iT Dx' 

Equation (2.2) admits of a particular solution in the 
form (C 1 , C 2 , C3 are constants) 

T) = In {~2 (d C,) ( ~ + C,x + C,)} , 

which makes it possible to estimate the time dependence 
of the increment and the high-frequency damping decre­
ment (see Fig. la): 

= ,"0 _= CWo ( +C) =...::. [_1 ___ 1 __ ] (2.3) 
y 2(,+C,) ' y x' "~ 2C' C,' (,+C,)" 

The constant C1 that enters in (2.3) can be estimated 
at C 1 ;::::: wo/2y(0) by specifying the value of the incre­
ment y(x, 0) at the initial instant of time T = O. We note 
also that the nonlinear partial differential equation (2.2) 
for 7J(x, T) reduces to an ordinary equation in terms of 
the self-similar variable z = X/T: 

u + Z"u'u" = 0, u = u(z) "" (x / U nsC') e'. 
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Thus, during the initial stage of quasilinear relaxation, 
the dissipation of the high-frequency oscillations y 
increases, and the increment I" decreases with time. The 
initial stage is completed by the instant t, "" 1/21"1, which 
is determined from the condition that the buildup incre­
ment be equal to the low-frequency damping decrement, 
/"""1"1. 

At times t> t, there sets in a second stage of quasi­
linear relaxation \y'» Yl» y), when there is prac­
tically no growth of the dissipation. The high-frequency 
damping decrement is practically independent of the 
time 

(2.4) 

and the quantities l/! and ~ are determined by the second 
and third equations of (2.1). Making the substitution 
l/! = 7] - In (y,:.JoX//iTf y2), we arrive at an equation for 
7](x, T) (cf. (2.2»: 

a'TJ +x~e" =~( aIns)' 
aT' ax' 2 aT ' 

in which the right-hand side is a given function of x 
and T: 

(2.5) 

x' [ 1 1] Cwo' 
~ =2C' C;Z- (T, +C,)' +(T--r,)~. (2.6) 

An analysis of Eqs. (2.5) and (2.6) shows that at t» t, 
the increment decreases rapidly, I" ~ W o/T3 , so that 
there is practically no growth of noise, and the second 
stage of the quasilinear relaxation terminates in stabil­
ization of the parametric instability. 

If the quasilinear relaxation against small values of 
the buildup increment y» 1"1» y, then we have, in 
fact, the second stage of the relaxation, which begins 
under the condition y» y» Yl, but since now 
Hx, 0) = 0, the solutions of (2.5) differ from those 
previously investigated. In this case ~ = CW~T /x-l, the 
high-frequency damping decrement is given by (2.4), and 
when account is taken of the explicit form of ~, Eq. (2.5) 
is reduced, by means of the substitution u(x, T) = 7](x, 
T) + lnIT, to the homogeneous equation 

-a'u a' l'-r-+x-eu=O. 
aT' ax' 

Introducing the self-similar variable z = X/T3/2 , we 
obtain for u(z) an ordinary differential equation 

u" (z + 'l,e U ) + 'I,u' + '1,(u')'eU = o. (2.7) 

An estimate of the quantities u and z shows that at the 
initial instant eU « z. Therefore, neglecting in (2.7) 
the terms ~ eU , we obtain the solution u = D, + 2D2T/X2/3 

(D, and D2 are constants), which leads to a time-invariant 
increment I" = D2WO/X2/3. Thus, during the initial stage 
of the quasilinear relaxation, which beginS under con­
ditions r» 1"» 1", the increment of the parametric 
buildup is practically constant and the noise increases 
exponentially until its value ~ e U becomes comparable 
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with z. At larger values of the noise, Eq. (2.1) leads to 
an increment I" = (wolf) [D3T3/2/X - 4/3r', which falls 
off in proportion to W o/T 5/2 and corresponds to satura­
tion of the noise. The characteristic value of the time 
t2 at which the increment begins to fall off rapidly, and 
the noise saturates, can be estimated in the form 
yt2 s;:, 7 (see Fig. Ib). 

Equations (1.26) become much simpler in a relatively 
weak pumping field, when the low-frequency damping 
decrement 1"1 is large and the nonlinear relaxation be­
gins under conditions 1"1» Y, 1": 

"i 1 a", "i(oo) 
-+--=--
Wo 2 aT: wo' (2.8) 

and the change of 1/1 is described by the relation 

~+X'~{'[1 __ W_o_~]e'G(~) }=O 
<iT' aX' 2"i(00) dT ' 

"i'( 00) 
~=2-r--. 

y,'w" 
(2.9) 

At sufficiently short times T < [y~wo/2:;?(oo)], Eq. (2.9) 
takes the form 

.EJ:.+x'~{e' [1 __ W_' ~]}=O. 
aT' ax' 2"i ( 00 ) dT 

(2.10) 

Its solution can be sought in self-similar form (Co is 
constant) 

-+ --- e"+--e" =0 d',] (d' d) { c, dTJ } 
dz' dz' dz ;) dz ' (2.11) 

( 2 ) 'I, CO WLe vE ' 
z==lnx- - -----T· 

- 2. ' :n; ,') WLi UTe 

When the time increases, T > [y~WO/2y3(00»), we obtain 
from (2.9), in place of (2.10), 

iT"a'1jl + l/ __ w_o -x'~{e'[ 1- _w_, _ a", ]~} = o. (2.12) 
aT' V 2!t"i(00) ox' 2»(00) a.. »(00) 

Equations (2.10) and (2.12), which describe the re­
laxation of I" and y in the case of 1"1» Y, 1", are rep­
resented by the curves of Fig. 2. The characteristic 
relaxation time t3 can be estimated with the aid of 
relation a2l/!/aT2 ~ e1/l: 

y(x, 0) t,"'" 'MJ1[2Ax',¥'(00) Iw,']. 

The essential features of the here-described qual­
itative picture of the quasilinear relaxation of a para­
metrically unstable plasma is the growth of the dissipa­
tion (of the high-frequency damping decrement y) and 
the decrease of the buildup increment y. The decrease 
of the increment to zero points to the stabilizing role 
of the quasilinear interaction. The excess of the level 
of the turbulent noise over the spontaneous noise is de­
termined in order of magnitude by exp(2yt) at the 
previously obtained instants of time t ' ,2 ,3. A more de­
tailed description of the evolution of the noise is ob­
tained with the aid of the function 1/I(x, T), using the 
formula 

W.(k, t) = A"T,x'e"X' "Ii( [ cos 8.[ - w,/ wL.). 

Since the high-frequency damping decrement y assumes 
asymptotically a stationary value ):(00) (see (2.4», we 
can determine the stationary distribution function of 
the fast electrons in accordance with (1.21): 

'1'2 WLe VE' 1 
fF.(v"oo)=-/ --'-I -I +const. (2.13) 

:n; 2 {U[.i UTe Uz 

The resultant integration constant can be obtained by 
matching the distribution (2.13) to the Maxwellian dis­
tribution at the left end point v, of the quasilinear­
diffusion velocity interval: 
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(2.14) 

We obtain here the density oNe of the fast electrons 
produced in a magnetoactive plasma during the course 
of quasilinear relaxation of the parametric instability: 

. _ '1'2 CJlL. VE' N I _1 (n WLi V1VT<) 
6Ne --'-j ---2 1/ n ---,-. 

n 2 UlLi VTe 2 "he v~ 
(2.15) 

We note that the relative number oNe/Ne of the fast 
electrons is approximately proportional to the square 
of the electric field of the pumping wave and to the square 
root of the ion mass-to-charge ratio. In a hydrogen-like 
plasma with wLe/wLi ~ 43 acted upon by relatively weak 
radiation with vE/vTe ~ 5 x 10-4 , the relative number of 
fast electrons oNe;Ne reaches a value on the order of 
several tenths of one per cent (at VI » VTe)' 

CONCLUSION 

The foregoing analysis of the quasilinear equations 
describe qualitatively the relaxation of a parametrically 
unstable plasma, points out the stabilizing role of the 
quasilinear interaction, and makes it possible to de­
termine the level of the turbulent noise, the high-fre­
quency conductivity of the plasma, the distribution func­
tion of the fast electrons, and their number. 

Let us indicate the conditions under which our results 
are valid. The time necessary to establish the stationary 
state should be much shorter than the electron free-
path time for Coulomb collisions. As shown above, the 
quasilinear relaxation time is of the order of 5-10 
reciprocal initial increments, so that the condition that 
the relaxation process be rapid imposes a lower bound 
on the pumping field. In the plasma-oscillation damping 
decrement y given above we have neglected a term due 
to collisions. The results are therefore valid if the 
collision damping is small in comparison with the Landau 
damping. At large wavelengths, when the opposite re­
lation holds true, the quasilinear interaction between the 
high-frequency field and the plasma must be described 
in greater detail. 

The upper bound on the pumping fields stems from 
the fact that we have investigated in the present paper 
the development of parametric instability only under the 
decay conditions (1.23). It follows from the foregOing 
exposition that owing to the growth of the dissipation, 
the high-frequency damping decrement assumes the form 
(2.4) by the time stabilization sets in. We therefore 
obtain from the condition :y(oo) ~ W the following estimate 
for the maximum pumping-field intensity: 

(VE' / vre') m= ~ y2;. (w L'/ 6) ee) 2krDe, 

which yields for a hydrogen plasma (IvE l/vTe )max 
~ 2 x 10-2 • According to this value, the pumping field 

r,f------------- I, 
b 

l(tJIO) ---------------:;.-;;-__ l l (IIJ) ------------~~--
/ 

I 
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can exceed the threshold value by a factor of 10 or more. 
At such a maximal pumping field, the extremal number 
of fast electrons (2.15) produced during the course of 
the quasilinear relaxation of a parametrically unstable 
plasma is given by 

6N. =~ WLi ~ln-l ( '1'1;; WL'''!:'':''). 

N, n 6)L. Iv,1 2'1'2 6)Li VTe 

We see from this relation, in particular, that the relative 
number of fast electrons is independent of the plasma 
density, is proportional to the square root of the ion 
charge, and decreases with increasing fast-electron 
energy. 

The rapid growth of the noise during the course of 
quasilinear interaction leads to turbulization of the 
plasma. The use of an expression for the electric field 
intensity EZ of the oscillation at the lower-hybrid-reso­
nance frequency with spectral energy density 

1 VE' ( Wo )' W,(k,t)=~- ~ W,(k,t) 
16 VTI' 'Y 

and the use of relation (1.3) for the plasma in the 
stationary states, leads to the following expression: 

which determines the high-frequency turbulent con­
ductivity of the plasma in the considered region of ex­
ternal pumping-field intensities. Since the amplitude of 
the plasma oscillations reaches a value on the order of 
the pumping-field amplitude, the turbulent conductivity 
OT ~ y(oc), which determines the anomalous absorption 
of the high-frequency external field by the plasma, turns 
out to be proportional to the square of the pumping-field 
amplitude (see (2.4)) and to the ratio of the ion and elec­
tron masses, and inversely proportional to the electron 
temperature. It must also be noted that the obtained 
contribution to the conductivity aT ~ y(oo) is large in 
comparison with the conductivity due to the Coulomb 
collisions only if the high-frequency damping decre­
ment is determined by the Cerenkov effect, i.e., under 
conditions when the description proposed here is valid. 
At a hydrogen plasma density Ne = 1011 cm -3 and an 
electron temperature KTe ~ 6 eV, the turbulent con­
ductivity exceeds the Coulomb conductivity by two orders 
of magnitude (y(oo) ~ 2 X 107 sec -t, lIei f';j 2 x 105 sec -1). 

Since we have investigated in the present paper only 
decay instability, the maximum conductivity is obtained 
in the maximum pumping field determined above, and 
is of the or der of the sound frequency, aT ~ WI. 

In the present paper we have investigated one­
dimensional quasilinear relaxation. The one-dimensional 
character is due to the strong external magnetic field 
(G~ » wLe ), which is parallel to the electric field of the 
pumping wave, Eo x B = 0 (cf. the quasilinear relaxation 
of a beam in a plasma (241). The external magnetic field 
does not enter in the final expressions derived above. 
Therefore the results have, in our opinion, a wider range 
of applicability and describe also the simultaneous inter­
action of an isotropic plasma with a high-frequency 
pumping field at a frequency Wo close to the plasma 
frequency. 

*[vBl =v X B. 

OWe use the temperature Te and the thermal velocity vTe = (KTe/m)Yz 
of the electrons along the magnetic field, assuming that the "gross" 
characteristics of the distribution function ~(vz' t) are left practically 
unchanged by quasilinear diffusion, so that to calculate vTe' the Debye 
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radius rDe' etc. we can assume.'Te is Maxwellian. This approximation is 
justified by the small contribution made to vTe and rDe by the velocity 
intervals in which, owing to the quasilinear effect, there sets in the 
abrupt change of ~, which is investigated later on. 

2) An analysis of a more general case with allowance for the diffusion of 
the slow (vz "" w/kz) electrons show that this approximation is valid if 
'Y < max {'y, 'YI,2}. . 
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