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The effect of collisions on the shape of nonlinear power resonances in gas lasers is in­
vestigated. The resonance shape is found to be very sensitive to fine details of the colli­
sion mechanism, which are usually unobservable in the linear absorption and emission 
spectra. The angular dependence of the scattering amplitude, the relation between 
elastic and inelastic scattering channels, etc. are found to be important. It is shown that 
under certain conditions the resonance width and shift become nonlinear functions of the 
perturbing atom density. 

1. INTRODUCTION 

In many problems of quantum electronics (stabiliza­
tion of the frequency of gas lasers, high-resolution 
laser spectroscopy, etc .), the structure of narrow power 
resonances, of the so-called "Lamb-dip" type l11 , which 
occur when the frequency of gas lasers is scanned, is 
of great interest. The shape and position of these reso­
nances are sensitive to the fine details of the interac­
tion mechanism of the atoms and molecules with the 
surrounding particles [2-5J. Many of the effects that are 
produced in this case are not observed in practice in 
ordinary linear absorption and emission spectra, for in 
this case the role of the collisions is masked by the 
broad Doppler contour of the line. In nonlinear reso­
nances, the Doppler broadening is practically eliminated, 
so that special requirements must be satisfied to de­
scribe the collisions. The phenomenological approach 
extensively used in many problems of quantum electron­
ics and nonlinear optics, based on introducing relaxa­
tion terms or model collision integrals into the equa­
tion for the density matrix of the atom, is too crude in 
the present case. 

In this paper we describe nonlinear power resonances 
of gas lasers by using an equation derived in[6] for the 
denSity matrix. This equation yields for the atomic 
collisions the most complete description compatible 
with the gas -kinetic approach, i.e., compatible with the 
assumption that the perturbations produced by the par­
ticles that surround the atom reduce to time-separated 
collisions 1). In the equation we consider in a unified 
quantum fashion both the motion of the atomic electron 
and the motion of the atom as a unit; the collision inte­
gral is expressed in terms of exact scattering ampli­
tudes with allowance for both elastic and inelastic 
channels. This approach enables us to investigate the 
change in the form of the nonlinear resonances in the 
entire pressure range of interest for applications. 

It turns out that even within the framework of the 
impact approximation, i.e., at relatively low pressure, 
the width and shift of the resonances become, under 
definite conditions, nonlinear functions of the pressure, 
a fact that can be of primary importance for the stabili­
zation of gas-laser frequencies. Nonlinear dependences 
of the width and shift of the resonance on the pressure 
were observed recently in experiments and qualita­
tively explained by Bagaev, Baklanov, and ChebotaevL3,4]. 
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2. INTERACTION Of THE ATOM WITH A FIELD 
OF A MONOCHROMATIC STANDING WAVE 

We consider an atomic or molecular gas situated in 
a field of a standing wave 

E(R, t) =E.cos (,wt-pR), p=w/c. 

We describe the atom by means of the following equa­
tion for the density matrix P (see (61 ): 

~ I I (~)~ -=-[H.,p]+-E.[dcos(wt-pR"),p]+ -d -
dt n n t 

(1) 

Here Ho is the Hamiltonian of the free atom, which in­
cludes the kinetic energy of the motion of the atom as a 
whole, d is the dipole moment of the atom, Ra is the 
coordinate of the mass center of the atom, and 
(dp/dt)cOl is a term describing the collision of the 
atom with the surrounding particles. Concrete expres­
sions for (dp/dt)col will be presented below. 

We shall calculate later on the average absorption 
power (or emission power) P{ w) of the atom lerg/ sec 1 
at the field frequency. This quantity is determined by 
the expression 

1 , '. ()] P(w)=-E.Sp[de'PR'p(w)+d'e-'PR. p ' w . 
2 

Calculating the trace in the mk representation, where 
m are the quantum numbers of the stationary states of 
the atom and k is the wave vector of the motion of the 
atom as a whole, and recognizing that 

(de'pR')mk, uk' co dm"b(-k + p + k'), 

we obtain 
pew) = 2nw. Sdk u(k), 

u(k) = Re A'[Pm.(W, k, k + p) + p",u(w, Ie, k - p)], 

where ,\ = (i/2fi)Eo'dmn ; Pmn(w, k, k') is the Fourier 
component, and Pmn nk'{t): Pmn{t, k, k'). , 

We shall consider throughout the spectral character­
istics of the medium at frequencies w close to the fre­
quency Wo of the m - n atomic transition. For prob­
lems of this type we confine ourselves to the two-level 
approximation and discard from the right-hand side of 
(I) the terms that lead to oscillations of solutions with 
double the frequency, As a result we obtain from (1) 

, [n'] ( d P ) col 
Pmn(k,k')-I w.+--(k'-k") Pmn(k,k')- -

2m" dt mk.nk' (2) 
= Ae'·'[ Pnn(k + p, k') + Pnn (k - p, k') - P "'m(k, k', - p) - pmm (k, k'+ p)], 
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. ft ( dp )COI 
pma (k, k') - i - (k' - k") pmm (k, k') - -

2m. dt mO,mO' 
= l.e'W' [pnm (k + p, k') + pam (k - p, k') 1 
+ I.'e-'W'[pmn(k, k' + p) + pma(k, k' - p)], 

. ft (dP)COI 
Paa(k,k')- i-(k' - k")Pna(k,k')- -

2m. dt "O,aO' 

= - I.e i .'[ Pam(k, k' - p) + Pnm (k, k' + p)]­
- I.·e-'·' [ Pmn(k - p, k')+ Pma(k + p, k')], 

with Pnm(k, k') = p:Un(k', k). 

(3) 

(4) 

The system (2)-(4) enables us to find the character­
istics of the medium that are both linear and nonlinear 
in the field, with allowance for the motion of the atoms 
and for colliSiOns. It is seen from this system that 
Pmn(k, k', t) = Pmn(w, k, k')eiwt, and Pii(t, k, k') 
= Pii(k, k') does not depend on the time. The function 
P( w) is expressed in terms of the matrix elements 
Pmn(w, k, k ± p), the determination of which calls for 
solution of Eq. (2)-(4). When Pmn(w, k, k')eiwt is sub­
stituted in the initial system (2)-(4), we obtain a chain 
of equations for the quantities 

!lmn(ro, k+lp, k+l'p), 1'-1=2;+1, 
Pmm (k + lp, k + I'p), Pan(k + lp, k + l'p) , l' -I = 2;; 

; = 0, ±1, ±2 .... 

This system is similar in its structure to the equations 
obtained by Feldman and Feld[9] in which, however, the 
motion of the center of mass of the atom was treated 
classically, and the collisions were described by intro­
ducing phenomenological relaxation constants. 

We shall use in what follows the following simplifica­
tions: a) We confine ourselves, as is customary, to 
third order of perturbation theory in the field, i.e., we 
seek solutions with accuracy to terms of order AS in­
clusive. b) Bearing in mind the most typical experi­
mental conditions, when the homogeneous line width is 
much smaller than the Doppler width, we disregard the 
so-called "spatial burning out of the atoms" when we 
conSider third-order perturbation theory in the field, 
i.e., we neglect the matrix elements Pii at l'" l'. 
c) Since p « k, we assume that in the absence of a 
field the distribution of the atoms with respect to the 
wave vectors W(k) remains practically unchanged when 
the argument is shifted by an amount p, namely, 
W(k + p) "" W(k). We can therefore make the substitu­
tion 

Pmn(k±p, k±2p) "'" Pmn(k, k±p). 

We shall henceforth omit the index w of the matrix 
elements Pmn (w, k, k'). We introduce also the notation 

p,,(k, k) = ziW(k) + p,(k), Z =Zm - z., 

where zi is the population of the state i. 

Using the approximations b) and c), we can obtain 
from (2)-(4) the following system of equations: 

i (ro - roo ± ~kxP) pmn(k, k ± p)_ (.'!!!...) col 
ma dt mk,nk±p 

A 
=2'[zW(k)+Pn(k)- Pm(k)], (5) 

[ d ] col (6) 
TtPn(k) = Re 1.·[Pmn(k, k + p)+ Pma(k, k - p)], 

[ d ] col 
- "dtPm(k) = Re 1.'[ Pmn(k, k+p)+ Pmn(k,k-p)], 

[ ....::. Pi (k) ] CO~ (~) col ; 
dt dt iO,iO 

(7) 

The x axis is chosen along the vector p. 
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3. INFLUENCE OF COLLISIONS 

We use first a Simplified phenomenolOgical descrip­
tion of the COlliSions, putting 

( dP)COI (r) - =- -+il'. pma(k,k±p); 
dt mk,n.k±p 2 

(8) 

[ d ] col [d ] col at pm (k) = ~mpm (k), at Pn (k) = ~apa (k), (9 ) 

where r and A are the width and shift of the spectral 
line in the impact theory of the broadening of spectral 
lines; 13m and (:In are the relaxation constants, i.e., the 
reciprocal lifetimes of the states m and n. In (9) we 
make use of the fact that the equilibrium value Pii 
= ZiW(k) causes the collision term to vanish. 

Sol ving the system (5)- (7) in third order perturba­
tion theory in the field, i.e., in the parameter A, we 
can easily obtain the following expression for the 
quantity P( w): 

p (ro) = 2nftrooz 1 A I '1 (ro)[ 1 - P.I 'C (ro)]. (10) 

The first term of this expression, which is proportional 
to 1 A 12, gives the well-known contour of the linear ab­
sorption. The function I(w) is the convolution of a 
Lorenz contour with width r and shift A of the maxi­
mum, on the one hand, with a Doppler contour, on the 
other. In the case when r and A are small in compari­
son with the Doppler width AWD, the function C(w) 
describes a narrow resonance of width r and shift A 
against the background I( w): 

C(ro)= (....!:..+_1 )....!:..[ 1 + r'/4 ] (11) 
j:ln pm r (ro-roo+I'.)'+l"/4· 

Resonances of this type were obtained in a number of 
papers (see, for example/I]). 

We proceed now to a more complete description of 
the collisions, using for the collision term (dp/dt)col 
the expression obtained in[6]: 

( dp ) col ( r ) . d =- -+il'.+vma Pm,,(k,k±p) 
t ",k,1Iir.±P 2 

+ J Ama(k, k') Pm,,(k', k' ± p)dk', (12) 

[ 
d ] col 

"dtPi(k) = -(Pi+ v.)pi(k)+ J A.,(k,k')Pi(k')dk'. (13) 

Here 
r ft - + il'. = N -(q (0' + io"» 
2 fl 

= N..!:. J dqqWp ( flpk - q )[0' (q) + io"(q)], 
It It. 

(14) 

where a' and a" are the cross sections of the width and 
shift of the impact broadening theory; N is the concen­
tration of the perturbing particles: 

mamp 
It=---, m,,+m p 

m. 
It.=---, 

ma+mp 

mp 
J-tp=---; 

ma+mp 

ma and mp are the masses of the atom and of the per­
turbing particle. The angle brackets in (14) denote the 
operation of averaging over the velocities of the per­
turbing particles, and Wp is the distribution function 
of the perturbing particles with respect to the wave 
vectors. Further, 

ft ft ft 
~,=N-(qo">, vi=N-(qo?>, vma=N-(qamn >, 

fl fl fl 

where ain and a[l are the inelastic and elastic scatter­
ing cross sections for the state i. The cross section 
amn plays the role of inelastic scattering for the off­
diagonal matrix element; it differs from the usual 
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elastic-scattering cross section a~ in that the square 
of the modulus of the scattering amplitude 1 fm 12 is re­
placed by fmf~, while the angle brackets denote again 
averaging analogous to (14). The integrand Aij (k, k') is 
connected with the amplitudes fi and fj for the scatter­
ing of the atom in the states i and j in the following 
manner: 

A,;(k,k')=N!:.-S dq~p(k-I-"k' -q) 6(lk' -k+ql-q) 
I-' 1-'0 (15) 

x~f:(k' - k + q, q)[;(k' - k +q, q). 
q 

It will be convenient in what follows to write down ex­
pressions for a', a", amn, and atn in the form of sums 
over the partial waves l: 1 

(J'(q)+i(J"(q)=~ E(2Z+1)[i-Sn'Sn.'"1. (16) 
q' I 

(Jmn(q)=~ E(2Z+ 1)[Snl-1][Sml-1]', (17) 
q' I 

(J:=~ E(2Z+1)[1-ISil'1. (18) 
q I 

where S l is the scattering matrix; Sfi == Sf. 

The final form of the system (12)-(14), with the 
collisions taken into account, is 

[i (w - Wo ± ~o kxP) + ( ~ + iL'. +Vmn) ] Pmn (k, k ± p) 

- S Amn(k, k') Pmn(k', k' ± p)dk' = ~[zW(k) + Pn(k)- pm (k) 1. 
2 U9) 

(~n + Vn) Pn(k)- S Ann(k, k') Pn(k')dk' 

= - Re A'[Pmn(k, k + p) + Pmn(k, k - p) 1. (20) 

(~m + vm)pm(k) - S Amm(k, k') Pm(k')dk' 

= ReA'[p",n(k, k + p)+ pmn(k, k - p) J. (21) 

The solution of this system in the approximation 
linear in the field, Le., the contour of the usual linear 
absorption of the atom I( w) was investigated in detail 
in[6]. We are interested only in effects that are non­
linear in the field, Le., in a frequency region that is 
narrow in comparison with Ll.wD, where the function 
C(w) differs from zero (see (11». It is easy to verify 
that in this frequency region the linear-absorption con­
tour represents the usual Doppler distribution: 

J(w) = ~ W (~(w - wo) ). 
hp hp 

4. SMALL-ANGLE SCATTERING 

We assume first that the collisions are character­
ized by relatively small scattering angles. Then, as 
seen from (15), Aij (k, k') has a sharp maximum at 
k = k'. 

We represent the equilibrium velocity distribution 
function in the form W(k) = Wx(kx)W 1.(k1.), where 
Wx(kx ) is the distribution function of the projections of 
the wave vectors on the x direction, i.e., on the field 
direction, and W 1. (k1.) is the distribution function of the 
projections of the wave vectors on a plane perpendicular 
to the x axis. We seek the solution of (19)-(21) in the 
form 

(22) 

When (22) is substituted in (19)- (21), the function 
W 1. (k1.) can be taken outside the integral signs at the 
point of the maximum of the kernel Aij (k, k') at k = k' : 

J Aij(k, k')W.c(k.c')p (k:)dk:dk.c = W(k.c) J A,,(k.c, k" kx')p(k:)dkx', 

A" (k.c, kx, k/) = SA,;(k.c, k.c', k" k/)dk.c'. 
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As already mentioned earlier, we are interested in 
the structure of narrow nonlinear resonances, i.e., the 
frequency region 1 w - wol «Ll.wD. In this frequency 
region, the main contribution to the interaction with the 
field is made by atoms whose velocities are almost 
perpendicular to the resonator axis, kx « k1.. Under 
this condition, it can be shown that the function Aij (k1., 
kx, k~) actually depends only on the difference kx - k~ 
= ~: 

Taking this circumstance into account, a solution of 
(19)-(21) in third-order perturbation theory in the field 
can be obtained by the Fourier-transformation method. 
We present the final results for the function C(w) from 
(10), assuming for Simplicity that Aij(k1., 0 depends 
little on k1., so that this dependence can be neglected, 
namely, Aij(k1., 0"" Aij(o, We have 

C(w)=~~Re I[ _1_(1+ Gn(q» +_1_(1+ Gm(q»] 
2 lip _~ fln + Vn ~m + Vm 

Xexp{- 2(Q' - cp' (q» Iql}[exp{- 2i(Q" - cp" (q» IqlH 1], (23) 

Q' + iQ" = ~[!.. + Re Vmn + i(w - Wo + L'. + 1m Vmn}], (24) 
hp 2 

m, ~J sin qs 
cp(q)=cp'(q)+iCP"(q)=71 Amntn-s-ds, 

p -~ q 
(25) 

G,= A,,(q) , A,,(q)=JA,,(S)e'lqdS. (26) 
Il,+ v,-A,,(q) 

We note that in the considered case of small-angle 
scattering, when 1 k - k' 1 « k, we have 

(27) 

Let the scattering angles be limited to e « 1. Then at 
q « like we obtain from (25), (26), and (27) 

ma 'Vmnk Vi 
<p(O)=/iPVmn ""~' G,(O)=~. (28) 

At q » like we have 
It ma n Vmn ( ) 

cp(q) ""JqfhpA",n(k.c,O) ""1qI" L'.w D8' G,(q)=o. 29 

It is easy to see that the form of the function C( w) 
depends significantly on the behavior of the exponentially 
damped factor in (23), and also on the form of the func­
tions Gi. (q), Le., on the ratio of the constants r, 
He vmn and i3i. Vi. Bearing in mind the applications of 
greatest present interest, particularly experiments with 
an absorbing cell and molecular gases [3, 10], let us con­
sider the most typical case, /3i ~ vi. Owing to the pres­
ence of an exponentially damped factor in the integral 
(23), the main contribution to this integral is made by 
the values q:: qo, where 

1 hp 1 L'.WD 
qO=Q'_[p'''''~r''''rk' 

since (see (24)-(27» 

r E; Q' - cp'(q) E; r +2RU\'mn' 

The form of the function C( w) depends essentially on 
the ratio of the quantities qo and 11k e. 

Let us examine first the case of low densities of the 
perturbing particles N, when 

(30) 

To calculate C( w) it is convenient to break up the inte­
gral (23) into two terms, C(w) = C1(w) + C 2 (w), retain­
ing in the first term that part of the pre-exponential 
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factor which does not depend on q, and retaining the 
function Gi,(q) in the second term. It follows from (30) 
that the function cp( q) in the integral C 1 ( W) can be set 
equal to (29), after which the integral is easily calcu­
lated, In the integral CAw), owing to the decrease of 
the functions Gi (q), the main contribution is always 
made by the values q ~ l/ke. It is easily seen that 
under the condition (30), the argument of the decreasing 
exponential remains much smaller than unity in this 
range of q.2) We therefore obtain for C( w) 

C(w) = C, (w) + C,(Ul), (31) 

C,(w)= (_1_+_1_}~{1 + [1 
~n+Vn flm+Vm v 4 

+(w-wo+ll)ylm 11:V mn ][(w-wo+Il)2+~]~'}. 
t1wD9 4 

(32) 

C,(w)= j( Gn(q) + Gm(q) ){1+cos[~(w-wo+ll)q]}dq.(33) 
o ~n+Vn Bm+vm lip 

V/2 + ill = f 12 + Revmn + i(t1 + Imvm ,,). (34) 

As seen from (32)-(34), the spectrum consists of a 
narrow resonance determined by the function C l( w) 
with width Y = r + 2 Re limn and shift (j = A + 1m limn, 
and a relatively broad background determined by the 
function C 2 (w), with a width on the order of lipke/rna 
"" AWDe, It is easy to see that the background C2(W) 
is due to the integral terms in the equations (20) and 
(21) for the diagonal elements of the density matrix. It 
should be pointed out in this connection in the general 
case ain ~ ael it is necessary to add to (20) and (21), 
besides these terms, also analogous arrival terms jk' 
- mk and jk' - nk for arri vals from all other levels j. 

We consider now another limiting case, of large 
densities of the perturbed particles (large r), when 

qo« 1 I k8. f > dw D 8. (35) 

When (35) is satiSfied, the function cp(q) and Gi(q) 
take the form (28), Integrating, we again obtain formula 
(11) for C( w). Thus, this case leads to the same result 
as the simple relaxation scheme. 

5. ALMOST ISOTROPIC SCATTERING 

We consider now the case of almost isotropic scat­
tering of an atom by perturbing particles, when as a 
result of collision the projection of the atom velocity 
on the x axis change by an amount of the order of the 
velOCity itself, Akx ~ kl. 3). We substitute p(k) in (19)­
(21) in the form p(kx)W(kl). The integral term in (19)­
(21) then takes the form 

J A;j(k. k') piJ(k')dk' = J A;j(kl.. k" kL '. k:) W(kL ') (5;;(k:)dkl.'dk:. (36) 

At Akx ~ kl' the function Aij(kl, kx, k~, k~) is a 
smooth function of the arguments kx and ki' , whereas 
p(kx) has a resonance at kx "" I W - wolma tip« kl, 
with width Akx ~ rma/tip. We can therefore represent 
(36) in the form 

J A;;(k.k')p;;(k')dk' =: J A,;(kl..O.kl.'.O)W(kl.')dkl.' 

x J (J,;(k:)dk/'" ~j J (5;;(k:)dk:. (37) 

(38) 

In the case of scattering by immobile perturbing 
partic les we have j.L ij = lIij. In the general case we 
have J.l.ij "" lIij and lIij - j.Lij "" (rna / mp ) lIij. Taking 
(37) into account, the solution of the system (19)-(21) 
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leads to the following expressions for the terms of 
C(w): 

C,("')=(~+~) ~{1+ [V' B. Pm V 4 

+(w-woH)Vlm 11::::][ (w-wo+b)'+~ r}, 
C2=~( !l.n + !lmm ) 

(39) 

(40) 
dWD ~.(~n - !In.) ~m(~m - !lm_) 

V/2=f/2+Rev m ". I\=d+lmv",.. (41) 

As seen from (39)-(40), the spectrum is determined in 
this case only by the function C1(w), which is completely 
analogous to the function (32). The function Cz does not 
depend in general on the frequency and determines the 
constant-background level. We note that expressions 
(39 )-(40) for C( w) remains valid also in a wide range 
of pressures, so long as Y « AWD. 

6. DISCUSSION OF RESULTS 

The calculations given in Secs. 4 and 5 for the shape 
of the resonance C( w) have led to results that differ 
Significantly from those following form the relaxation 
scheme. 

The shape of the resonance C( w) is now determined 
by four parameters, r, A, Re limn, and 1m limn, as 
against the two parameters r and A; in addition, the 
shape depends strongly on the concrete form of the 
scattering amplitudes fn ( e) and fm ( e). If the scatter­
ing in the collisions is mainly through small angles 
e « 1, the ratio of the parameters rand AWDe plays 
an important role. At low pressures, when r« AWD e , 
the function C( w) takes the form of a narrow resonance 
C1(w) (32) against the background of a broader distribu­
tion C2(W) (33), with a width AWDe. The width yand 
the shift () of the narrow resonance C 1 ( w) are equal 
respectively to r/2 + Re limn and A + 1m limn. In the 
frequency region where C1(w) differs from zero, the 
contribution of the distribution C 2 ( w) is small: C 2/ C 1 

"" r/ AWDe« 1. We note that C 1( w) contains an anti­
symmetrical increment proportional to the parameter 
(1m IImn)/AwDe. When the pressure is increased, a 
complete restructuring of the contour C( w) takes 
place. At r» AWDe, the background vanishes and the 
qarrow resonance assumes the usual form of a Lorentz 
contour with width r and shift A. In the intermediate 
region r ~ AWDe, the resonance is described essen­
tially by an asymmetrical function of the frequency, and 
its width and shift have a nonlinear dependence on the 
density. 

In the case of almost isotropic scattering, the width 
and shift of the narrow resonance are linear functions 
of N in the entire range of pressures r « ~WD, and 
the intensity of the background is practically independ­
ent of the frequency. 

The main qualitative features of the nonlinear de­
pendence of yand {j on the pressure, which were dis­
cussed above, have a simple plysical meaning, as can 
be seen from the following simple considerations. At 
sufficiently low pressures, the atom!!. interactinft with 
the field lie in the interval I Akx I ~ kr/ AWD « k, 
where it is the average absolute value of the wave vec­
tor. If the change of kx as a result of the scattering, 
()kx ~ it e, is much larger than this interval, r « AWD e , 
then the function A(k, k') can be taken from outside the 
integral sign in the right-hand side of (19)- (21), after 
which it is easy to obtain 
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'I'/2=r/2+Revm", 1I=~+Imvmn' (42) 

When the pressure is increased and krl AWD becomes 
larger than k 8 (r» AWD 8), the elastic collisions do 
not take the atoms out of the region of interaction with 
the field at all. We can now take outside the integral 
sign the relatively smooth function p at the point k = k', 
after which this integral at 8 « 1 becomes equal to 
p( kx) vmn, and the width and shift of the resonance are 
respectively equal to Y = rand 6 = A. Since the non­
linear resonances considered by us are of interest when 
r « AWD, there exists in the case 8 « 1 two pressure 
regions, r« AWD8 and r» AWD, for which formulas 
(32), (33) and (11) are respectively valid. If the condi­
tion fI « 1 is not satisfied, then we can expect the 
values of Y and 6 to be close to those in (41) for the 
entire pressure range r« AWD. 

If the gas contains perturbing particles of two differ­
ent types, then we get A = Al + A2 in (19)-(21). At suf­
ficiently low pressures r« AWD8l, AWDfl 2 we then 
have 

(I) (2) '(I) (2» 
'1'12 = r/2 + Re(Vmn + Vmn ), II = ~ + Im(v mn + Vm •. 

If 81« 1 and 8 2« 1, then increasing the pressure 
again makes the formulas 

"(=r, I\=~ 

valid. On the other hand, if &1« 1 but 82 ~ 1, then we 
obtain for r» AWD8l 

'1'12 = f12 + Re v~!), 1\ = ~ + 1m v~2L 

Among the above-listed qualitative features of the 
function C( w), greatest interest in physical applications, 
particularly for gas-laser frequency stabilization, is 
attached to the nonlinear pressure dependence of the 
width and especially the position of the maxima of the 
resonances, a dependence that occurs in the case of 
small-angle scattering. We therefore consider in 
greater detail the forms of the functions Y(N) and 6(N) 
for this case. For experiments on gas-laser frequency 
stabilization, of greatest interest are atomic and 
molecular transitions for which the scattering ampli­
tudes fn and fm are practically equal. It is precisely 
such transitions, in view of the small value of the shift 
A which are least sensitive to density fluctuations. 
P~tting Sl ~ Slm in (16) and (17), we obtain for this case 

I 1/ n 
a »a and 

a' =...::. ~ (21 + 1)[1-IS.'12] "" ai~ 
q2 L...J 

I 

Recrm.=~ ~ (21+1)11-S.'I'''''cre! 
q2 L...J 

I 

Thus, the dependence of the width of the resonance 
on the pressure takes the form shown in Fig. 1, and the 
ratio of the slopes on sections I and II is equal to') 

(43) 

To explain the dependence of the resonance shift on 
the pressure, it is necessary to specify some concrete 
form of the interaction. Bearing in mind neutral gases 
and small-angle scattering, we assume a potential that 
decreases in power-law fashion, U(R) ex R-k. Chang­
ing over in the formulas for a' and amn from summa­
tion over the partial waves l to integration over the 
impact parameters, we can estimate the corresponding 
integrals (see for example, [11]). As a result we obtain 

, , /I 

for the limiting case a »a 

~ 1 (k - 3 ) ( aY ) (k-3)/2 (44) 
~+ImVmn ""Zf 2(k-1) ~ , 

where T(x) is the gamma function; r = 3 at k = 6. 
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FIG. I. Dependence of the resonance width 'Y on the perturbing­
particle density N. 

FIG. 2. Dependence of the shift li of the resonance maximum on the 
density of the perturbing particles N: curve a_ain/ael < I curve b_ain/ 
ael> I. 

Depending on the ratio of the cross sections In and 
ael the slope of the Ii(N) curve can either increase , . el 
with increasing pressure (ami a < 1), or decrease 
(ain/ael > 1}-see Fig. 2. If the inelastic-scatteriI!-g 
cross section a in is so small that the inequality am 
« I ael - aell holds in spite of the condition fn "" fm, 
then ~e ca~obtain from (44), putting am < an' 

~ k - 1 [ ( amY) (.-0/2 ] -('-")/('-1) 

----""-- 1- - . 
~ + 1m Vmn 2 an' 

Since the greatest interest attaches at present to 
stabilization of the ,\ = 3.39 J.I. helium-neon laser fre-

. 11[3 10J 1 t quency with an absorbmg methane ce ' ,e us 
compare the foregoing results with the available ex-

. [12J th t perimental data on methane. It was shown m , a 
for the working transition in methane the ratio of the 
width of the spectral line r to the shift A is anomal­
ously large: r/A!<, 100. This situation, as noted above, 
can obtain in the case fn ~ fm (see formulas (16)-(18)). 
Furthermore, from[3] where a nonlinear Y(N) depend­
ence \\;'as observed, it follows that in accordance with 
(43) amlael ~ Ji3 for the considered methane levels. 
This allows us to expect the resonance shift 15 to be­
have with increasing N in the manner shown in Fig. 
2a. Assuming k = 6 in (44) (van der Waals interaction), 
we find that the slope of the I5(N) curve should increase 
approximately sevenfold. There are no experimental 
data on the resonance shift 15 in pure methane. A very 
recent paper['], however, reports measurement of the 
dependence of 15 on N in the case when methane is per­
turbed by xenon and helium. In both cases, the slope of 
6(N) increases with pressure, just as in Fig. 2a. The 
larger change of the slope in the cas~ of xenon can be 
attributed to the fact that the ratio ami ael is more 
readily smaller for xenon (heavier particle) than for 
helium. 

J)Equations of this type were considered also in [2,7,8]. 
2)From assumed relation tJi ~ "i it follows that Re "mn ~ r (see (16)­

(18)). 
3)We recall that in the case 'Y//c,wD ~ 1 considered by us the only atoms 

contribution to the resonance are those with kx ~ k1. Therefore k = 

vk~ + k~ '" k1. 

4) A similar nonlinear dependence of'Y on N was experimentally observed 
and qualitatively explained in [3]. 
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