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A general method is proposed for constructing the short wave asymptotic solutions of the 
integral equations of the theory of open resonators. It is shown that taking aberrations 
into account strongly perturbs the resonator modes in the case of frequency degeneracy. 
The first aberration correction for the zero mode of a stable resonator is evaluated. A 
formula is derived which relates diffraction losses to the amplitude of the proper oscil­
lations at the edge of the mirror. The behavior of diffraction losses for resonators close 
to a confocal one is discussed. 

INTRODUCTION 

In order to obtain the short wave asymptotic behav­
ior of the proper oscillations and the resonance fre­
quencies of open resonators and of other quasioptical 
systems use is made basically of integral equations[l-4) 
and of the method of the paraboliC equation[5-7). 

Integral equations can be written down for a broader 
class of open resonators both stable and unstable, and 
they take into account (with an accuracy up to the 
Kirchhoff approximation) the finiteness of the resonator 
mirrors. However, an explicit solution of these equa­
tions has been obtained only for the simplest kernels 
which correspond to the paraxial approximation in the 
geometrooptical description of the resonators [2-4,8). 

In this paper a method is proposed for constructing 
the short wave approximation to the solutions of inte­
gral equations of the theory of open resonators with 
kernels of a sufficiently general form which is based on 
applying the formula of the saddle point method. This 
method enables one in addition to the well-known results 
to discuss the effect of aberrations on the proper oscil­
lations. 

In Sec. 1 the problem is reduced to certain nonlinear 
functional equations which do not contain a large parame­
ter. These equations play the same role as do the 
eikonal and transport equations in the WKB method for 
differential equations. 

In Sec. 2 analytic methods are proposed for the solu­
tion of the functional equations thus obtained. It is 
shown that in the case of frequency degeneracy small 
changes in the shape of the mirror "destroy" proper 
oscillations. The first aberration correction to the 
zero mode of the resonator is obtained and the behavior 
of this correction is discussed as the resonator ap­
proaches a confocal one. 

The problem of diffraction losses is discussed in 
Sec. 3. It is well known that, for example, in the case 
of a confocal resonator there are many unclear points 
in this problem. Experiments demonstrate a decrease 
in the quality factor for resonators close to a confocal 
one [9, 10J, while a theoretical investigation of an "ideal" 
confocal resonator, i.e., of a resonator described in the 
paraxial approximation, predicts minimum 10sses[8,11]. 
An explanation of this contradiction is possible only by 
invoking aberration corrections. 

In a recent paper by Melekhin[12] a geometrical­
optics description of stable resonators was proposed 
taking into account the nonlinearity in the transforma­
tion of the rays on reflection from mirrors. The results 
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of the present paper are in good agreement with such a 
desc ription. 

Certain details of a mathematical nature, for example 
problems of convergence of the series being constructed, 
are discussed in another paper by the present author(13) 
and will be considered later. 

1. Derivation of the basic functional equations 

The integral equations for fields at the resonator 
mirrors have the following form[l,14]: 

U (M )=y S exp[ikRpq(Mp,Mq)] U (M)dS (1) 
p P Pop Rpq(Mp,lJtJq ) q q q. 

Here (and everywhere below) p and q are subscripts, 
not equal to each other, which take on the values 1 and 
2; Rpq(Mp, Mq) is the distance between the points Mp 
and Mq on the one and on the other mirror of the reso­
nator; k is the wave number; integration is taken over 
the surface of the mirrors. It is assumed that TE­
oscillations with Neumann conditions at the mirrors are 
realized in the resonator, and that the resonator 
parameters satisfy the conditions 

kl »1, ka' II »1, II a »1, p I a » 1, (2) 

where l is the length of the optic axis of the resonator, 
a is a quantity characterizing the transverse dimension 
of the mirrors, p is the minimum radius of curvature 
of the mirror surface. In subsequent discussion we 
choose the length of the optic axis as the scale unit 
(l = 1), so that k and a will be dimensionless quantities. 

In order to have the possibility of carrying out a 
sufficiently detailed investigation we go over from sys­
tem (1) to the simplified one-dimensional system of 
equations 

l/k'q 
Up(x)=yp V 2rt S exp[ikFpq(x,x')]Gpq(x,x')Uq(x')dx'. (3 ) 

-"q 

The system (3) can be obtained if we assume that it is 
possible in (1) to carry out a separation of variables in 
Cartesian coordinates on the mirrors. One is also led 
to equation (3) as a result of conSidering the problem of 
a resonator not in three-dimensional space, but on a 
plane. Although in the latter case the zero order 
Hankel function will be the kernel of the equations, by 
utilizing its asymptotic behavior and neglecting terms 
of order k- 1 we obtain equation (3). It is just this last 
model that will be used for specific calculations. 

We assume that the functions Fpq(x, x') and 
Gpq(x, x') can be represented in the form 

Fpq(x, x') = l/,gpx' + If,gqX" - xx' + Fpq(x, x'), (4) 
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Gp,(x, x') = 1 + Gp,(X, x'), (5) 

where we have separated the principal terms which de­
fine the paraxial approximation, and the terms 
Fpq(x, ~/) and Gpq(x, x') which are of higher order in 
x and x , and which take into account the aberration 
corrections and (phenomenologically) the properties of 
the mirror surfaces. The parameters gp are deter­
mined by the radii of curvature of the mirrors on the 
optic axis Rp 

(6) 

We seek the proper oscillations u~n)(x) in the form 
00 

uin ) (x) = e-'I(·).E h;;:; (x)k- m • 

til = 0 

The form of the solution (7) is suggested by the well 
known results for a stable resonator in the paraxial 
approximation with infinite limits of integration 

(7) 

(8) 

where Hn(t) are the Hermite polynomials[2,3]. Here 
one must introduce one clarification. The scale along 
the mirror and along the optic axis is chosen to be the 
same. In this case the domain of the oscillations of the 
first few natural oscillations of a stable resonator (the 
diameter of the light spot) will be of order k- v2 . Com­
paring (8) and (7) one can conclude that in order to ob­
tain within the domain of oscillations a uniform formula 
for the n-th mode one must obtain n terms of the ex­
pansion (7). In the present paper only the principal 
term of the expansion (7) will be investigated, so that 
the uniform formula will be obtained only for the zeroth 
natural oscillation. For the other proper oscillations 
the principal term of the asymptotic expansion deter­
mines the nature of the falling off of the field in the 
shadow zone beyond the caustics. In the case of un­
stable resonators the principal term of the asymptotic 
expansion gives a uniform approximation (up to a small 
neighborhood of the edges of the resonator mirrors) to 
the proper oscillation with smallest losses. 

If one substitutes the expansions of U<ll) (x) into the 
right hand sides of Eqs. (3), then the resRlting integrals 
under certain quite general assumptions concerning the 
functions Fpq(x, x'), Gpq(x, x'), fp(x), h~lh(x) (require­
ment of analyticity) can be evaluated by the saddle-point 
method, in which we assume that everywhere where it is 
required the contour of integration can be deformed 
from the real axis into the complex domain. 

Utilizing the well-known formula of the saddle-point 
method in the first approximation[15] 

f H(z)e'4I(,) = V Zkn H(zo)e'4I(")I<D" (zo) 1-'1. exp { i n - argz <D" (zo) }, 

where the saddle point Zo is obtained from the condition 
<I> I (zo) = 0, and requiring that Eqs. (3) be satisfied with 
respect to the leading term in k, we obtain the system 
of functional equations 

- Ip(x) = iFp, (x, epp(x)) - I,(epp(x», (9) 

h;;) (x) = y~n) h;:) (epp (x» Tp,(x, epp(x». (10) 

The functions If'p(x) determine the saddle points and 
are obtained from the equations 

t of p,(x, epp (x» (11) 
alpp(x) I: (lpp(x» = 0, 

while the functions Tpq(x, If'p(x)) are equal to 
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T., (x, epp (x)) = Gp, (x, lpp (x» I ikFpq(x, lpp (x» 

- fq(<pp(x» I-'I'exp {1/zi[n-arg(ikFp,(x, <pp(x» - !,(<pp(X»)]}512 ) 

In the derivation of Eqs. (9)- (11) the contribution 
from the end pOints of the integration was not taken into 
account. Having obtained the final results one can 
verify that both in the cases of stable and of unstable 
resonators it will be smaller than the contribution from 
the saddle point. Exceptions to this will be the plane and 
the concentric resonators. In general application of the 
proposed method to these cases leads to great difficul­
ties, and this is connected, in all probability, with the 
fact that the edges of the mirrors in the case of these 
resonators playa considerably greater role in the 
formation of proper oscillations than in the other cases. 

We differentiate Eqs. (9) with respect to x, utilize 
(11) and introduce a change of variable x -If'p(x). We 
obtain a system of nonlinear functional equations for the 
functions <pp( x) 

iJFpq(x,cpp(x» + aFqp(<pp(x),cp,(epp(x») =0 (13) 
iicpp (x) ocpp (x) . 

Equations (13) play the same role in the theory being 
developed here as do the Riccati equations in the one­
dimensional variant of the WKB method or the eikonal 
equations in the multidimensional variant. 

In the case of identical mirrors F I2(X, x') = F 21(X, x') 
and <Pl(X) = <P2(X), so that the system (13) reduces to 
the one functional equation [15] 

aF(x,cp(x» liF(cp(x),cp(cp(x») 
---'---;-..,.- + = 0 (14) 

acp(x) Dcp(x) . 

In the paraxial approximation this equation has the fol­
lowing form 

cp(cp(x» - Zgcp(x) + x = O. (15 ) 

We introduce, without reproducing the derivation, the 
analog of Eq. (14) for a real three-dimensional reso­
nator with identical mirrors. Here the position of the 
saddle point will now be characterized by two functions: 
If'(x, y) and lj!(x, y), where x and yare the Cartesian 
coordinates on the mirrors 

aF(x, y, s, t) + liF(s, t, n, v) 
lis as 0, 

liF(x,y,s,t) + liF(s,t,n,v) 
at at 0, (16) 

s=cp(x,y), t=",(x,y), n=cp(cp(x,y),,,,(x,y», 

v = "'(cp(x ,y), ",(x, y». 

After the functions <pp(x) have been obtained, Eqs. 
(11) are converted into differential equations, from 
which the functions fp(x) are obtained by integration 

!p(x)= -is" liFpq(x,cpp(x» dx 
iJx . 

(17) 
o 

Equations (10), on the other hand are converted into 
linear functional equations with respect to the function 
h~~)(x), which are analogs of the transport equations of 
tfie WKB method. 

2. Solution of the functional equations 

Since we have assumed that the transverse dimen­
sions of the mirrors are much smaller than the length 
of the optic axis, we need to obtain the solution of the 
functional equations (11) and (13) only for small values 
of x. Therefore, the apparatus of power series expan­
sions turns out to be convenient. 

We seek the functions If'p(x) in the form of the series 
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(18) 

where the coefficients CPl completely determine the 
solution in the paraxial approximation while the remain­
ing coefficients take into account the aberration correc­
tions of appropriate orders. Substituting the series (18) 
in Eqs. (13), carrying out all the required re-expan­
sions, and requiring that (13) be satisfied with respect 
to all powers of x we obtain a recurrent system of 
pairs of equations 

Cp,C" - 2gpC" + 1 = 0, 

Cpm (C,,) m + cp,C,m - 2gpC,m 

The solution of the first pair of equations is 

Cpt = gp ± "go' - gp / g,. 

If the condition for the stability of the resonator[2) is 
satisfied 

(19 ) 

(21) 

0< g,g, < 1, (22) 

the coefficients CPl are complex and of unit modulus. 
Choosing in (21) the sign corresponding to a negative 
imaginary part we obtain from (7) and (17) natural 
proper oscillations that fall off exponentially towards 
the edge of the resonator. In the case of an unstable 
resonator the coefficients Cp1 are real, the choice of 
sign in (21) is made as a result of the requirement that 
the saddle point should lie within the interval of integra­
tion. The cases gp = 0, ±1 require special investigation. 

In order that it should be possible to obtain the re­
maining coefficients Cpm it is sufficient that the de­
terminant of each pair of equations from (20) should 
differ from zero. In the case of unstable resonators 
this is fulfilled; in the case of stable resonators it is 
necessary that 

a = ~c' arccos "I' g,g, "'" n, / n" (23) 

where nl and n2 are integers. 

The parameter C\' and the condition (23) arise in the 
case of different approaches in the theory of open reso­
nators. If one considers the ray geometry in resonators 
in the paraxial approximation then in the case of rational 
tI! the rays form closed cycles, and 2n2 is the number of 
traversals after which the ray closes in on itself. Taking 
aberration corrections into account corresponds to a 
nonlinear perturbation of such a dynamic system, but 
the use of perturbation theory leads to vanishing de­
nominators [12, 16). Thus, the impossibility of construct­
ing proper oscillations in the form (7) in the case of 
rational C\' corresponds to a destruction of the initial 
dynamical system of rays. Since, from a physical point 
of view, one can not prescribe C\' absolutely exactly, the 
matter reduces to the situation that for C\' close to such 
numbers as 72, 73, 7's etc., the proper oscillations un­
dergo large deformations compared with the paraxial 
approximation. We shall consider these deformations 
below when C\' - 7" (a confocal resonator). In solving 
the problem of proper oscillations in a closed resonator 
by the method of the parabolic equation condition (23) 
also arises [7). 

We go over to the linear system of functional equa­
tions (10) in terms of the functions hp~)(x). Equations 
of this type have been discussed in the literature[17). 
We seek a solution in the form of the power series 
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(24) 

The coefficients d~% satisfy the recurrent system of 
pairs of equations 

(25) 

m;;'n+1. (26) . 

For a nontri vial solution of the homogeneous system 
(25) it is necessary that the determinant should vanish. 
From this we obtain the product of the eigenvalues 

(27) 

utilizing formulas (12) and (21) we arrive in the case of 
a stable resonator at the well-known result[2,3) 

(28) 

from which we obtain the spectrum of the proper oscil­
lations of a two-dimensional resonator (cf., for exam­
ple[3,5 J) 

k'l' = n/ + (n + 'h)arccos"l'g,g" (29) 

where 1 is an integer, 1 » 1. The diffraction losses in 
this approximation are equal to zero, since we have 
neglected the contribution from the end points of the 
integration. Comparing formula (29) with the condition 
(23) we can easily see that the rational values of C\' 

correspond to frequency degeneracy of proper oscilla­
tions. For an unstable resonator we obtain 

y,<nly,(nl = exp {- '/2 irr. + (2n + 1) Arch "I' g,g,}, (30) 

where the factor M = exp[{2n + 1) cosh-1v'glg2] charac­
terizes by how many fold does the cross section of the 
geometrooptical beam of rays increase in the passage 
from one mirror to the other and back[18). From this we 
obtain that part of the diffraction losses in the course 
of a single passage which is determined by geometrical 
optics and does not depend on the mirror aperture. 

The determinant of subsequent pairs of equations 
(26) does not vanish when condition (23) is satisfied and 
the coefficients d~% are expressed in terms of d~r;; in 
a recurrent fashion. The coefficients d~r;; are deter­
mined by the normalization of the proper oscillations 
U~n)(x). 

We now proceed to the explicit calculation of the 
first aberration correction. We consider a two-dimen­
sional resonator symmetric with respect to the optic 
axis which for the sake of simplicity is assumed to be 
formed by identical mirrors defined by equations 

1-g 
1-z=-2- xz + Bx'. (31) 

For parabolic mirros {3 = 0, while for mirrors of cir­
cular shape {3 = (1 - g)%, and for mirrors described 
by an ellipse, {3 = (1 - gf/4. With an accuracy up to 
terms of the fourth order in x, x' the function F(x, x', 
is equal to 

F(x,x')= ~(X'+x")-xx'+ (1~2g _~) (x'+x") 

+ (-1;2g )x'x"+ ~ (x'x'+x"x). 
(32) 

It can be seen that for no values of f3 and g is it possi­
ble to get rid of terms of the fourth order in x and x', 
Le., to obtain an "ideal" resonator. 

Solving equation (14) with the appropriate degree of 
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L~~ 
a b 

FIG. I. Schematic behavior of the zeroth mode of the resonator for 
small g. a-g> 0, ~ = 1/8, the first correction for aberration has been 
taken into account; b - g = 0, paraxial approximation c - g < 0, ~ = 1/8, 
the first correction for aberration has been taken into account. 

accuracy we obtain for I g I < 1 
e" ""co. g {(g -1) (2g' - g -1) - 4~} x' 

c:p(x)=eiarCColgx+, . 
2ig1'1-g' 

For I g I > 1 one must carry out the natural analytic 
continuation of g in formula (33). Knowing q;(x) we 
obtain f(x) from (17): 

f(x)=-Y1-g'~+ 4~(1-2g')-(1-g)2(2g+1) x' 
2 8gY1- g2 

(33) 

(34) 

while in the case of mirrors of circular shape usually 
utilized in experiments 

f(x)=-H-g':i' + (1-g)1'-r=g'(2g'-4g-1)x' (35) 
2 16g . 

As can be seen from (7), the function f(x) basically 
determines the character of the falling off of the proper 
oscillations at the edge of the mirror for a stable reso­
nator, and the phase of the oscillations for an unstable 
resonator. 

We examine the stable resonators in greater detail. 
The coefficient in front of x· in formula (34) has a 
singularity when g = 0, ±l, Thus, the paraxial approxi­
mation is, essentially, poorly applicable to resonators 
close to a confocal, a plane parallel and a concentric 
ones. Small aberrations strongly affect the distribution 
of the field over the mirrors, and, consequently, the 
diffraction losses and the divergence of the radiation 
emerging from the resonators. These facts are well 
confirmed in experimental practice [18]. The modes of 
other stable resonators can 'also be deformed as a re­
sult of aberrations (cf., the discussion of conduction 
(23)), but to a smaller degree, since these deformations 
manifest themselves in an essential manner in higher 
powers in x. We note that taking aberration corrections 
into account removes the equivalence of resonators 
which differ only by the sign of g[3,5]. Thus, in the case 
of circular mirrors the principal oscillation is concen­
trated closer to the optic axis when g - +0 and, con­
versely, is smeared out when g - -0 (cf. Fig. 1). In 
order that this effect should in a real way affect the 
size of the light spot the confocal condition must be 
satisfied with an accuracy up to a quantity of the order 
of a wavelength, while at the same time it affects the 
diffraction losses in a more significant manner. 

It follows from the technique of solving Eqs. (20) and 
(26) and also from formula (34) that the aberration cor­
rections in the case of unstable resonators play an in­
significant role (cf., [18]). 

3. Diffraction losses in resonators 

Although the finiteness of the dimensions of the 
resonator mirror has a relatively small effect on the 
formation of proper oscillations, nevertheless it is es­
sential for the determination of diffraction losses. The 
effect of the mirror edge could be estimated within the 
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framework of the proposed method taking into account 
in the asymptotic integration in addition to the contribu­
tion of the saddle point also the contribution from the 
end points of integration. However, we utilize another 
more graphic idea widely used in theoretical physics. 
In particular, in conSidering a problem with finite mir­
rors as one perturbed with respect to the problem with 
infinite mirrors it turns out to be possible to express 
the first correction to the eigenvalues of the integral 
equations in terms of the unperturbed eigenfunctions. 
This correction determines the diffraction losses, 
albeit with certain stipulations. The point is that the 
integral equations have been derived from the Kirchhoff 
principle which takes into account neither the genera­
tion of a diffraction wave on reflection from the edge of 
the resonator mirror, nor the penetration of the field to 
the back side of the mirror. Therefore, the results for 
the diffraction losses obtained with the aid of these 
equations are valid only with an accuracy up to a certain 
numerical factor which does not differ greatly from 
unity, and which takes these effects into account. The 
proposed method introduces another additional error of 
a somewhat higher order into the evaluation of the dif­
fraction losses. 

In order not to clutter up the paper with calculations 
we consider the case of a two-dimensional resonator 
with identical mirrors symmetric with respect to the 
optic axis, Le., we start with'the integral equation 

a 

U(x)=y S K(x,x')U(x')dx', (36) 

where we shall not need the explicit form of the kernel, 
and it is only essential that the kernel be symmetric, 
i.e ., 

K(x, x') =K(x', x), 

and that the eigenfunctions of (36) change relatively 
little when the finite limits are replaced by infinite ones, 
and also have the property of being even. 

We differentiate (36) with respect to a: 
a • 

U(x)=y S K(x,x')U(x')dx'+2-U(x) 

- Y (37) 
+y[K(x, a) U(a)-K(x, -a) U(- a)], 

where U(x) = dU(x)/da, Y == dy/da. Equation (37) is an 
inhomogeneous integral equation in U( a). In order for 
it to be soluble it is necessary that the term outside the 
integral should be orthogonal to the eigenfunctions of the 
equation adjoint to (36 )[19]. After elementary transforma­
tions utilizing the symmetry of the kernel this condition 
can be written in the form 

.yo s· - U.'(x)dx+2Uo'(a)=0. 
'\'n -0 

(38) 

Equation (38) can be regarded as a differential equation 
which determines the behavior of Yn(a), where as a 
limiting condition it is natural to require that as 
a - 00 Yn should assume values in accordance with 
formulas (28) and (30) which we denote by Yn(oo). Inte­
grating (38) we obtain 

'Vo(a)=Yn(oo)exp[I ~Uo'(a)da 1. (39) 

SU.'(x)dx J 
Formula (39) relates the exact eigenvalues and eigen-
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functions of (36). However, in accordance with the ideas 
of perturbation theory one can substitute into the right 
hand side of (39) functions constructed by the method 
described above, and to obtain a correction for the finite 
size of the mirrors to the eigenvalues in the first ap­
proximation. 

We investigate to what results does this correction 
lead in the case of unstable resonators. Since aberra­
tions have a small effect on the natural oscillations we 
utilize the paraxial approximation. In accordance with 
the calculations carried out earlier (cf., also[4]) the 
function Uo(x) (the mode with the lowest geometroopti­
cal losses) has the form 

U,(x) =exp(ikYg'-1x'j2). (40) 
Substituting this expression into the right hand side of 
(39) and evaluating the integrals by asymptotic methods 
we obtain for values of g not too close to ±1, 

,(a)= ,(00) [1+ eXP{i[kY"?"=1 a'-3n/4)}]. (41) 
'Y 'Y Ynk(g' _ 1)'" 

Thus, the diffraction losses in a single passage 

A, = 1-i'Y,i-< (42) 

oscillate around a mean geometrooptical value as the 
dimensions of the mirror are altered. From the physi­
cal point of view these oscillations arise as a result of 
the fact that the wave (40) propagated along the mirror 
reaches the edge of the mirror in a different phase and 
generates on reflection from the edge a diffraction wave 
with a different direction diagram. It is natural that this 
effect depends strongly on the shape of the mirror 
edge[4,18] . 

In the case of a stable resonator with circular mir­
rors we take the zeroth mode with the first aberration 
correction taken into account, viz., 

U,(x)= exp { -k [Y1-g' ~2 + (g-1)Y~~~2-4g-1)X' ]). (43) 

Carrying out the evaluation of the integrals in (30) we 
obtain for the diffraction losses in a single passage 

A,= exp{-kYt=?'.</,a2[1+(g;-1) (2g2-4g-1)a'/Sg)} . (44) 
a Ynk(l- g')'" 

It can be seen that the aberration correction strongly 
alters the quality factor of resonators close to a con­
focal one, and either increases or reduces it depending 
on the sign of g. These results agree well with the ex­
perimental curves obtained in the paper of Manankov[lO]. 
Manenkov[lO] explains the reduction in the quality factor 
as the resonator approaches a confocal one by the pump­
ing over of energy due to the mode becoming degenerate. 
An investigation of the confocal resonator in the paraxial 
approximation yields a minimum of diffraction 
losses[8,1l1, while formula (44) simply does not allow 
one to perform a limiting transition to the confocal 
case. The schematic behavior of losses for resonators 
close to a confocal one is shown in Fig. 2. Neither 
formula (44), nor formula (41) permits one to carry out 
a limiting transition to the plane parallel and the con­
centric resonators. This can be easily understood, 
since in these cases the diffraction at the edges of the 
mirrors is a fundamental reason for the formation of 
proper oscillations and can not be treated as a pertur­
bation. 

More exact expressions for the diffraction losses 
can be obtained taking into account the function G(x, x' ) 
which appears in the integral equations (1) and (3). How­
ever, this leads only to the appearance of an additional 
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FIG. 2. Schematic behavior of diffraction 
losses A(g) for resonators close to a confocal 
one. 

factor of the order of magnitude of unity. Qualitatively 
different results will be obtained only if G(x, x') is a 
function taking on complex values. 

A discussion of a three-dimensional resonator prob­
lem by the proposed method must lead to results ana­
logous to those which have been obtained for a two­
dimensional problem, but in this case new effects are 
possible and are associated, for example, with the 
question whether the aberration corrections preserve 
the separation of variables available in the paraxial 
approximation, or not. 

In conclusion the author expresses his deep gratitude 
to V S. Buldyrev and E. E. Fradkin for their advice and 
consultation at different stages of carrying out the 
present work. 
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