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The stability mechanisms underlying the motion of a particle in a transversely polarized 
electromagnetic wave in a gaseous medium are considered. In particular, stable accel­
eration of particles occurs in the presence of a constant magnetic field. 

1. INTRODUCTION 

If the velocity Vx of a charged particle in the direc­
tion of propagation of a linearly polarized electromag­
netic wave is sufficiently close to the phase velocity 
vph of the wave, then the particle can be captured by 
the wave. The particle then executes stable oscillations 
about some equilibrium phase. One of the variants of 
such stability was considered by Arutyunyan and 
Avetisyan[lJ. 

The possible stability mechanisms that obtain in the 
resonant motion of the particle in the wave when Vx 
"" Vph = c/n (n> 1 is the refractive index) are easily 
revealed by going over into the comoving reference 
frame K' in which the field is time independent. In this 
system the electric field vanishes, E' = 0, whereas the 
magnetic field B' = B -..fn· - l/n, where B = nE is the 
field in the laboratory frame of reference K. 

Let an equilibrium particle in the frame K' be at 
rest (the case considered in [lJ). This equilibrium state 
does not depend on which phase <P of the wave B' = B~ 
sin <P the particle is in; the equilibrium values of the 
velocity are equal to v~s = 0, Vys = 0. It is clear that 
if the initial conditions differ from the equilibrium 
conditions, Le., if av;' = v;' - v;'s '" ° and avy '" 0, then 
the particle gyrates in the field B', maintaining, on the 
average, its equilibrium position. In the laboratory 
system this corresponds to a cycloidal motion of fre­
quency n = ecE ~/ 8, where 8 is the energy of 
the partic Ie. If however, the initial deviations of the 
velocity from the equilibrium value are sufficiently 
large, then the particle jumps over the maxima of the 
magnetic field B' and, on the average, moves freely. 
If now we vary the refractive index n = n( x) along the 
wave vector k, then the mean velocity of the particles 
captured by the wave will vary: (vx (x) > = c/n(x), and 
the wave will drag the particle along. This acceleration 
mechanism corresponds exactly to the acceleration of 
a particle in crossed fields Ey and Bz = nEy > Ey , 
( vx) = Eyc/Bz, when the magnetic field varies suffic­
iently slowly either in time, or along the x-axis. Then 
the particle, which in static fields moves with constant 
ve locity along the x-axis, now drifts in the direction of 
polarization of the electric field, acquiring a velocity 
Vy '" ° and increasing its energy by 8 - 8 0 = eEy( y 
- Yo). The stability is however destroyed at too large 
values of Vy, and, therefore, this type of motion provides 
neither good acceleration nor strong stability. 

A much stronger stability arises in the case of 
oblique (with respect to the wave) motion, when Vy'" ° 
from the start, but Vxs = c/n as before. In the comov­
ing frame v~s = 0, but Vy'" 0. The phase <P = kx - wt 
of the wave is related in the frame K' to the x' coordi­
nate by the relation x' = c<P/ w fii'2=1. Therefore, the 
equations of motion dp'/dt' = eE' + ev' x B'/c can be 
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written in this frame as equations for the phase shift; 
8'/c d'rD e '" e p,'c -,-- . 
-=--~-v, B, ",,---Yn -IEYusIllrD. 
wYn'-1 de" c e 8' 

(1) 

Noting further that [f/ = 8fii'2=1/n, t' = Un· - lIn, 
we find that 8' and t' in this equation can be replaced 
by 8 and t. Clearly, the equilibrium state corresponds 
to sin <Ps = 0, when the fie Ids E' = B' = ° (whereas in 
the previous case sin <P is arbitrary and pys = 0). Ex­
panding sin <P in powers of the small deviations <p = <P 
- <Ps , we obtain the frequency of the phase oscillations: 

[ eE"A p,.e , ] 'I, 
Q ~ w -- --(n- -1)eos rD. • 

2,.,8 .• 8, 
p,,; 7'= 0, 

it being clear that only one of the two equilibrium 
phases is stable. 

An adiabatic variation of the refractive index leads 
to a slow variation of the particle energy owing to the 
acceleration in the transverse direction: aE = eEoy 

(2) 

sin <psay; because of the coupling of the motions across 
the magnetic field, here, as in the previous case, not 
only the transverse momentum Pys = Pys(x), but also 
the longitudinal momentum Pxs = Pxs(x), vxs = c/n(x) 
varies. 

Motion in a homogeneous medium, n = const, assumes 
a curious character upon the application of a static 
(more accurately, almost static if the imaginary part of 
the refractive index n. '" 0: n = nl + in.) secondary mag­
netic field bz . In this case there exists in the K' frame 
the electric field Ey = bz /~, which now acceler­
ates the particle, so that 

"'/d J""/d' " ( b, ) p,c p,e n d", t~<U!J t ~eE, v, ~e -= -~eb,---. 
Y n' - 1 8' 8 n2 ~ 1 

The stability condition again corresponds to v~s = 0, 
which yields dp~s/dt' = 0. Writing down the Lorentz 
force in the x' -direction, we obtain a supplementary 
equilibrium condition 

b/=B/, (3 ) 

It is further obvious that the deviations from the equili­
brium position are described by the same equations (1) 
and (2) as when b z = 0, since bz does not depend on <P. 

Thus, by applying a static magnetic field bz , we can 
accelerate obliquely incident particles in a laser beam 
in a gaseous medium. In this case the velocity Vxs does 
not vary, although Pxs varies on account of the varia­
tion of the energy 8; the momentum Pys varies 
directly. 

In practice, the acceleration of particles with the aid 
of the stability mechanisms described here turns out to 
be not very effective because of the low efficiency ratio 
of present-day high-power lasers. We can apparently 
use the stability of the motion for the inverse effect-
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the amplification of the laser pulse. This possibility is 
analyzed in ll] with the aid of the first of the stability 
mechanisms described here (Pys = 0); this mechanism 
is, unfortunately, not very effective. 

In the present paper we consider in detail the dy­
namics of the motion of a single particle in a steady, 
neutral, gaseous medium with a refractive index n = nl 
+ in2 in the presence of an electromagnetic wave and an 
external magnetic field. 

2. THE EQUILIBRIUM MOTION OF A PARTICLE 
IN A HOMOGENEOUS MEDIUM IN THE 
PRESENCE OF A WAVE AND AN EXTERNAL 
FIELD 

Let the vector potential of the wave be directed along 
the y-axis: A = Ay(x, t). Let the wave propagate along 
the x-axis, and let the external field b = -bz( x) be 
directed along the z-axis. The equations of motion of 
the particle have the form 

dp. = e A (aA _ b) 
dt Py iJx ' 

A _~ 
py- , 

c 

dp. = -e (~ dA _ ~"b) , 
dt c dt 

from which follows the integral of the motion 

Let 

e e S py +--A (x, t)- - b(x)dx= :rt.= const. 
e e 

·'0 

A (x, t)= A''1(x)cos~(n,x - et), 
e 

'1(x)=exp {- : n2 (x-x,)}, 

then the condition for the constancy of the phase 
<P = c -lw(nlx - ct) is 

(4) 

(5) 

(6) 

(7) 

(8 ) 

(the index s denotes equilibrium), and from the integral 
of the motion (6) we obtain for the equilibrium particle 
the energy-variation law: 

'R =~ 
t-'ys (C' 

A,(x, t) = A,s cos <1\, <D. = <DX, I e, (9 ) 

s = exp (-<Dn 2t In,), x, = Xo + et In,. 

The rate of accumulation of energy is given by Eq. (4) 
under the condition (8): 

1. = -n,<DQ~.,s[n, sin <D, + n, cos <D.l - ~y.n,eb(x.) I me, (10) 

where Q = eAo/mc2. From (6) and (7), on the other 
hand, follows 

2 nj2 { ,[ It!! e Xs 2 

Y'"=-2-1 1-,-- --Qscos<D.+--Sb(X)dx]}. 
n L - me me2 

", 
(11 ) 

Differentiating (11) and comparing with (10), we obtain 
for the magnetic field bz( x) the variation law necessary 
for the maintainance of equilibrium: 

eb(x) [ n"-1] --=-<DQ'l(x) n,cos<D.+--sin<D •. 
me n 1 

Conversely, when the magnitude b(xo) of the field is 
given, Eq. (12) determines the equilibrium phase <Ps. 
Comparing b(x) with the wave field 

B.(x) e iJA _ 
e--=--= -<DQ'l(x) [n,cos <1>.+ n,SIn <1>,], 

me me ax 

(12) 

(13 ) 

we obtain for the case when n2 = 0 the relation (3). The 
electric field 
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eE, e aA , 
--= -----= -<DQ'1 (x)sm <D •. 

me me' at 
(14) 

In the absence of both an external magnetic field and 
damping, from (12) follows sin <Ps = 0, Le., the absence, 
according to (14), of acceleration. For b z = 0, but 
n2'" 0, there exists a small particle acceleration con­
nected with the conservation of the integral TTy': the 
damping of A(x, t) leads to the growth of Py. This 
regime possesses stability, which we shall not analyze 
here. 

If the distance to the nearest resonance line of the 
medium, Wf - w, is much larger than the total width 
of the lines, Le., I wf - wi» r/2, then n2« ni - 1. We 
shall assume that this condition is fulfilled in the region 
where the approximate estimates will be made. The 
exact dependence of the energy on the x-coordinate is 
described by the formula 

y.' =~{1 +[~-Qcos<D. _Q n,' -1 (1-'1(X»Sin<D.]'}; (15) 
nt -1 me nlnZ 

in the region where the wave does not have time to die 
down, approximately by 

( y )' {[ CJ) n ' - 1 ] '} I v: "" 1 + YO~Oy-Q--;:-(x-xo)-'-n-, -sin<D, (1 +yo'Po.')-',(15 ) 

v.-v, "" -~Q(y- Yo)sin<D •. 
e 

(16) 

An equilibrium relativistic particle moves at a small 
angle & to the x-axis: 

, ( P.)' 2 n,' 8 "" - = n, - 1 - - < 1, 
p. y2 

y»1. (17) 

Resonant motion of a nonrelativistic particle would in 
practice be impossible, since the refractive index nl 
> 1/ f3 > 1 would turn out in this case to be too large and 
the particles would be swiftly scattered out of the stable 
states by the residual gas. 

For y » Yo, the particle moves at a constant angle 
e 2 "" ni - 1 to the x-axis, with its energy varying 
linearly with (x - xo): 

d<!! I dx "" -8eE,y sin <D., 1» 10. 8 < 1. (18) 

Let us list further the effects that limit the possibility 
of a prolonged acceleration of particles moving stably 
in a laser beam. 

1) The acceleration ceases when the wave attenuates. 

2) When the wave packet has a finite length I, the 
wave carries the particle to the leading edge of the 
packet, after which the particle gets ahead and is no 
more accelerated. The maximum length L at which the 
particle is still inside the packet satisfies the inequality 

l O}/ - (02 

L.:..----- (19) 
n,2-1 w2 

3) The spreading out of a short wave packet leads to 
the decrease of the field and sharply depends on the 
proximity of a resonance line of the medium. 

4) The length of the pulse is limited by the effects of 
the interaction between the wave and the gaseous 
medium -in particular, by breakdowns in the gas, as 
well as by the many-photon ionization effect, by non­
linear effects, etc. 

5) The wave-front distortion caused by the initial 
angular spread of the laser beam, as well as by the 
inhomogeneity fluctuations in the medium, can lead to 
loss of stability. 
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6) The gas density N should be sufficiently small 
because of the Coulomb particle-scattering effect which 
takes the particles out of the stability region. This 
question is discussed in the following section. 

3. THE REGION OF STABILITY OF THE 
MOTION. COULOMB SCATTERING OF 
THE PARTICLES IN THE GAS 

Using the definition of the phase CP, according to 
which 

and the equations of motion (4) and (5), as well as (7) 
and (12), we obtain the equation for the phase motion 

(20) 

.. n,eA o { n.' - 1 } 
<D = w'~y--1'](x) n,(cos<D. -cos <D)+--sin<D, -en, - ~.)sin<D . o n,' 

(21) 

The dominant dependence on cP is contained in the 
curly brackets; neglecting the dependence of f3y and 0 
on CP, we have 

. n,eA o [n, n, ]{ 
<D = ~y,--exp --(<D - <D.)-w-t n,(cos<D. - cos <D) 

(ff~ n 1 n l 

n'-1 $} +-'--(sin$,-sin$)+--sin(D w'. 
n l (Un, 

(22) 

CPa is the phase at t = 0. To the equilibrium configura­
tion corresponds the vanishing of the expression in the 
curly brackets; CPs is determined from (12) for x = Xo, 

4>s = 0, and 4>s = 0. 
Expanding (22) in powers of the small deviations 

cp = cP - CPs from the equilibrium phase, we obtain the 
equation 

1> + Ii</> + Q'¢ = O. 

We write out for 0 2 and Ii approximate formulas for 
n2« nr - 1: 

eAo 
Q' = w,~,,~(n,' -1)1; cos <D., 

eA. 
Ii = -W~y,~1;sin<D" 

, 'A 
eA. = eE.y 2n·' 

(23 ) 

(24) 

(25) 

(26) 

In the case of stable acceleration, when Ys > 0, we have 
eAof3ys sin CPs < 0, eAof3ys cos CPs > 0,02 > 0, and 
Ii > 0. In the case of stable retardation, when Ys < 0, we 
have eAof3ys sin CPs> 0, eAof3ys cos CPs> 0, 0 2 > 0, 
and Ii < 0, Le., we have an exponential buildup of small 
oscillations during retardation. The conditions for 
particle conservation in the phase-oscillation regime 
have in his case the form 

comparison with the phase oscillations) function of the 
time; moreover, exp{-(n2/nl)(cp - cpa)}", 1 and n2 
« nr - 1, and therefore an approximate integral of the 
motion is 

(28) 

eAo 
U(<D)= -w'~Y'T(n,' -1)£[cos <D - cos <D. +(<D - <D.) sin <D.]. 

• (29) 

For the case of acceleration, when ys> 0, we have 
311/2 < CPs < 211; the depth of the potential well is equal 
to the smallest of the extrema of U( cp), which is equal 
to 

Uc.,(rJ) = 3n - <D.)= 2oo'~" ~: (n,' -1)S [cos <D. + (rJ), - 3;) sin 0),1. 
(30) 

The maximum value of cP at which the particle is 
still in the potential well is (setting Q' = CPs - 311/2) 
equal to 

cD m = [ eAo ] 'J, 
-00-=2 ~Y'T(n"-1)S(sina-acosa) . 

It can be seen from this that the condition I 4>/ W I 
« nr - 1 '" 82 is well fulfilled if EI is not too small. 

(31) 

. Let us now consider particle scattering in the gas. 
cP changes abrubtly during scattering: 

~iD / 00 = n,~~, ~ -n,Oo~8. 

00 = c py / 0 ¢: 1. 

After multiple scattering the requirement 

«~<D)'> «Ii~",. 
should be fulfilled. Assuming d(~ e 2) '" (E/8)2dx/X, 
where E '" 21.5 MeV, 0 is in MeV, and X is the radia­
tion length of the gaseous medium, we obtain (for 
[ff » mc 2) the condition 

o 2 (eEo'A)' Xn,'-1 -"';-(sina-acosa)s -- ---cosa+ 1. 
00 " e 'A n, 

It can be seen from this that in order to obtain an 
effective acceleration, we must let the frequency w 
approac h the resonance frequenc y, Le., let w ~ wf, 
thereby increasing the radiation length X (with the 
quantity nl conserved). 

(32) 

In conclusion, let us note that the above-described 
stability mechanism can be used effectively to produce 
a laser-frequency modulated electron beam. In fact, the 
particles that do not fall into the stability region (and 
the distances between which are equal to A) do not on 
the average feel the wave field and are turned around 
by the static magnetic field, whereas the stable parti­
cles move rectilinearly. 

lit E:; 1, v.<O. (27) lV. M. Arutyunyan and G. K. Avetisyan, Dokl. Akad. 

Let us further assume (this is justified below) that 
I ~/w I « nr - 1. Then Eq. (22) can be integrated ap­
proximately, considering S as a near ly constant (in 
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