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Kinetic electronic processes in semiconductor lasers are considered under the assump­
tion that collisions between electrons play the major role. An analytic solution linearized 
near the kinetic-equation threshold is obtained under some very general assumptions re­
garding the form of the collision integral. The electron energy distribution function has 
a minimum at the point corresponding to transition to the generated frequency. A result 
of this is that above the threshold the electron distribution may vary with increasing 
pumping. The solution obtained permits a consistent study of the problem of the appear­
ance and stability of two-mode conditions by taking into account spatial burnout. 

The present paper is devoted to kinetic processes of 
electrons in a semiconductor laser. It is assumed that 
the lasing is the result of direct transitions of the elec­
trons from the conduction band into the valence band. 
The semiconductor is assumed to be pure enough for 
collisions between electrons to assume the principal role 
in the kinetics. It is also assumed that the pumping is 
optical. Near-threshold regimes are considered, so that 
the kinetic equations can be simplified by linearization 
near the threshold distribution function. Under rather 
general assumptions concerning the form of the collision 
integral, we consider in succession the kinetics of the 
electrons in the energy and coordinate spaces. 

The obtained electron energy distribution function 
has a minimum (a well) at a point corresponding to a 
transition at the generated frequency. This result dif­
fers from the assumption made in most papers (see, for 
example, [1J), namely that the distribution function has a 
Fermi form. This difference is small, and therefore the 
cited papers describe the single-mode regime for the 
most part correctly. The difference, however, changes 
the qualitative picture and allows the electron distribu­
tion function above threshold to vary with increasing 
pumping. A definite peculiarity is introduced into this 
process by spatial diffusion of the electrons. 

The obtained solution enables us to consider in detail 
the onset and stability of the two-mode regime. It turns 
out that the stability of the two-mode regime is deter­
mined by the competition between the spatial and energy 
diffusions, and depends on a number of parameters of 
the semiconductor. These parameters specify the mini­
mum distance between modes in the two-mode regime, 
and this distance can be smaller than the width of the 
electronic levels. 

The results of this paper are in qualitative agree­
ment with the experiments. A detailed comparison is 
made difficult, however, by the vagueness of the ex­
perimental situation. It is undoubtedly desirable to ob­
tain a quantitative comparison between the theory and 
the experimental data, particularly a direct observation 
of the well in the distribution function by determining 
the Raman emission spectrum. 

Most assumptions made in the present paper are not 
fundamental limitations. The procedure developed can 
be used in a more general case. 

FUNDAMENTAL EQUATIONS 

We consider a semiconductor placed in an electromag­
netic field that is a superposition of standing waves 
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E(r,t)= ,I:En(t)cosknrsin(Wnt+qJn(t», (1) 

where En(t) and CPn(t) are slowly varying functions of the 
time. The state of the electron system of the semicon­
ductor is described by four functions that are mean values 
of quadratic combinations of the operators ap (elect~o.n 
annihilation in the conduction band) and bp (no Ie anmhila­
tion in the valence band): 

(2) 

The first two quantities are the Fourier Q-components 
of the spatial distribution function of the electrons in the 
conduction and valence bands, and Pq (p) is the Fourier 
component of the off-diagonal element of the density ma­
trix. The equations for these functions are 

(:t + iqV) n.' (p) + i 1: ),n{exp[ -i(w"t + <pn) ][ fl.- kn (p) 
(3) 

+ PHkn (p»)- c.c.}= _ nq'(p) + (..!!...n.') + Q,'(p), 
'In at st 

[~ - i (Ep' + E:+o) ) P. (p) + i "\1l.n exp[i (wnt + qJn) ) {n:+k (p) 
at "'" n (4) 

, " " (a) +n.-k" (p)-nHk" (p+q)-np-k" (p+q))= ,J"tpq(p) , 

where E~' v stands for the energy of the electrons and 
the holes, respectively, An = evcv • En/4w1i is a quan­
tity proportional to the amplitude of the transition from 
the conduction band to the valence band, and the matrix 
element v cv of this transition depends little on p (for 
small p). The left-hand sides of (3) and (4) are the dy­
namic equations of the motion. In the right-hand sides, 
the term ~(p) describes the pumping by the external 
source, the term ~ hR describes recombination with a 

lifetime TR' and (ankt)st and (ap/at)st describes colli­
sions of the electrons with one another and with the 
phonons. The equations for nVand p* are similar in 
form. q q 

To obtain a closed system it is necessary to add to 
equations (3) and (4) the abbreviatted equations for the 
amplitude En(t): 

aEn (t) 1 E ( ) (. +. ) ---+- n t =-:rt]lt J-k 3, at To n n 
(5) 

where 

~=~ (fl- [nR), 
To Ti I 

(6) 

TJ is the refractive index, R is the reflection coefficient, 
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and 1 is the resonator length. In these equations, jk are 
the Fourier components of the current and are expressed 
in terms of the matrix Pq(p) in the following manner: 

(7) 

The subscript s signifies that we take in the current the 
part proportional to sin(wnt + 'Pn)' 

To simplify the subsequent calculations, we assume 
full equivalence of the electrons and holes, so that 

Ep"=Ep' ... E" Qo=Q', n,(p) =6q ,o-nq '(p). (8) 

In the case AnT « 1 considered by us, the collision in­
tegrals describe the processes of electron collisions in 
the absence of a field. Then the collision integral in (4) 
should lead to damping of Pq(P), since this quantity is 
equal to zero in the equilibrlUm state. We express it in 
the simplest form that ensures this damping 

(' :~ ) •• = -Ypq(p), (9) 

where y is of the order of the reciprocal time of the 
electron collision [2J. The collision integral in (3) has 
the usual form, since the function p, as will be shown 
below, differs from zero in a narrow energy region near 
Ep = wn /2. The deviation of Ep from wn /2 will be de­
noted by 

Sn = E. - ron / 2. (10) 

We consider the processes near the generation thres­
hold, expanding all quantities near the threshold values. 
At the generation threshold, all An are equal to zero, the 
pump is equal to a certain threshold value QO(p), and the 
distribution function of the electrons in this state is 
nO(p). This function can be obtained by solving Eq. (3) 
with An = 0 and with QO(p) in the stationary state: 

_ nO(p) +(anO) +QO(p)=O, 
'tR at sf 

(11) 

(We have put q = 0, assuming that the source QO is homo­
geneous in space.) 

The excess of pump over threshold will be denoted 
Q(p) = QC(p) - QO(p). The deviation of the distribution 
function from nO(p), due to the excess of the pump over 
threshold and to coherent emission, will be described by 
the function nq(p): 

n.'(p) -6q,onO(p) =nq(p). (12) 

Assuming this quantity to be small, the collision integral 
of Eq. (3) can be linearized and reduced to a linear in­
tegraloperator. 

We consider a model in which the kernel of the in­
tegral operator depends only on the energy difference, 
i.e., 

( an) 1[ J dO'] -q =- -nq(p)+ K(s-S'lnq(p)ds'- . 
~ ~ T ~ 

(13) 

This model retains the essential features of the gen­
eral case and admits of a transition to the case of weak 
collisions and to the inverse limiting case. Such a model 
was considered in the theory of gas lasers and has l-Jeen 
well justified. [3J 

We note certain properties of the collision integral 
(13). The main contribution to the relaxation of a small 
fraction of electrons is made by the fastest electron­
electron collisions. Therefore the quantity T in (13) is 
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the time of electron-electron collisions. From the re­
quirement of conservation of the number of particles we 
can easily find the zeroth moment of the function K: 

(14) 

To estimate the first moment, we multiply (13) by ~ and 
integrate: 

J ds do (an) 1 { J do --s - =- - n(plSds-
4n {it.. T 4n 

J dodo' } + dsds' (4n)' sK(s-s')n(p') (15) 

1 dS'do' , 
= -J--n JdssK(s). 

T 4n 

For the case of pure electron-electron collisions, owing 
to the energy conservation in collisions, this integral 
should be equal to zero. 

Thus, the first moment is determined only by the 
electron-phonon collisions and its relative order of mag­
nitude is TiT ef' The second moment of the function K is 
of the order of the square of the energy transferred in 
one collision, -t.. The value of t. is defined by the equa­
tion 

(16) 

SINGLE-MODE REGIME 

The values of the density matrix at the threshold are 
determined from Eq. (4), in which it is necessary to 
substitute nO(p) for nV'c. The nonzero Fourier compon­
ents, with Eqs. (8) and (10) taken into account, are given 
by 

° An exp (iront + i'l'n) 17) 
P"kn (p)= . +'/ (s +s ) [nO(p)+nO(p±kn)-1l. ( 

LV 2: B,p n,P±k n 

Substituting them into the expression (7) for the current 
and using (5), we obtain the following expression for the 
mode gain coefficients: 

a ° = ne'v,; ~ y[2nO(p)-11_~ 
n nronV ~ Sn2+y2 To . 

p 

(18) 

(We neglect the quantity kn in the argument of the dis­
tribution function, assuming V • ~ to be small in com­
parison with y.) By definition, the gain a~) is equal to 
zero for a certain mode n = 1 and is negative for all the 
other modes: 

(19) 

We proceed to consider the stationary regime of 
single-mode generation. The deviation of the electron 
distribution function from nO(p) is determined by the ex­
cess of the pump over the threshold value Q(p) and by 

, the coherent emission. Since the values of A1 near 
threshold are small, the coherent emission can be taken 
into account by merely substituting in (3) the denSity ma­
trix in the zeroth approximation (17). It is easily seen 
then that the three Fourier components no(p) and 
~2k1 (p) of the distribution function differ from zero. 
The equation for the first of these functions, taking (13) 
into account, is 

--+- no(p)- s-s no p ,,-no(p) 1 [ JK( ') (')d t ' dO'] 
~ T ~ 

=Q( )_A,2y [2nO(p)-112. 
(20) 

p , S,'+,,2 

When the analogous equation was solved in [1], it was 
proposed that the complete distribution function no(p) 
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+ n(p» has a Fermi form and that the excess of the pump 
over threshold and the coherent emission influence only 
the magnitude of the chemical potential. We make here 
no assumptions concerning the explicit form of the func­
tion nO(p), and obtain nO(p) as by solving (20). In fact, as 
seen from (20), the function no(p) does not depend on the 
angles of the vector p, i.e., is only a function of ~. 
Equation (20) can be easily solved by taking the Fourier 
transform with respect to the variable ~ : 

The last integral with respect to g in (21) converges at 
small values of g, making it possible to expand the 
Fourier component of K. In light of the statements made 
above concerning the moments of this function, we obtain 

[J dl'] K(l'])e- i ," ] -'", 1 + g'/',.'. 

The integrals in (21) can now be calculated explicitly. 
Assuming that the function nO(O varies little at an energy 
on the order of y, and that Q( ~) differs from zero near a 
certain value ~ 0, the function no( ~) takes the form 

TtR [ "tR (I S - So I )] no(s)=-+- Q(s)+Q-exp ---
"t TR "t8 8 

2A,'T"tR [2Y' 1 (lsi)] 
(T+"tR)Y V+y' +--;-exp -8 [2nO(s,=O)-1], 

(22) 

Q= !Q(s)ds. ( "t+TR )'" 8=/',. --T- , (23) 

Each of the components in (22) is a sum of two terms 
the first of which duplicates the form of the source ' 
(sink), and the second is a smooth function that varies 
over distances ~ ®. The quantity ® is the distance, in 
energy space, over which the electron can diffuse within 
a lifetime TR: 

Let us consider the term proportional to ,\~. It con­
stitutes the inhomogeneous solution of (20), governed by 
the sink, and thus describes the decrease in the number 
of electrons as a result of coherent emission. In the 
region near ~ 1 = 0, the principal relation is given by 

2 't'tR V 
-A, -+-2~+ ,[2nO(s,=0)-11. 

T TR ~t 'V 

Consequently, a dip appears in the distribution of the 
electrons1). The ratio of the depth of the dip (well) to the 
value of the smooth function in this region is determined 
by the parameter s, which plays an important role in the 
theory. Its meaning can be easily understood by using the 
concept of holes in the electron distribution. Then the 
dip (well) describes production of holes at the location 
of the sources (sink for electrons). Their number in this 
region is determined by their escape through collision 
and is consequently proportional to the time T between 
collisions. The escaping holes diffuse in energy space 
over a distance ®. The distribution of the diffused holes 
is described by the smooth part of the function. The 
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lifetime of these holes is TR, and their fraction at the 
location of the source is -y I ®. Thus, the relative depth 
of the well of the order of T is equal to TRY/® = 1TS. 

It is seen from the foregoing reasoning that our cal­
culations assume that the diffusion length 9 is small in 
comparison with the distance from the generation point 
~ 1 = 0 to the bottom of the band Eo = (w - E )/2 and from 
the location ~ ° of the electron pump sourc;. 

In real cases, the inverse inequalities ® > Eo and 
® > ~ ° are more frequently realized. If only one of them 
is satisfied, then the coefficient of the smooth function 
is doubled. If both are satisfied, then the quantity ® in 
the parameter s (23) is replaced by (Eo + ~ 0)/2. This 
result can be obtained from an exact solution of the in­
tegral equation for the particular case of an exponential 
kernel K. 

The spatial Fourier components n±2k (p) characterize 
the spatial burning out of the excess popfrlations. The 
equations for these functions are of the form 

iqvnq(p) + nq(p) +~[nq(p)-J K(s- s')nq(p')ds'~] 
~ T b (24) 

2y 
= - A,'---[2n'(p)-1] 

S12+y2 ' 
q= ±2k,. 

We proceed from (24) to an equation for the function 

nq(S)= J donq(p). 

To this end, we divide equation (24) by T-1 + T-1 + iq· v, 
which is the coefficient of nq (p), and obt~ after inte­
grating with respect to the angles 

n.m -~JK(s-s')n (s')ds' =- A 2_
2_Y _(2n"( )-1) 

Teff 1: • 's,'+y' p , 
(25) 

where 
1 / qVo1:RT 1 1 4q'vo' 

-=qvo arctg--""-+-+--T 
Teff 1: +"tR -r TR 3 

(In the integration we have set v equal to the value at 
~ 1 = 0 and used the smallness of the electron mean free 
path VoT in comparison with the wavelength). 

Equation (25) is similar in form to (20). Its solution 
can therefore be written down immediately: 

n±,k,(s)=- A,2 Teff [----iiz+ JtTeffY exp(_ill)] 
Y 6, +y (-r--reff)8cff 8 eff 

X[2n'(s,=0)-1]"'-A,' ,-rR [~ (26) 
y(-r+-rR ) V+y' 

+ exp(-ls,I/8,eff) J 0 -

8(1 +4Dk"R)'/' [2n (s,-O)-1]. 

Here ®~ff = ®2/(1 + 4Dk2TR)' and D = vh/3 is the 
spatial-diffusion coefficiene). 

The function n±2k has a form similar to (22). The 
only difference is thcit the smooth part of the function is 
decreased by a factor (1 + 4Dk2TR)1/2, whereas the "well" 
remains unchanged. This result is physically obvious. 
As already stated, the well in the distribution results 
from emission of electrons that had no time to experi­
ence collisions. Naturally, these electrons have no time 
to experience spatial diffusion. As to the second group 
of electrons, they diffuse within the lifetime TR over a 
distance (DTR)ll2, the ratio of which to the wavelength of 
the electromagnetic field does indeed determine the de­
crease in the inhomogeneity of the distribution. 

The quantity ® eff has a simple physical meaning. 
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Since Dk2TR » 1 in real cases, we have 
, d' 1 

€lefT "" ~ 4Dk2 . 

As already mentioned, ~ 2 h is the diffusion coefficient in 
energy space, and 1/ 4D~ is the damping time of the 
spatial inhomogeneity of the distribution. Thus, ® eff is 
the length of diffusion within the lifetime of the elecTrons 
in this state. 

The coefficient of the smooth function in (26) can be 
obtained from the same simple considerations as in the 
case of (22). It is necessary only to replace the diffusion 
length ® by ®eff' and the lifetime TR by 1/ 4Dk2. Since 
Dk2TR » 1, the damping time of the spatial inhomo­
geneity is much shorter than the recombination time TR' 
so that @eff « @. In a real situation, ®eff can be either 
smaller or larger than Eo or ~ o. In the former case, 
expression (26) remains the same. In the latter case it 
is necessary to replace the diffusion length @eff in the 
coefficient of the smooth function in (26) by Eo, so that it 
takes the form 

1/ s{1 + 4Dk'-rR ) , 

i.e., the diffusion smooths out the spatial inhomogeneity 
of the distribution much more strongly. 

For the sake of simplicity, we use in the subsequent 
calculations expressions (22) and (26) for the functions 
no( ~) and n±2k (~). It should be borne in mind here that 

I 
in the case when the diffusion lengths @ and @eff exceed 
Eo and ~ 0, it is necessary to make the corresponding 
changes in the coefficients s. 

With the aid of functions (23) and (26) we obtain from 
(4) the first-approximation density matrix P::k (p). Sub-

I 

stituting it in the expression (7) for the current, we ob­
tain an equation for the field amplitude 

~=E,{a.'- p,A,' +6,Q), 
iJt 

(27) 

where 

6,= ne'v" '\l~2~[Q{S)+Q~exp(_ls-sol)] 
nw,VQ ~ V+v2 't+'t. 't8 8 

p 

, e'/},.' 'to (160 I ) m'vo 
""4nN(0)----exp --- N{O)=--, (27') nw, 8 e' 2n2n3 

ne'v,"' ° 1 ~ 2v { 4't'tR p,=--[2n (6,=0)-1]- --
nw, v 1','+v' v('t+ 't.) 

p 

x[~+~ex (_JIl)+ 1 ex (_ill)]} V +v' s P 8 2s{1 + 4Dk''t.) 'I, p eeff 

"" e'v,.''t (~+ ~+ ~(1 + 4Dk''tR )-'I,) (2nO -1)8n'N{0). 
nw,v 2 s. 2s (27") 

In the stationary case we obtain 

A,' = Q ~: "" Qexp (- ~)[ 2n{2nO -1) (1+ 3; + 2{1+ 4~k''tR)'J r· 
(28) 

(We took into account here the fact that Q!~ = 0 for the 
mode of interest to us.) 

It is convenient to rewrite (28) by using the number 
of photons Nph and their lifetime in the resonator To: 

Nph QN(0)exp{-So/8) I-I" 

'0 1 + 3s12 + 1/2 (1 + 4Dk"R) 'I, 1 + 3s12 + 1/2 (1 + 4Dk''t.) 'I,; 

(29) 
where J is the pumping current, i.e., the number of 
electrons arriving at the region near ~ = 0 per unit time 
and per unit volume. Formula (29) dif' ,rs from the usual 
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expression (see, for example, [6J ) in that the denominator 
1 + 3s/2 + 1/2 (1 + 4Dk2TR)1/2 exceeds unity, i.e., the 
fraction of the electrons produced by the source above 
threshold makes no contribution to the coherent emis­
sion. 

This difference is due to the following circumstances. 
The gain of the quanta is proportional to the expression 

~ 2v 
---{2no + 2n2k, - 1). 
s,'+v' 

p 

Its constancy in the stationary regime imposes only 
certain integral requirements on the distribution function 

, in a region of the order of y near ~ I = O. Yet it is pre­
cisely in this region, owing to the presence of the well 
due to the energy burnout, that the function undergoes 
significant changes. In fact, substituting the stationary 
value A~ in (22), we obtain for the increment of the dis­
tribution function at I ~ I < e 

't't. 'tRQ [ so) [3 1 2v' ] no{s)""----exp -- s -+ ----
,+Tu Eh 8 2 2s{1+4Dk2,.)'I, s,'+v' 

" 1 -, X[1 +~+-(1 +4Dk'TR)-'I'] . 
2 2 

We see that the function no( ~) can even reverse sign 
under certain conditions (s(l + 4Dk2TR)112 > 1). The 
strong dependence of this function in an appreciable reg­
ion causes the electron distribution to vary with increas­
ing pumping current when the gain above threshold is 
constant. At the same time, the total number of electrons 
is increased, and consequently also the number of re­
combinations. A similar role is played by the spatially­
inhomogeneous parts of the electron distribution (~2k)' 
The described effects do not exert a noticeable influence 
on the single-mode generation regime, in view of the 
smallness of the parameters sand (1 + 4Dk2Tl'tfll2. They 
do, however, play an important role in a multlmode 
regime. 

TWO-MODE REGIME 

We proceed to consider the two-mode regime. Since 
Al and A2 are small near threshold, to take the coherent 
emission into account it suffices to substitute in (3) the 
density matrix in the zeroth approximation: 

(0) _ '\l An exp[i{wnt + <Pn)] (Il + b ) 
pq(p)-~'+'/{O +s ) qHn·O q-~.,o 

11 Ly 2 hn,P . n,p+q (30) 
X (nO{p) +nO(p+q) -0. 

In the case of two modes, the following Fourier compon­
ents of the distribution function differ from zero: no(p), 
n±2k ,and nk ± 1_ (p). The equation for no(p) coincides 

1,2 1 n2 

with (20) if one adds to the right-hand side a term that 
takes into account the action of the field of the second 
mode, 

-).,2 6,2~V2 2[2nO(p)-1]. 

The equation for n2k coincides exactly with (24), and the 
equation for nkl ± k., take the form 

[ a 1 1 ] -+iv(k,±k2)+-+- nk,±k,{P) 
at T. 't 

1 d ' 
-- ftK{1; - 1;')nk,±k,{P')ds' -...':.= -A,A,[2nO{p)-1] (31) 

T J' 4n 

x {exP[i(w, - w,)t + i{(p, - 'P,)] (_1_'_0 +_1_._) +c.c.}. 
v - IS, V + IS, 

These equations describe the oscillations of the excess 
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population due to the joint action of the fields of both 
modes. 

It is convenient to seek a solution of (31) in the form 

n.,±k, ~ A,A,{A±(p, k) exp[i(Ul, - Ul,)t + i('P, - 'P') 1 + c.c.}, 

and we obtain for the functions A;± the equations 

[ i(Ul'- Ul,)+ iv(k, ±k,)+_l_+~]A± ~~SK(~- s')A±(p')ds' do' 
~R ~ t 411 

-(2n"-1) (_1_,0 +_1_ .• ). 
y-t51 V+t.£2 

(32) 

The solution of (32) is obtained by a method analogous 
to that used in the solution of (20) and (24). As a result 
we get 

A±(S)~-t±{(2n"-1) (_1_._+_1 __ ) 
y+ lS' Y-ls, 

-.± 1 S '( 1 1) ( " ) ( 1 S - 5'1 )} 'r--- ds --.-"-, +--."-, 2n (5)-1 exp ---- , 
~ - T± 2E:l± Y + 'S2 Y - 'S' 8± -

where 

8 ,_ A'~ 
±---

t-t± 

, 1 [ ( 2kv, - ~l ) ( 2kv, + Q )] 
T+ ~ - arctg + arctg , 

4kv, lIT + llTR lIT + lItI< 

" 1 (lIT + lITR) , +(2kv, + 0)' 
T+ ~-In ... _-

8kv, (lh+1ITH)'+(2~v,-Q)" 

"L' ~ -;-:-,-l-,!_t ,...,+_1.,..,IT;-R,.-,-".­
(111; + 111;R) , + Q' ' 

(33) 

(34) 

The functions A±(~) are similar to (26). The main dif­
ference is that in addition to the lifetime TR and the 
diffusion time 1/ 4Dk2 we deal with a time n -1 equal to 
the period of the oscillations. In particular, the quantity 
Re ®_ is the diffusion length of the electron in energy 
space within the period of oscillations, and Re ®_ ~ ® 
by virtue of SlTR » 1. It must also be borne in mind 
that in the case when the diffusion lengths ®± exceed Eo 
and ~ 0, appropriate changes must be made in the coeffi­
cients of (33). 

With the aid of the functions (22), (26), and (33) we 
obtain from (4) the density matrix in the first-order ap­
proximation: 

r~~~ (p)~ 2A,expii~Ul~t+rp')1 [n,(p)+n'k,(p)+A,'(A++A-)]. (35) 
, 'Y 

Substituting it in the expressions for the current (7), we 
obtain equations that determine the amplitudes of the 
field: 

aE, / at ~ E, {a,' - ~,I.,' + Q{'Jt - 8 121.,'}, 

aE, / at ~ E,{a2' - ~,I.,' + QIJ, - 8 u A,'}, 
(36) 

where O!n' on' and f3n are given by formulas (27') and 
(27"), while the coefficient ® 12 is equal to 

The first two terms in the curly brackets are due to the 
zeroth Fourier component of the distribution function, 
the first of them being connected with the well and the 
second with the smooth part of the function. The expres­
sions under the summation sign stem from the Fourier 
components nkl±~. 
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The system (36) describes completely the two-mode 
regime in a state close to stationary. As is well 
known[7], the stability of the two-mode regime is de­
termined by the sign of the determinant 

Det ~ ~,~, - 8"8,,. (38) 

If Det > 0, then a stable two-mode regime is possible 
(weak coupling); when Det < 0 (strong coupling), the two­
mode regime is unstable and is consequently never real­
ized. As equilibrium is established, the system goes 
over into a state with a single mode. 

An analysiS of (38) is in the general case quite cum­
bersome, and we consider therefore the case most fre­
quently encountered in experiment, l/rR « n ~ 1/r. In 
this region, the values of ®nm and f3n are close to each 
other and the determinant can be approximately written 
in the form 3 ) 

e'v' t(2n' -1) 
Det""2:1(~-8)""4:t2BN(O)." (Wk' )'1 F(x); 

nUl ys 'La I 

(39) 

- 1 1 +(1 + x')'" 'f, 
F(x)= )'2(1-u)---- [ ] 

(Ix!)'" 1 +x' ' (40) 
x = Q /4Dk', U ~ s (4Dk2.rR) 'I,. 

At u > 1, the function F(x) is negative for all x, and 
consequently the two-mode regime is unstable. If u is 
smaller than unity, then the function F(x) has a root 
Xo '" xo(u), and in the region of smaller x it is negative. 
Thus, no'" Xo . 4Dk2 gives the smallest distance between 
the modes of the stable two-mode regime. The value of 
Xo increases monotonically with increasing parameter u. 
When this parameter vanishes, Xo has a minimum value 
Xo Ri 2.3. 

Substituting the expressions sand D, we obtain for 
the parameter u: 

U= 
TA ·2kv, (41) 

y)'3 

The parameters in u are not known with sufficient accur­
acy. If we use approximate values, then u turns out to be 
of the order of unity. We note that doping the semicon­
ductor leads apparently to a decrease in the parameter 
u and contributes to the stability of the two-mode regime. 

The system (36) enables us also to consider the ques­
tion of the jumping of the generation from one mode to 
another. Mode jumping occurs when the generation 
threshold of the second mode, in which the two-mode 
regime is unstable, is reached with increasing pump. By 
determining from the first equation of (36) the stationary 
value A~ of the generated first mode (at A2 '" 0) and sub­
stituting it into the second equation of (36), we obtain 

aE, -E {_I 'I 8 a,' +Q ~,6,-8216,} 
-- 2 0. 2 - Zi-

at [l,~, 
(42) 

(we have taken into account the fact that O!~ is negative). 

The generation threshold of the second mode can be 
reached with increasing pump if 

det = ~,6, - 8,,{j, > O. (43) 

For smooth distribution functions nO( ~) and for a state 
density N( ~) we have approximately ° 1 Ri O2 and the sign 
of this determinant coincides with the sign of Det. Thus, 
mode jumping is impossible in this approximation. 

Allowance for the energy dependences of no and N 
leads to the existence of a narrow region n > 0 in which 
the condition (43) is satisfied and the determinant (38) 
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is negative, i.e., a jwnp to a shorter-wavelength mode 
is possible. 

The model considered in the present paper has cer­
tain limitationso A detailed comparison with the experi­
mental results calls for a determination of the param­
eters and for concrete calculations. 

The authors are grateful to P. G. Eliseev, YUo M. 
Popov, and N. N. Shulkin for a useful discussion of the 
results. 

J)The possible distortion of the distribution function was noted in a recent 
communication [4]. 

2)Spatial diffusion assuming a Fermi distribution function was considered 
in [S]. 

3)We note that for smooth functions nOCO the sign of the determinant co­
incides with the sign of the difference ~ - E>. 
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