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The problem of variation of the conductivity of a metallic film under the action of an 
electric field perpendicular to the film surface is solved. It is found that in thin films 
changes in the surface roughness induced by an external field determine the magnitude 
and sign of the effect. 

The field effect, Le., the variation of the longitudinal 
resistance of thin plates under the influence of an elec
tric field normal to the surface, is frequently used to 
study the surface of a semiconductor. At the same 
time, this method is hardly ever used for metals. The 
reason is the significant difference .between the carrier 
densities in the metal and in the semiconductor. The 
field effect in a semiconductor is mainly connected with 
carriers induced by the external field. It can be easily 
seen that in a metal the number of carriers induced by 
an external field that is weaker than the intra-atomic 
field can become comparable with the number of the 
intrinsic carriers only in films conSisting of a small 
number of monoatomic layers. Such an effect therefore 
becomes insignificant in sufficiently thick metallic films. 

There is however, another mechanism whereby the 
external field influences the resistance of the metal 
film. If the film thickness is smaller than the electron 
mean free path, then scattering by the surface becomes 
the predominant scattering mechanism. A change in the 
potential cP (z) near the surface, under the influence of 
an electric field normal to the surface, can change the 
conditions for electron scattering on the surface, and 
this leads to a change in the resistance of the entire 
film. 

The theory of the field effect in metallic films(l,2j is 
based on a solution of the classical kinetic equation 
with the Fuchs boundary conditions for the distribution 
function l3 j. 

The errors of llj were demonstrated in [2J. The 
kinetic equation was solved in l2j neglecting the action 
of the transverse field on the non-equilibrium carriers. 
In the effect obtained in that paper, the non-equilibrium 
increment to the electron distribution function, caused 
by the drawing field at a concentration on the order of 
the surface concentration, is transported into the 
volume to a distance on the order of the volume mean 
free path lV. The relative change in the conductivity 
t:..a/ a is proportional to the ratio of the change t:..N in 
the number of carriers in the film to the total number 
of carriers N. In terms of the surface potential CPs, 
the film thickness a, the Fermi energy EF, and the 
Debye radius rD, we obtain t:..a/a ~ (cps/EF)(rD/a). 
However, neglect of the strong transverse field while 
taking into account the weak drawing field in the region 
where the external field acts is not justified. It is ap
parently justified only if there is no field effect when 
the drawing field is neglected in the region rD. This is 
correct only if the surface-diffuseness coefficient d~es 
not depend on the energy and angle of incidence of the 
electrons on the surface. On the other hand, if the 
diffuseness coefficient is not constant, then the change 
of the electron velocity at the surface as a result of the 
external field produces a change in the diffuseness. 

346 Sov. Phys.-JETP, Vol. 37, No.2, August 1973 

Since the change of the diffuseness changes the mobility 
of all the electrons in the film, one should expect this 
effect to be of the order of CPs /EF, Le., larger than 
that taken into account in [2J. 

However, description of the field effect in metals on 
the basis of the classical kinetic equation is subject to 
serious doubts. The external magnetic field penetrates 
into the metal to a distance on the order of the screen
ing length rD. Usually rD is of the order of the elec
tron wavelength ).. ~ 1T/PF in the metal (we put hence
forth fi = m = 1, and PF is the Fermi momentum). The 
use of the kinetic equation at distances on the order of 
A from the surface is not legitimate. 

In the present paper we solve the quantum problem. 
The metallic film is placed in a homogeneous electric 
field E perpendicular to the plane of the film. It is 
assumed that the potential produced by this field in the 
film is small in comparison with the Fermi energy; the 
depth of penetration of the field into the film is much 
smaller than the film thickness a; we consider films 
with thickness smaller than the carrier mean free path 
in the volume lV. The problem breaks up into two 
parts: determination of the field distribution in the 
film and determination of the change of the resistance 
in this field. 

PENETRATION OF THE FIELD INTO THE 
METAL 

We neglect first the polarization of the internal 
shells, and retain only the contribution made to the 
polarization by the free electrons. We assume that the 
wave function of the electrons on the surface is equal 
to zero. In the linear approximation, the field is de
scribed by the diagram equation of Fig. 1, correspond
ing to 

~ = - 4n S K(z, z')Ijl(z')dz', 
dz' 

K( ')- 2 ,~ 1jJ/(z)ljJp·'(z')ljJp(z')ljJp'(z) f(E )+c c 
Z,z - e £...J Ep-Ep' p .. 

Here I/!p = IVa exp li(PII 'p)] sin Pzz, P = (PII, Pz), 
p = (x, y), Ep is the electron dispersion law, and 
f( Ep) is the Fermi function. This equation can be 
solved by a variational method. The varied potential 
is 

and we use cp(z) in the form cpse- KZ • The result of 
the calculations is shown in Fig. 2. As seen from the 
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FIG. 1 
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figure, K differs quite little from the reciprocal Debye 
sc reening radius rO = (4e 1>F /1T )1/2. This means that 
the boundary condition for the wave function on the 
surface exerts little influence on the screening near the 
surface. 

The polarization of the inner shell must be taken 
into account if the product of the metal-ion polariza
bility by its atomic density is comparable with unity. 
Allowance for the polarization leads, generally speaking, 
to two characteristic dimensions of the penetration of 
the external field. One of these dimensions, which is 
connected with the polarization of the cores, coincides 
with the interatomic distance in the case of non-close 
packing. At this distance, the field varies periodically 
and is attenuated in oscillatory fashion in the interior. 
In the case of close packing, when the inner shells are 
in contact, the field attenuates exponentially near the 
surface to a depth rn = (2e fl( rr/3n)I/6 determined by 
the concentration of the ions on the inner shell. At 
distances larger than interatomic, however, allowance 
for the polarization of the inner shells is equivalent to 
introducing a dielectric constant E and an average field 
E = Eext E- 1 exp (-z/ rD). The Debye radius rD 
= (rrE/ 4e1>F) is determined by the concentration of the 
free carriers and by the electric constant of the ionic 
cores. For the static dielectric constant of the core 
one can use the infrared limit of the frequency depend
ence of the real part of the dielectric constant, obtained 
from experiments on light reflection (see, for exam
ple, (4 J). Although generally speaking the field does not 
vary exponentially in the interior of the metal, the 
exponential approximation can be regarded as satisfac
tory, since it is exact in a number of limiting cases. 
We shall henceforth assume that the potential takes the 
form'P = 'Pse-KZ. 

VARIATION OF THE FILM RESISTANCE. 

Specular scattering of the carriers is apparently 
possible only from atomically-pure and atomically
smooth surfaces. The finite diffuseness of the surface 
can be connected either with foreign atoms adsorbed on 
the surface, or with irregularity of the surface itself. 

These irregularities can be divided into two types. 
If an incompletely-finished monolayer is produced on 
the surface during the film growth, then the atoms of 
this monolayer, just like individual "foreign" atoms, 
form a two-dimensional gas. It is natural to describe 
a sufficiently large number of incomplete mono layers 
as geometrical irregularities of the surface. 

In thin films, the main contribution to the conductiv
ity is made by a small group of electrons that travel 
almost parallel to the surface [5 J• We shall assume that 
the characteristic angle of incidence of electrons on the 
surface satisfies the relation cos e = pz/p« AjR, 
where R is the characteristic height of the irregulari-
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ties of H or the dimension of the surface atom. If the 
work function V o exceeds the transverse electron 
energy p~ /2, then the Hamiltonian of the interaction 
with the surface defect listed above takes the form 

1 S a",+ a", 
H"=2: -a; 6 (z)u(p)a;:d'r, (1) 

where I/I(r) is the wave function of the electrons and 
u(p) for geometric defects is the z-coordinate of the 
surface at the point p. This Hamiltonian was cited 
without proof in[6J, and a proof of its applicability can 
be found in[7]. 

The residual conducti vity can be expressed with the 
aid of the Greenwood-Peierls formula in terms of the 
average product of the Green's function of the ensemble 
of randomly distributed defects and the random function 
u(n)[8]. The quantity u(p) is assumed to be a random 
Gaussian function with a correlator 

W(p_p')=<U(p)U(p'»= ,:i,exp [ _ 11'-:,'1'], (2) 

We assume henceforth that the correlation radius 
L - 0, i.e., the heights of the surface irregularities at 
neighboring points are independently distributed, 
W(p - p') = Woo(p - p'). The mean-squared height H 
of the irregularities is connected with Wo by the rela
tion H2 =Wo/1rL 2• 

A diagram technique describing the averages of the 
Green's functions and their product is illustrated in 
Fig. 3. A thin solid line represents the bare Green's 
function GO, which in the representation of the eigen
functions of an ideal film takes the form 

Gnn,O (p - p') = 0"",1\ (p - p') (2n) '[E - p'/2 - n'n' / 2a' 
~i6sign (E-E F )]-'. 

A thick solid line denotes the average Green's function 
Gnn /( pl. A dashed line corresponds to the potential of 
the volume defect, and the dash-dot line, given by 

n'a-'n,n,n,n,Wo6(p - p') (2n)', 

describes the interaction with the surface defects. The 
wavy line denotes interaction with the external field 
'P se - KZ. The matrix element V nn I of the interaction is 
given by 

V"n' (p _ p') = ~ <p,x (nn/a) (nn' fa) (2n) '6 (p - p') 
a [x'+n'(n-n')'/a'][x'+n'(n+n')'/a'] (3) 

The square in the figure represents a product of two 
Green's functions. Since we are seeking only the re-
s ponse linear in the external pole, only diagrams with 
one wavy line are taken into account in Fig. 3. 

If we confine ourselves to scattering by short-range 
centers in the VOlume, then the problem of calculating 
the conductivity becomes much simpler. Diagrams of 
th.e type shown in Fig. 31 and 3m make no contribution 
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to the electric conductivity, and the Greenwood-Peierls 
formula takes the form 

e' d'pdE at 
a= 4na ~S (2n)' P'C:n'(P)--ri-' (4) 

nn' 
Here Gnn/(P) is the difference between the retarded 
and advanced Green's functions determined by the 
diagrams of Fig. 3, and fo( E) is the Fermi distribution 
function. 

The Dyson equation (Fig. 3) connects the Green's 
function with the self-energy part Lnn/(P). In first
order approximation, the field-independent part of L 
takes the form L~ri/( p) = LS + L Y[9], where 

• ( ) _ 1 ~ S d'p, (n)' " 0 ~nn' p -7"'-.1 (2n)' -;; nnn,Gn , (p,)W(p-p,), 
n, 

v i 
~nn' (P)=-2-linn" 

Tv 

LS is the contribution made to the self-energy part by 
the scattering from the surface. The volume scattering 
is described by a relaxation time Ty without specifying 
the model concretely. 

We shall need to know only the imaginary part of 
LS • In the limits of short-range centers (LPF « 1), 
we have 

1m ~:n'(P)= ~ p,p.' (2Ep)''', 
6na 

nn 
p,=-. 

a 
(5) 

The next higher approximation gi ves rise to diagrams 
with encompassing and intersection of dashed and dash
dot lines. Such diagrams in the case of volume scatter
ing are small in comparison with diagrams without 
intersection in a ratio (EFTyf" i.e., they are of the 
order of smallness usually proposed in the theory of 
kinetic phenomena [8J• 

The enclosures and intersections of the dash-dot 
lines diverge as a result of summation over large n. 
The divergences due to the inapplicability of the model 
(the Hamiltonian (1) for values pz > min( IT/R, v' 2Uo). 
To estimate the contribution of the divergent terms, we 
can use the results of: lO ]. The expressions obtained in 
that reference for the enclosures and intersections are 
finite in magnitude. For them to be small in compari
son with the first-order diagrams, it suffices to have 
the height of the irregularities H (or in the general 
case the quantity v'Wo/L2) small in comparison with 
the correlation radius L. 

The change of the scattering on the surface as a re
sult of the external field gives rise to an increment to 
L, corresponding to the diagram g of Fig. 3. After 
simple calculations we obtain 

I ,,'" p,p: Wocp,x [2'12EF 2Y2EF] 
m ... =----- ----arctg---

a :rt x x 
(6) 

The probability of scattering by volume centers situated 
in the surface-charge layer, being lower than the proba
bilities of scattering by all volume centers by a factor 
rD/a, are all the more smaller than the probabilities 
of surface scattering. Therefore the change of scatter
ing by volume defects can be disregarded. 

As will be shown below, the main contribution tc the 
conducti vity is made by the diagonal elements of the 
Green's function Gnn(P). In addition to the diagrams 
taken into account in Z;nn(P), a contribution to Gnn(P) 
is made by diagram h of Fig. 3. When these diagrams 
are taken into account, Gnn(p, takes the form 
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Gnn (p) = [E - p'l2 - n'n'/2a' - Vnn - ~nn (p) - ~~~ (p) ]-' 

where 
(') _ 1 ~ (0) 0 

~nn (p)- 27 "'-.I Vnn,~n,n (p)Gn, (p). 

The imaginary part of Z;~ri near E = p2/2 + lT 2n 2/2a2 is 
expressed in terms of LHN in the following fashion: 

(,). 4'1'.. (7) 
Im~nn (P)=--4 '+ ' Im~nn (p). 

p. " 
The seeming exageration of the accuracy, due to taking 
into account terms proportional to the small external 
field in the Green's-function denominator, is inSignifi
cant if all the results are expanded in terms of this 
fie ld, as will be done subsequently. It is easy to under
stand the meaning of the increments to the frequency 
of the collisions with the surface, Z;( 1) and Z;( 2) , which 
are connected with the external field, by making a com
parison with the limiting case when the field becomes 
classical in the space-share region (pzrD » 1). We 
can use here the representation of the diffuseness con
stant, a representation that depends on the transverse 
momentum and the kinetic energy of the electrons near 
the surface[9]. In collisions with the surface, the re
laxation time is given by 

where T is the period of the transverse motion of the 
particle. Assuming <fJs to be small, we see that Z;(1) 

corresponds to an expansion in powers of <fJs /EF, and 
is consequently connected with the change of the kinetic 
energy, and Z; (2) ~ <fJ s / p~ and is connected with the 
change of the transverse momentum. The contribution 
made to the conductivity by the diagonal elements is 

e' ~ S d'p (1m ~)'atlaE 
a = na ~ (2n)' dEplI' [(E _ p'/2 - n'n'/2a' - Vnn - Re ~)' +(Im ~)2]' 

(8 ) 

The summation over n, taking into account the fact that 
we are interested in the case of a classical film, should 
be replaced by integration with respect to Pz: 

1 1 ~ 
--;;- ~--;-S dp,. 

o 

In addition, a must be linearized in Z;(1),(2) and Ynn' 
This yields 

a = O',J + at + 0'2, 

ao = (4~)' [ (1- x') (2E F ),/'[Im ~O(EF'X) ]-' dx, 

a, = - (4 e') 2 f (1- x') Vnn(EF, x)-O-(E/I'/Im ~O(EF' x) )dx, 
1t Ii 8E p 

(9 ) 

x = Pz / p, ao is the conductivity of the film without an 
external field, a1 describes the change in conductivity 
due to the change in the electron density and to the 
change of the period of motion in the film, while a2 
describes the change in the scattering by the surface 
under the influence of the field. If the scattering from 
the surface is described with the aid of a diffuseness 
coefficient, then the last term is the result of taking 
into account the dependence of the diffuseness coeffic
ient on the transverse field. 

Substituting in (9) the corres ponding expressions 
from formulas (3), (5), (6), and (7), we obtain 
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3e2a 
(J,= 16nW,EF I,(A), 

cr, = - 3e'a <po [I, (A, ~) 
16nW,EF axE,. '2PF 

(10 ) 

3e'a <po [ x (2PF 2PF) a a] (J,= - ---arctg-- --/,--1, . 
16nWoEF EF 2PF x x aA DA ' 

Here 
I l-x2 

I,(A)= S--dx. 
o A+x' 

( X) x'(l- x')dx 
I, A, -2PF = S --;-;--c,----;-;-;--;;-:-;-'--;;-:-:;-;

(A + x') (x'/4p,.' + x') 

The parameter E = 31Ta/(2EF)s/2 WoTV = a/l]lV charac
terizes the ratio of the effective film thickness a/I] to 
the mean free path in the volume; 11 is the surface dif
fuseness coefficient for electrons moving normally 
towards the surface. 

It is seen from (10) that the contribution alto the 
conductivity is proportional to the quantity (Karl or 
A/a, and is small in comparison with a2. It must be 
taken into account only in the case of quantum films 
(a ~ K -1 > A), but in this case the formulas given above 
are incorrect, since it is impossible to change over in 
(8) from summation to integration. The most interesting 
case is of films in which the classical size effect is 
observed (lV> a/1) > A). We then obtain for ao the 
characteristic square-root dependence of the conduc-
ti vity on the film thic kness : 

(11 ) 

The form of the increment due to the change produced 
in the surface scattering by the external field depends 
on the depth of penetration K- 1 of the field into the con
ductor. If K is not only smaller than Pz, but also 
smaller than the characteristic transverse momentum 
pz = PF(a/l7lv)1/2 (this corresponds to large Debye 
radii), then 

<1, = <1'~~ [1 +_a_]. 
EF a 1]lv 

If 1 » K/2PF » (a/1)IV)1/2, then 

<po (2PF)' [ (X) '] <1, = <1,£-; -x- 1 + 2P: . 
In (12) and (13), the first term is connected with the 
change of the transverse momentum in the external 
field, and the second with the change of the kinetic 
energy. Their ratio is larger than unity. The reason 
for this is that (pz)« EF. 

(12 ) 

(13 ) 

At a small depth of penetration of the external field 
( K » PF), the influence of this depth on the conductivity 
decreases by a factor (PF / K)2: 

'P. ( 2PF )'[ X] <12=<1,- -- 1+-. - . 
E,. X bpF 

(14) 

The smallness of the effect of the external field on the 
scattering can be easily understood in this case, for 
even in the case of a repulsive bending of the bands the 
electrons reach the surface by tunneling if rD < A. 

The expressions obtained above do not take into ac
count the contribution made to the conductivity by the 
off-diagonal elements of the Greens function 

G",:(p) = 2ImLnn'(P) I [(E - En(P» (E - E"(p»], 

This contribution can be easily calculated and it turns 
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out to be small even in the case of complete diffuseness 
of the surface (WoEF ~ 1): 

<1 off.diagl <1';;;; (AI a)'/, In (-r:VEF) (-rvE, .. )-', 

The increment to aoff-diag, which is proportional to the 
field, is of the order of CPsK-1wgE~/2In2 (TVK 2 ), and is 
small in comparison with a2. 

We did not take into account diagrams of the type of 
Fig. 3j in the calculation. These diagrams describe the 
renormalization of the external-field potential because 
the boundary is not ideal. An estimate shows that the: 
contribution of such diagrams to the self-energy part 
is of the order of P~ Woe 2cps/apF' When the condition 
e 2pz/PF « 1 is satisfied, this contribution can be 
neglected in comparison with the contribution 2:( 1). In 
particular, if K2 = e 2 pF « PF' these diagrams need not 
be taken into account for all angles of incidence of the 
electrons in the surface. If K ~ PF, then the diagrams 
of the type of Fig. 3j can be neglected in the case of a 
thin film, when the main contribution to the conductivity 
is made by electrons travelling at small angles pz/p 
to the surface. 

DISCUSSION 

As follows from the results, the field effect connected 
with the energy at angular dependences of the surface 
scattering exceeds the possible value of the effect when 
the diffuseness coefficient is constant. The change of 
conducti vity has a sign opposite to that of the change in 
the number of carriers, i.e., the sign of the field effect 
is negati ve . 

The most important limitations used in the paper are 
the following: 

1) the effective thickness a1)-l of the film is smaller 
than the mean free path in the volume; 

2) the field penetrates into the conductor to a dis
tance much smaller than the film thickness; 

3) the characteristic transverse momentum 
(pz )char = PF(a/1')IV)1/Z is smaller than the reciprocal 
height of the irregularities (than the dimension of the 
surface atom); 

4) the dimension of the irregularities is much 
smaller than the depth of penetration of the field; 

5) the surface potential CPs is small in comparison 
with the Fermi energy EF. 

All the calculations were performed for zero tem
perature. This condition is immaterial, however, At 
temperatures T above the Debye temperature TD the 
scattering of the electrons by the phonons in the metal 
is isotropic, and is therefore equi valent to scattering 
in the model of the short-range centers, if 'V is de
fined as the volume mean free path corresponding to 
the given temperature. At T < TD, the scattering be
comes anisotropic. If the characteristic angle for the 
scattering of an electron by a phonon ~T/TD is small 
in comparison with (a/ lV1))1/ 3, then lV should be taken 
to be the transport mean free path, i.e., the length that 
determines the conductivity of a bulky sample. If T/TD 
> (a/1V1))1/2, then any collision with a phonon increases 
effectively the transverse momentum of the electron, 
which leads to the increase of the frequency of the col
lisions with the surface, predicted by Azbel' and 
Gurzhi [111. It is then necessary to use for lV the non-
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transport mean free path, which is determined by the 
total scattering cross section. 

The effective-mass approximation used in the pres
ent paper is apparently well satisfied only for materials 
with low Fermi energy, alkali metals and semi metals 
such as Bi and Se. The results, however, are valid 
qualitati vely also for metals with large Fermi energy. 
It is easy to show that when account is taken of the 
exact form of the wave function of the electrons that 
make the main contribution to the film conductivity, the 
result is only a renormalization of u(p) in expression 
(1) for the Hamiltonian of the interaction of the elec
trons with the surface defects, while the sign and order 
of magnitude of the matrix element of the external-
field potential (3) remain unchanged. Thus, the ex
pected sign of the field effect for noble metals is like
wise negative if the conditions listed above are satisfied. 

The field effect in metallic film was investigated 
experimentally in[12, 13J. The external field used in[12J 
was of the order of 105 V/cm. At this value of the field 
the surface potential in ordinary metals is 10-3_10-2 V. 
At EF ~ 2-5 eV, the parameter rps/EF is small. 
In [13J, the field was produced in the metal by polarizing 
a ferroelectric on which the investigated metal was 
evaporated. The induction attained in this experiment 
amounted to 3 x 108 V/cm. The corresponding surface 
potential is comparable with the Fermi energy, so that 
our results are not directly applicable to a description 
of this experiment. 

A negative sign of the field effect was indeed ob
served in[12J in n-Sb films. It should be noted, however, 
that in antimony there are two types of carriers, mak
ing it difficult to compare the theory with experiment. 
A positive field effect was observed in a gold film in 
contradiction to formula (10). The reason may be that 
in [12] there was no special quality control of the film 
surface, so that the principal role in the gold films 
might have been played by scattering from surface ir
regularities of larger dimension than the Debye radius. 
When a field is applied to such a surface, the scattering 
from the surface changes negligibly, since the field in
side the metal duplicates the shape of the surface. The 
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entire effect is determined by the change in the number 
of carriers in the film and by the change of the effective 
thickness of the film. Its value turns out to be much 
smaller than the possible value of the field effect due 
to variation in the scattering. Another possible explana
tion is advanced in[12J, where all the changes in the 
conducti vity are attributed to electrons localized on 
surface states. 

It seems that the simplest and most unique experi
ment for the observation of the dependence of surface 
scattering on the external field would be to measure the 
width of the magnetic surface level [6J as functions of 
the transverse electric field. 
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