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Oscillations of the conductivity of semiconductors in quantizing magnetic fields due to in
teraction with optical phonons are studied under conditions of heating of the electron gas. 
It is shown that the conductivity maxima are shifted toward lower magnetic field strengths 
relative to the magneto-phonon resonance points. The contribution to the conductivity 
associated with scattering by optical phonons can be negative near the maxima. 

1. A number of theoretical and experimental 
papers (1-4J have been devoted to the study of oscillations 
of the conductivity of semiconductors in quantizing mag
netic fie Ids, due to the resonance interaction of e lec
trons with optical phonons which were predicted by 
Gurevich and Firsov. l5 J In the work of Pomortsev and 
Kharus, (6J it was shown that the inelasticity of the scat
tering of electrons by optical phonons also leads to an 
oscillating dependence of the power transferred from 
the electrons to the optical phonons on the magnetic 
field. In the case in whic h there is a heating of the e lec
tron gas, this circumstance can be the reason for the 
oscillation of the electron temperature, which makes 
easier the conditions for observation of the magneto
phonon oscillations of the conductivity .l7J 

The present work is devoted to the study of magneto
phonon oscillation of the conductivity of semiconductors 
with account of the nonequilibrium of the electron gas. 
This conductivity can be connected both with the heating 
action of the static electric field and with the effect of 
electromagnetic radiation. A similar situation has been 
investigated experimentally, for example, in the works 
of Stradling et al. (a,9J As was observed by Stradling and 
Wood, [8J under conditions of the heating of the electrons 
by the static field, the maxima of the transverse mag
netoresistance, and consequently the conductivity, is 
shifted relative to the point of magnetophonon reso
nance Nwc = Wo (wc is the cyclotron frequency, Wo is 
the limiting frequency of optical phonons) toward 
smaller magnetic field strengths. The authors at
tributed this fact to the presence of electron transitions 
not to the ground Landau level, but to impurity levels. 

In the present research, it is shown that such a shift 
in the location of the maxima should take place even in 
the absence of transitions to impurity levels. Here, 
there should be a minimum in the conductivity near the 
maximum (see[lOJ). The presence of minima in the 
conducti vity in the vicinity of the magnetophonon reso
nance point was discovered experimentally in the work 
of Aksel'rod et al. [l1J Their appearance was explained 
by the fact [l1J that the contribution made to the conduc
ti vity of a nonequilibrium electron gas by scattering by 
optical phonons near the magnetophonon resonance 
points can be negative .l1OJ A more rigorous considera
tion of this problem is the purpose of this paper. 

2. For simplicity, let us consider the case of a non
degenerate semiconductor with a quadratic and isotropiC 
dispersion law. We shall assume that the condition of 
quasidiscreteness of the energy spectrum is satisfied: 

(1) 
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where T is the characteristic relaxation time of the 
momentum of the electrons. 

We can then write down the following expression for 
the conduction current due to the interaction with opti
cal phonons directed transverse to the magnetic field; 

; ~ I = L, j dy y exp ( - y;) P NN' (y) 
NN' _OD 

(2) 

Here No = lexp (Wo/To) - orl is the number of optical 
phonons, fN (E:) is the distribution function of the elec
trons' 

/',.NN'(Y) = (N-N')oo,+oo,-Fy, 

e± = max {O, ±/',.NN' (y)}, 
F = eEL, L = (c / eH).", Ii = k = 1, 

To is the temperature of the lattice (we neglect heating 
of the optical phonons). 

The presence in (2) of the functions 
exp ( _y2/2) PNN'(y) is connected with the dependence 
of the matrix elements of interaction of the electrons 
in the magnetic field with the phonons on the quantum 
numbers of the electrons and the momentum of the 
phonons. Here we have neglected the dependence of the 
functions PNN'(y) on the energy of motion of the elec
trons along the magnetic field. In Eq. (2), we do not 
take into account the broadening of the Landau levels 
because of collisions and we neglect the dispersion of 
the optical phonons. 

3. The explicit form of the distribution function 
fN( E:) is determined by the competition between the 
processes of heating of the electrons (by the static 
electric field or by radiation), relaxations on phonons, 
and electron-electron interaction, If the frequency of 
electron-electron collisions vee exceeds the character
istic frequency of interaction with optical phonons Vo, 

then the distribution function of the electrons has a 
Maxwellian shape with effective temperature T. We 
estimate the quantity Vo in the considered case. For 
this purpose, we note that the effect on the distribution 
function of interaction with the optical phonons is con
nected both with the processes of emission of the pho
nons and with processes of their absorption. The prob
ability of absorption of a phonon by an electron situated, 
for example, at the zeroth Landau level is of order 
T~l Nofo( d, where T~l ~ QLWo, QL is the constant of the 
interaction, and the probability of emission of a phonon 
by an electron situated at the N-th level is of order 

To-I (No + 1)/N(e) = To-'No exp (000/ TO)/N(e), 
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Here 

/N(e) .;; /O(e) exp (-roo I To). 

Therefore, 110 ~ NoT~I. We compare the quantities vee 
and lIo. According to the work of Zlobin and Zyryanov, (7) 

2:nmne' (rD') ( roo ) 
'V .. - (2mT)./,ln V exp -y . 

where n is the concentration of the electrons and ro 
is the Debye radius, This expression is valid for 
ro » Land Wc > T. Let m ~ 10-2mo, T ~ 100 oK, 
OtL = 0.014, Wo ~ 3 X 1013 sec.-I. Then, for wo> To, we 
have the condition 

if n > 10 14 cm -2. However, 110 increases appreciably 
near the magnetophonon resonance points. 

For wo> To in the more realistic case when lIee 
« lIo, the behavior of the distribution function, as was 
shown by Levinson and Mazhuolite. (12) can be essen
tially different in the active region (energy of the elec
tron greater than the energy of the optical phonon) and 
in the passive region (energy of the electron less than 
the energy of the optical phonon). Upon fulfilment of 
the conditions 

(3 ) 

if the heating mechanism is not too intense, the distri
bution function in the active region can be expressed in 
terms of the distribution function in the passi ve region, 
which in turn is Maxwellian with an effective tempera
ture T. 

The parameter Ii which enters into the relation (3) 
. characterizes the intensity of the processes of com
posite scattering, in which the electron absorbs an 
optical phonon with subsequent emission of a phonon. In 
the case considered, this parameter is determined 
either by the dispersion of the optical phonons 
(Ii ~ (m/M)2 (wo/To), M is the mass of the nucleus) or 
by the inelasticity connected with the shift in the centers 
of the Larmor electron orbits in the scattering 
(Ii ~ F/To). Since the dispersion of the optical phonons 
is weak (we shall neglect it), the value of the parameter 

. Ii in our case for not too weak electric fields is deter
mined by the second mechanism. 

We shall assume that 

roo> To, T - To .;; To, (4) 

where T is the effective temperature of the electrons 
in the passive region and the condition (3) is also satts
fied. The latter is possible if 

F< To. (5) 

Two cases are possible, depending on the intensity of 
the heating. In the first case, the frequency liT, which 
characterizes the energy transfer rate from the source 
of the heating to the electrons, is much smaller than the 
characteristic frequency lIo of interaction with the opti
cal phonons, In the second case these frequencies are 
of the same order. 

For Joule heating of the electron gas due to conduc
tivity associated with scattering from impurities and 
(or) acoustic phonons, we have liT ~ F/ToTi ac, where 
Ti ac is the relaxation time of the momentu~ on impuri
ties and (or) acoustic phonons. If the heating of the 
electrons is generated by radiation of frequency 
n » T- 1, then liT ~ nOtR/ToTi ac where OR < 1 is the , 

327 Sov. Phys.·JETP, Vol. 37, No.2, August 1973 

parameter of interaction of the electrons with the radia
tion. Actually, in collisions of an electron with an im
purity or acoustic phonon, its kinetic energy is in
creased in the mean by an amount of the order of F or 
n. Recognizing that such processes take place with 
frequencies Ti1ac and OR Ti1ac, respectively, we obtain 
the estimates Iii ven above. ' 

4. We now consider the case in which 1) 

(6) 

Then the effect of the heating mechanism is small in the 
passive region in comparison with processes of inter
action with optical phonons. We neglect quantities of the 
order of IIT/llo. After this, the distribution function in 
the active region, as was pOinted out above (see[121), is 
expressed in terms of the distribution function in the 
passive region. Taking into account only transitions 
from the zeroth Landau level to the N-th resonance and 
the reverse tranSitions, which can be done if 

O>e>T, (7) 

we have 

(8 + Nro, > roo), 
/N(e) =exp (-rooITo)/o(e+Nro,-roo). (8) 

Since the right side of (8) contains the distribution 
function in the passive region Le., the Maxwellian func
tion, the expression (8) can be rewritten in the following 
form: 

(9 ) 

Here 11 = , - 12wc, is the Fermi energy. In obtaining 
Eq. (8) and (9), we have neglected terms of the order of 
(F/To)2 (see footnote 1). 

The expression (9) differs from the expression ob
tained for fN( E) by use of the effective temperature ap
proximation, in both the passive and the active regions, 
by the factor 

exp [roo(1I T -11 To) 1< 1. 

We substitute Eq. (9) in Eq. (2). Taking into account 
the conditions (4) and (7), we obtain 

[ ( I'l.N) f dee- olT f dee-'IT ] 
x exp T f+ 8 ·;.(e-I'l.N+Fy)'I. - f_ s.I'(8+I'l.N-J/y)';; . (10) 

Here €± = max{O, ±( Fy - aN)}, aN = Wo - Nwc , PN(y) 
== PON(Y). 

Carrying out integration in (10) over dE, we obtain: 
the relation 

F ~ (I'l.N)wS (y') (IF'Y-~NI) I=2fjNoeI'lT ",-,exp 2T dyy'exp -""2 PN(y)Ko 2T 

N (11) 

where Ko( x) is the Macdonald function. 

In the vicinity of the magneto phonon resonance, we 
get from (11) 

I""IN"".!...Noexp(2"--:~N)aNln 4T 
T 2T IF- ~NI 

aN=_idyy~exp(-~')pN(Y)-1. (12) 

In obtaining (12), we used the asymptotic expression 
for the function Ko(x): 
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Ko(x) ""In (2/x) for x<1. 

It is seen directly from (12) that the role of the cutoff 
factor is played by the quantity F/4T. The latter is 
natural, since we have neglected above the broadening 
of the Landau levels and the dispersion of the optical 
phonons. 

We note that Eq. (12) differs from the expression 
obtained in the effective temperature approximation (in 
the active and passive regions) which, for T - To« TVwo 
and F < I t:.N I « T, takes the form 

(13 ) 

5. We now assume that the frequency lIee, is not 
too small in comparison with 110. In a such a case, the 
effect of heating on the shape of the distribution func
tion is more important. Since the heating leads to an 
increase in the number of electrons in the active region, 
the distribution function in the active region in the given 
case (cf. with Eqs. (9)) will be equal to 

fN(e»exp[wo(~- :,)+J.I-N;,-e]. (14) 

Moreover, the difference between fN( E ) and the expres
sion on the right side of (14) is of the order lIee /110. 

With account of (14), we obtain from Eq. (2) for the 
contribution t:.I to the expression (11), 

M ~NoeolT ~exp (~N). 
N 

F (Y') f dBgN(e)e-</T 
)(J~ dyyexp -"2 P N (y) ~+ B'/'(B - tJ. N + Fy)'/'· 

Here we have introduced the notation 

g.v(e)=fN(B)exp[-wo(; -T~ )_~N;'-B]_1. 

Carrying out the integration over dE, we get 

!11=NoeolT~ gNexp(~). 
...... 2T 

N 

J~ (y' FY) (IFY-!1NI) x _~dyyexp -T+'2"T PN(y)K 2T . 

(15) 

(16) 

Here gN ~ lIee/llo, the function K(x) has the same 
character with regard to singularities as the function 
Ko(x), This is connected with the fact that the charac
ter of the Singularities of the integral over dE in (15) 
is determined by the denominator of the integrand of 
the expression, since the functions e- v/ T and gN(E) 
are smooth (lgN(dl/gN(E) ~ T- 1 ). Therefore, for 
x « 1, we have K(x) "" in (2/x). 

In the immediate neighborhood of the magnetophonon 
resonance points, I t:.NI < F, we have from (16) 

F 4T 
!1I "" !1IN "" _eolTbNln __ 

2T IFI ' 

where bN ~ lIee/llo. 

In the range F < I t:.N I « T, the formula (16) re
duces to 

Here we have used the fact that for x « 1 we have 
K'(x) "" _X-I. 

We note that, according to Eq. (18), t:.IN < 0 for 
t:.N < O. 

(17) 

(18) 

We now compare the absolute values of the quantity 
t:.IN for magneto phonon resonance (Eq. (17)) and for 
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It:.NI > F (Eq. (18)). We have 

(M~),e, "" I!1N I In 4T . 
IMNI T IFI (19) 

It then follows that (t:.IN hes / I t:.IN I < 1 for sufficiently 
small value of It:.NI/T. Therefore, the contribution 
t:.IN has a maximum not at the points of resonance but 
at some value t:.N > O. Thus the maxima of t:.IN are 
shifted toward weaker magnetic fields. For t:. N < 0, the 
quantity t:.IN has a minimum at which t:.IN < O. 

We now compare the absolute values of the quantity 
IN for I t:.NI < F, and t:.IN for F < I t:.NI «T. Using 
the expressions (12) and (18), we obtain 

(IN),e, -~ln~(~). (20) 
IAINI T IFI VO 

It is seen from the last relation that for not too 
small values of the frequency lIee the values of IN and 
t:.IN can be equal in order of magnitude. The estimate 
(19) turns out to be valid also for lIee :c 110. Therefore, 
the location of the maxima of the conductivity is shifted 
somewhat toward weaker magnetic fields. Moreover, 
for t:.N < 0, the total conductivity has a minimum at 
which it can be negative. 

The dependence of the effective temperature of the 
electrons in the passive region on the relation between 
Wc and Wo can have an effect on the oscillations of the 
conducti vity. The effective temperature in the passive 
region is determined from the equation of energy 
balance in this region. Further, the character of its 
behavior near the magneto phonon resonance depends on 
the channel through which the passive electrons give up 
their energy. The energy of the pasSive electrons can 
(if we neglect dispersion of the optical phonons) be 
gi ven up to the acoustic phonons and the active elec
trons with subsequent transfer to the optical phonons. 
The corresponding frequencies are equal to oac / T ac 
and lIee exp( -wo/To) in order of magnitude, where 
oac ~ (s/ TL)2 is the parameter of inelasticity of the 
scattering from acoustic phonons, and s the sound 
velocity. 

The compound scattering from optical phonons can 
have a significant effect on the energy balance. In each 
act of this scattering, the energy of the electron is 
changed by an amount of the order of F. These proces
ses (see above) take place with frequency 0110' If the 
frequencies oac /oac or lIee exp ( -wo/To) exceed the 
frequency 0110, then the effective temperature in the 
passive region depends weakly on the relation between 
Wc and woo In the opposite case, the behavior of the 
effective temperature near the magnetophonon reso
nance can have an oscillatory character. 2) This limit 
requires special consideration, however, for to find the 
distribution function in such a case, it is necessary to 
take into account the effect of the electric field on the 
interaction of the electrons with the optical phonons. 
The latter complicates the problem appreciably. We 
note only that for t:.N < 0 the temperature is obviously 
higher than for t:.N > O. This fact can lead to a deepen
ing of the conductivity minima and a broadening of its 
maxima. 

6. The singularities in the behavior of the conduc
ti vity as a function of the cyclotron frequency (i.e., the 
magnetic field), which we have noted, are connected 
with the nonequilibrium electron gas and have a Simple 
physical interpretation. Under the heating conditions 
the frequency of transitions with emission of optical 
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phonons exceeds the rate of transitions with absorption. 
For such transitions, a change takes place both in the 
kinetic and in the potential energy of the electrons. The 
latter is connected with the shift in the centers of the 
electron orbits in scattering along or opposite to the 
electric field. If AN < 0, then, since transitions are 
most probable between states in which the energy of 
motion of the electron along the magnetic field is equal 
to zero, the difference in the change of the kinetic 
energy and the energy of the optical phonon in its emis
sion goes into an increase in the potential energy of the 
electron. Such processes make a negative contribution 
to the conductivity. If AN> 0, then during the scatter
ing a decrease takes place in the potential energy of the 
electron. The contribution from such processes is 
positive. This also leads to a shift in the maxima and 
to the appearance of additional minima in the conduc-
ti vity. A similar situation ho Ids in the nonequilibrium 
two-dimensional electron gas. [13J 

l)The conductivity associated with scattering by optical phonons also 
leads to heating of the electron gas. The characteristic frequency of 
such a process is vT - FVo/To -/ivo. Because of the inequality (5), 
the relation (6) is always satisfied in this case (see (3». Hence it follows, 
in particular, that, in finding the distribution function, one cannot take 
into account the effect of the electric field on the interaction of elec
trons with optical phonons. 

2)If the distribution function has a Maxwellian shape in both energy 
regions, then the difference T - T 0 tends to zero logarithmically as 
Nwc .... wo. [6] 
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