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A quantum theory of crowdion motion at low temperatures is developed on the basis of 
the defecton model [1,2J. It is shown that the crowdion changes into a quasi-particle 
(the crowdion wave) characterized by its quasi-momentum and a dispersion law. The 
fundamental characteristics of the crowdion wave are found and its interaction with 
long-wave phonons is considered. 

At low temperatures point defects cannot be consid­
ered as localized at definite sites of the crystal lattice. 
In view of the possibility of quantum tunneling, they 
change into quasi-particles-defectons. As a rule, a 
point defect leads to a volume deformation of the crys-
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FIG. I. Arrangement of crowdion atoms in a crystal. 
FIG. 2. Arrangement of crowdion atoms in a crystal deformed by an 

acoustic wave propagating along the x axis.-

tal only in a small region, substantially displacing only 
atoms of the nearest coordination spheres. We shall 
call such a defect a "defect of small radius" and the 
corresponding quaSi-particle, a "defecton of small 
radius." The first semi phenomenological theory of 
defectons of small radius was developed by A. F. 
Andreev and I. M. Lifshitz[ll and the microscopic theory crystal; un is the x-th component of the deformation 
was constructed by this author [2J. There are, however, vector u at the place of the n-th site of the ideal chain 
cases when the implanted interstitial atom is in a com- (in the absence of the implanted atom) (Fig. 2); .1.n == un+1 
pletely different type of configuration called the "crowd- -un; W(~) is the periodic force field that is produced by 
ion." The deformation of the crystal then occurs mainly the crystal matrix and has the period of the lattice. We 
along one of the crystallographic directions. Thus, the shall assume that it has the form 
extra atom is in a more or less close-packed row in which 
even atoms far away from the impurity are displaced wm =A(A)(1-cos2ns) ( 1) 

from their equilibrium positions in the ideal lattice (Fig. (the lattice constant a= 1). 
1). The crowdion configuration can move only along this 
row. In this case the motion of the crowdion is accom­
plished owing to small displacements of its atoms and is 
not connected with an actual migration of the extra atom 
to the center of the new configuration. As a rule the 
crowdion is observed in complex lattices along the direc­
tion with the minimum repetition period. 

The energy of formation of a crowdion is lower than 
the energy of formation of an isolated interstitial atom. 
Also relatively small is the effective potential barrier 
separating two neighboring equilibrium crowdion posi­
tions, and this is another important difference between 
the crowdion and a defect of small radius. Therefore, 
the methods used to analyze defectons of small radius 
and, in particular, the strong- coupling approximation, 
are not applicable here. 

We shall use for the description of a crowdion in a 
crystal a model similar to the Frenkel'-Kontorova 
model[3J used to describe dislocations. We shall assume 
that crowdion atoms interact via elastic forces with their 
nearest neighbors in the chain and are located in a peri­
odic field produced by the remaining part of the crystal. 
If, at the same time the crystal is deformed, then the 
effect of this deformation amounts to a change in the 
period and amplitude of this field. 

The Lagrangian of such a system can be written in the 
form 

where ~~ is the displacement of the n-th atom of the 
crowdion chain from the equilibrium position in the ideal 
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Since the atoms of a crowdion are arranged along the 
direction with the minimum lattice period, it is natural 
to suppose that the interaction between the crowdion 
atoms is much stronger than their interaction with the 
other atoms of the crystal, i.e., that a »A. 

Let us introduce the variables: 

6. = s.' - u", 

Then the Lagrange function for the crowdion chain in 
the crystal field assumes the form 

L= ~ L~n'-L[ ~ (Sn+I-~n)'+W( l!"Lln)] (2) 
n n 

Let us first consider a static deformation of the 
crystal. Then 

If the magnitude of the deformation vector u varies 
over distances A larger than the crowdion length l, then 
the last sum in (3) can be neglected. Thus, we obtain 

The equilibrium positions of the atoms of a crowdion 
in a deformed crystal can be found from the system of 
equations aLI a ~n = 0, i ,e., 
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iiW 
a[S'+I-S.-(s.-s.-.)I- iis• =0. (5) 

Since we are interested in the case when the transi­
tion from the displaced (~= 1) to the imdisplaced (~= 0) 
region encompasses a large number of atoms, we can 
consider 1;n as a continuous function of the coordinate n 
and go over in (5) from the system of difference equations 
to a single differential equation 

ad'~(n) _ iiW =0. (6) 
dn' , iis 

Let us introduce the new variables 

~(n)=s(n)/[l+~(n)1. ~(n)"'iiu/iin. 

Then (6) can be written in the form 

d' dW 
a(l + ~(n» dn,{~(n) (1 + Mn»}=df' 

and its solution should satisfy the conditions 

d~ I ~(-oo)= 1, ~(oo)=O, -d =0. 
n ±~ 

(7) 

(8) 

The quantity L\(n) changes over distances of the order 
of A, whereas 1;(n) changes over distances of the order 
of the crowdion length l. Therefore, in the most inter­
esting case, when A» l, the derivatives of L\ can be 
neglected. Thus, Eq. (7) becomes 

a(l + A(n»' d'~ = dW . 
dn' dl;; 

In the case of the sinusoidal field (1) the solution of 
Eq. (9) satisfying the conditions (8) has the form 

(9) 

I;;(n,x)'" 6C~,x) =2arctg{ exp(~) tg[~~(x)]}, (10) 
1+Ll(n) n ' P 2 

P = 1 + A (x) ,/ G 

2n Y A(A) 

(P is the length of a crowdion in a deformed crystal, 
while x is the number of the atom displaced through the 
distance 1;(x». We shall henceforth denote by x the 
number of the atom at the crowdion center. Then b'(x) 
= 1/2, and, consequently, 

2 ( x-n ) ~(n,x)=-arctgexp -, -- . 
n ' cP 

(11) 

Decomposing A( A) in powers of the small deformation 
L\ and retaining only the linear terms, we obtain 

A(A) =A[l- 2BA.- 2C(A.+ A,)], A."" - , QU.'j 
iJa 11-1:-0 

B = - 2~ ::,Ia~o' c = - 2~ ::Yla~o' 
(We assumed for simplicity that the crystal is elas­
tically isotropic in the x = 0 plane.) Then 

P = [1 + (1 + BM. + c (~. + ~,) II / n, 

where l = %YCilA is the length of the crowdion in the un­
deformed crystal. 

If we displace the atom x through a small distance T/x, 
then a rearrangement of the atoms occurs, as a result 
of which the center of the crowdion goes over into the 
new point x'=x+ f/xl. In fact, if we substitute '(x) = % 
+T/x into (10), then the new configuration is given by the 
function 

- 2 (x-n+1'\ I) 1;;(n,x)=-arctgexp • = 1;;(n,x +1'\.1). 
n P , 

The transfer of the center of the crowdion to the new 
site is then not connected with an actual migration of the 
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extra atom to that point. Since l > > 1, very small dis­
placements of the individual atoms of the chain are suf­
ficient for the displacement of the crowdion. Taking 
account of the foregoing, we shall assume that x is a 
continuous coordinate that characterizes completely the 
location of the crowdion. 

Let us find the static energy of the crowdion in the 
crystal field. For this purpose let us substitute (11) into 
the expression for the potential energy: 

U= .E[ ~(S(n+1,x)-6(n'X»'+W(1~~~~»)] . 

Similar sums have been repeatedly considered in papers 
dealing with the Frenkel'-Kontorova model. The method 
used to compute them is well expounded in [4,5J. There­
fore, we shall only quote the results here: 

U = Uo(A) + 1/2U.(A)cos 2nx + O(e-'"'), 
Uo(A) =Uo(l+ (l-B)[A.+'Y(~.+~,)]), 
'I = C I (1- B), Uo = 2mc' / nl, 
U.(A) = 6mc'(1 + ~.)' exp (-n'P), 

where c = Qffi is the velocity of sound in the crowdion 
chain. 

Thus, we see that besides the constant term Uo(.6.) , 
which has the meaning of the average energy of the 
crowdion, the potential energy also has a periodic part 
whose amplitude U l( L\) depends exponentially on the 
crowdion length. 

Let us now turn to the equations of motion that follow 
from the Lagrange function (2). In the continuum approx­
imation, they have the form 

ii's ii's iiW 
m-=G---. 

iit' iin' iis 
(12) 

We shall be interested in the solutions for which the 
crowdion moves with constant velocity v, i.e., we shall 
assume that the sought- for solution has the form 

~(n, t) = ~(n - vt). 

Substituting (13) into (12), we obtain 

(c' _ v') d's = oW . 
dn' os 

(13) 

(14) 

Except for notation, this equation coincides with (6). 
Consequently, the solution of interest to us has the form 

2 ($+ IIt-n) 
{;(x, n, t) = (1 + A.)--; arctg exp P. . 

It is quite significant that the length of a moving crowdion 
depends on its velocity: 

P.=Pl'l-v'lc'. 

Then the total crowdion energy 

E,= ;.E~'(x,n,t)+.E[; (S(n+1.x,t) (15) 

_s(n,x,t»'+W(s(n,x,t»)] = Uo(A) 
, 1+A. V1-v'lc' 

+~U.(A) (1- ;') exp { - n'P V 1- :: }cos(x+ vt). 

The formula (15) is valid for velocities for which 

Ifi - v' / c' » 1, 

since on the basis of this condition, on going over from 
the difference equations to the differential equation, we 
restricted ourselves to only second derivatives. The 
coefficient in front of the leading derivative in Eq. (14) 
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vanishes when v = c, and, consequently, we must take 
higher-order derivatives into account in order to con­
sider the region v - c. 

If the crowdion velocity is small compared to the 
velocity of sound in the chain, then (15) can be repre­
sented in the form of a sum of kinetic and potential en­
ergies: 

1 mu' , 
Eo = Uo(A)+-U. COB 2nx+~[1 +(1-B) (A.+y(A.+ A.» J. 

2 ~, 

Thus, we see that a crowdion behaves like a particle of 
mass 

2m 
/1 (A) = -[HO-B) (A.+ y(A.+ A.» I. 

nl 

located in a periodic field of exponentially small depth. 
As the crystal expands, Uo(A) and /J.(A) increase, while 
U l( A) decreases. 

Of great interest is the case when the deformation of 
the crystal is caused by the propagation of an elastic 
wave whose wavelength ,\» l. In this case, eliminating 
from (2) the total time derivatives 

d . 
dt(S.Un) = s.u. + s.u., 

we obtain 

L=-i~~·'-~[ ~ (s.+.-s.)'+W( 1~J] 
-~ s.[mu. - a (A. - A._.) J. 

The quantities Un correspond to the displacements 
of the centers of mass of the crystal-lattice cells along 
the crowdion chain and become, in the case of a contin­
uous elastic medium, the x component of the deforma­
tion vector u along the crowdion axis. Let us write down 
the equations of the theory of elasticity 

M 8'u' 
-ua=C(fJ.J.,¥P--, 
Vo 8x.8xv 

where C(J/J.llP is the matrix of the elastic moduli, 
M = ~ms is the mass of the cell, and Vo is the cell 
volume. In complex lattices the quantities M and C(J/J.llP 
can differ widely from m and O! which describe the 
oscillations of the crowdion chain. Consequently, the 
speed s of sound in the crystal does not, generally 
speaking, coincide with the speed of sound in the 
crowdion chain. In those cases1) when s« v «c the de­
formation caused by the elastic wave can be assumed to 
be quasi static , and the results obtained above can be used. 

In the opposite limiting case when v« s «c the crowd­
ion has time to adjust itself to the deformation, but it 
cannot undergo any substantial displacement during one 
period. In this case the crowdion behaves as if it is in 
a variable field. The crowdion mass, the mean energy 
Uo( A), and the amplitude of the periodic potential oscil­
late with the frequency of this field. 

THE CROWDION WAVE 

Let us consider the quasi-static case. Then the Ham­
iltonian for a crowdion in a crystal can be written in the 
form 

p' 1 
H =-+-U. cos 2nx+ Uo(A). 

2/1 2 

If ,\» l, then A is not only small, but it is a slowly 
varying function of its argument as well. Therefore, we 
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can regard A as a parameter and write the Schrodinger 
equation in the form 

where 

d'.p 2/1 (1 ) -+- E--U.coB2nx .h=O 
~. 2 ~, 

E=e-Uo(A). 

( 16) 

After the substitution 1TX = z, it reduces to the Mathieu 
equation: 

d'.p '( /1U. --, + x-/lcoB2z).p=O, 6---, 
dz ' n'h' 

x ... 2J.tE / n'h'. 

According to the Bloch theorem, the wave function of 
the crowdion excitation can be written in the form 

( 17) 

where Uk(X) is a periodic function with the period of the 
lattice. Generally speaking, the eigenvalue spectrum of 
Eq. (16) that allows solutions in the form (17) is quite 
complicated. It however gets Simplified greatly if ac­
count is taken of the fact that in all physically reason­
able cases U 1 «1Tiltl.2 / /J. and, consequently, 0« 1. Then 
the dependence of the energy on the wave vector can be 
determined from the equation[6J 

. 1'1'6' sinnl';-
cos k = cos nx" + ------

4(1-x) nl'i(' 

For small values of the energy (E «11.2/ /J.) we obtain from 
this 

/1U.· h'k' 
s(k)= Uo(A)+--+-, 

(2nh) , 2/1" 

where the effective mass 

/1' = /1(1-'/1'U.' / 2n'h'). 

( 18) 

Thus, the dispersion law for the lowest band of the 
crowdion excitation is quadratic. In spite of the pres­
ence of the potential barriers, owing to tunneling, the 
crowdion wave moves through the crystal as a free par­
ticle of mass close to the crowdion mass. 

The wave function of the crowdion excitation for 
k = 0 has the form 

.po (x) =N-'I'ce (x, ~), 

where ce(x, 0) is the nodeless Mathieu function. For 
0« 1 it varies slowly and for 0 = 0, ce(x) = 1. Conse­
quently, the wave functions of the lOW-lying crowdion ex­
citations can be apprOximated by plane waves. 

INTERACTION WITH PHONONS 

The crowdion is a one-dimensional formation in a 
three-dimensional crystal. Therefore, the crowdion 
wave has properties which fundamentally distinguish it 
from the other quasi-particles in a solid (electrons, ex­
citons, magnons, etc.). It propagates only in a definite 
direction and is localized on one line. Its interaction 
with phonons takes place via deformations occurring in 
the immediate vicinity of the crowdion chain. Therefore, 
the wave function of the crowdion excitation in the con­
tinuum approximation can be written in the form 

.p.(r) = N-'I'e""u.(x)6(y) ()(z), 

where N is the number of atoms in the crystal. 

Let us consider the scattering of a crowdion wave 
by long-wave acoustic phonons in the quasi-static case. 
Let us for this purpose use the deformation potential 
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method. The crowdion excitation-phonon interaction en­
ergy can be obtained from the local dispersion law (18). 
If we neglect the exponentially small correction -ui, 
then it is equal to 

U.(A) - U. = e.(iL\. + ,\,(A. + A,», e.= (1-8)U.. (19) 

In the elastic continuum approximation the deforma­
tion vectors can be written in the form 

where a:q and aq are the creation and annihilation op­
erators for phonons with momentum q, eq are the po­
larization vectors and wq = sq is the dispersion law for 
long-wave phonons. Then 

Since we are considering only longitudinal acoustic 
waves, e~q(7=qb-/q and, consequently, 

i q' 
A. = ffl E q1'2~w. (a.e'q.· - a.+r,q.'). 

• 
According to the general principles of quantum me­

chanics, the matrix element for the crowdion excita­
tion transition from the k- to k'-state under the action 
of the perturbation (19) is equal to 

is, E q.' + yqJ.' S M .. ·=-= (a.exp{i(q.-k + k').:d 
N"'l'N q1'2Mwq 

q 

- a. + exp{- i(q. + k - k')x})dx. 

The matrix element Mkk' is different from zero only 
in the case when the momentum conservation law: 
k'=k+~, or k'=k-qx, is fulfilled. These processes can 
be interpreted as absorption and emission of the x-th 
phonon component. The corresponding probabilities are 
equal to 

W =~S (q.'+yqJ.')' { n. } 
± 2nNIl 2p,q' n.+1 ll(e(k±q.)-e(k)'f'llwq)dq.dq" 

where 

Ms 
PO==T' 

Let us transform the 6-function to the form 

O(e(k+q.)-e(k)-Ilsq)= q.(2k+q.) ll[qJ.'+q.'_q.'(2k+ q• )'] 
fls' 2p 

where p= J.1.s/n. After an elementary integration we 
obtain 

w _ e,' ( q. )'[1 ( 2k + q. )']' 
+- 2IiMs'N 2k+q. -'1'+'1' ~ 

[ { e' (k) /2q ( q ) I} ] -I X exp -T- -f 1+ 2; - 1 , 

e'(k) =Il'k'/2f1. 
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Similarly, 

e,' ( q. )'[ (2k- Q.)']' w_= 2ftMs'N 2k-q. 1-'1'+'1' --2p-

X[t-exp{- e';k) /2:'(1_ ~~yl}r' 
If the wave propagates along the axis of the crowdion, 

then it follows from the energy and momentum conserva­
tion laws that 

(2k ± q.) / 2p = -1, 

W+ "" W_ =~ (~)'[ exp ( Itsq. ) -1] _I. 

2ltMs'N 2p , T 

As was to be expected, the prob!l.bility of emission of 
such a phonon does not depend on y. Since in this case 
phonons with wave vectors ~ - k are emitted and ab­
sorbed, 

Itsq. / T -Itsk / T ~ (flS' / T) 'b. 

Thus, for T» J.1.s 2 

w=~~...!. 
8Ms'N flS flS' 

If, on the other hand, oscillations with all possible di­
rections q are excited in the crystal, then q - Tins, 
whereas qx-k-V2J.1.T/n. Consequently, 

q. / q - (JlS' / T) 'h - s / u <. 1. 

It can be seen that, in the main, phonons in the direc­
tions almost perpendicular to the crowdion axis will be 
emitted and absorbed. In this case the phonon energy can 
be of the order of the energy of the crowdion excitatioll 
itself, and, therefore, the process cannot be assumed to 
be elastic. 

The author expresses his profound gratitude to I. M. 
Lifshitz for a discussion of the papel' and for valuable 
hints. 

1)Such a situation arises, for example, in a complex lattice consisting of 
light and heavy particles, with the crowdion chain formed by the light 
particles. 
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