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The problem of nonlinear ion-sound waves in a nonisothermal plasma containing weak 
three-dimensional random inhomogeneities in the electron concentration is considered. 
The basic integro-differential equation describing the nonstationary wave processes in 
a weakly nonlinear and randomly inhomogeneous plasma is derived. It is shown that in 
specific cases it can be reduced to the modified Burgers and Korteweg-de Vries­
Burgers equations. Stationary waves are investigated. Analysis shows that random in­
homogeneities in the equilibrium concentration lead to oscillations behind the shock-wave 
front. Furthermore, the appearance of a weak ion- sound shock wave is possible in cer­
tain cases. 

Nonlinear waves in homogeneous, dispersive and ab­
sorbing media have now been studied sufficiently thor­
oughly (see, for example,[1-4]). The question has been 
partially discussed in application to smoothly inhomo­
geneous, regular media[5-7]. At the same time investi­
gation of the nonlinear wave processes in media with 
random variations in the parameters is of natural inter­
est. One of the simplest cases- the interaction of quasi­
monochromatic waves in a plasma with random one­
dimensional inhomogeneities in the electron concentra­
tion-has been analyzed by the authors[8] . The effect of 
allowance for stochastic factors on shock waves in non­
dispersi ve media has been studied[ 9-11J. In particular, 
in[9J a "stochastic" force was introduced into the non­
linear equations and the behavior of a magnetohydro­
dynamic wave in the field of the stochastic force was 
studied. In[lO,llJ the effect of a random change in the 
sound velocity on the parameters of a shock wave is 
studied. 

In the present paper, USing as an example the prob­
lem of nonlinear waves in a nonisothermal plasma (ion 
sound), we consistently take into account both the dis­
persion and the random three- dimensional inhomogenei­
ties of the medium. We derive a basic integro- differen­
tial equation describing the non-stationary wave proces­
ses in a plasma with a slight nonlinearity and with weak 
random inhomogeneities in the equilibrium electron den­
sity. As follows from the analysis, in specific limiting 
cases this equation can be reduced to the modified 
Burghers and Korteweg-de Vries- Burgers equa­
tions[l-3 J . The stationary waves are also investigated: 
it is shown that random inhomogeneities in the equili­
brium concentration lead to oscillations behind the 
shock-wave front. Furthermore, under certain condi­
tions the appearance of a weak ion-sound shock wave is 
possible. 

Notice that the results obtained in this paper are es­
sentially more general in nature: similar effects should 
occur in the propagation of nonlinear AlfvEm waves in a 
magnetoactive plasma, of waves in the surface of a 
liquid, in interspaced transmission lines, in ferromag­
nets, etc. 

In the quasi- hydrodynamic approximation the basic 
equations for a nonisothermal plasma (T »Ti) where 
T and Ti are the electron and ion temperatures)l) have 
the form 

L'1<p = -4ne(No - Noe<pIxT -I- '/,No(e<p/"T)' - N); 
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av e 
-+(vV)v=-grad<p, at M. 

aN at + div (Nv) = O. (1) 

Here rp is the electric potential; v and N are the velocity 
and concentration of the plasma ions; elM is the specific 
charge of an ion and K is the Boltzmann constant. The 
electrons in the field of the ion-sound wave have the 
Boltzmann distribution 

N, = No exp (-e<pIO<T). 

In the first equation of the system (1), exp(-erpIKT) 
has been expanded in a series in powers of the small 
parameter erplKT up to the quadratic term. 

Let us represent the functions rp, N, and v in the 
form 2 ) 

<p=<Iji(x, t)+<p'(r, t), N=N,,+flN(r) + <N(x, t»+N'(r, t), 
No = N" + flN(r), v = (v(x, t» + v'(r, t), 

where the sign ( ... ) denotes averaging over the ensemble 
of the three-dimensional inhomogeneities 6N(r) of the 
electron and ion concentrations, and Noo is the mean 
value of the charged-particle concentration (the plasma 
is assumed to be quasi-neutral); a tilde denotes an aver­
age wave perturbation, while a prime denotes its devia­
tion due to fluctuation. We shall henceforth assume that 
the plasma is weakly nonlinear and that the concentra­
tion fluctuations are small, Le. (v~ = KT/M), 

IIIN(r)I el < ljim= > I I<N>I I <v> I , (2) 
---/1¢: 1, -------/1. 

Noo "ItT Noo V38 

Averaging the system of equations (1) over the en­
semble of the inhomogeneities 6 N(r), we obtain 

a'<Iji> [e<lji) Noo ( e<Iji»)' ] --=4ne Noo--+a(x,t)--- --- +<N) , ax' xT 2 xT 
a<v> a e a 
at+ <v>a;;-<V> = Ma;;<Iji), 

I)<N> i) a 
--+ Noo -<1J> + b(x,t)+-«N><1J»=O, (3) at ax ax 

where the functions a(x, t) and b(x, t) are equal to 

a(x, t) = <IIN(r)e<p'(r, t) /"T>, b(x, t) (4) 

Subtracting from the equations (1) the corresponding 
equations (3), we obtain a system for the fluctuation 
components of the wave perturbations: 

L'1<p'=4ne(Noo e<p'(r,t) +N'+IIN(r) e<Iji», 
xT xT 

(5) aN' a-at + N" divv' + a;-(IIN<v» = o. 
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In deriving (5) we discarded terms of the type 

6N(r)e<p'J-xT - (fJNe<p'jxT), ONv' - (6Nv') 

which are, as is easy to show, of the order of O(J.L4). 
Allowance for these terms in (3) would have led to the 
appearance of small corrections ~ O(J.L 5), which need not 
be considered in our case, since the nonlinearity is of 
the order of J.L 4. 

Below we shall be interested in the behavior of only 
the averaged quantities described by the system (3) con­
taining the still unknown functions a(x, t) and b(x, t). 
They can be found from the solution to the system (5). 
Since the equations of the system (5) are linear, its solu­
tion can be found by the Fourier method. We omit the 
intermediate computations and give the expressions for 
a(x, t) and b(x, t): 

e'«fJN)2) {f VN(P) [ e aCT, t)= - --- --exp(iw't - ikop) - (Ip(x - S, t - 't» 
2nxT e,(w)p xT 

+.i,(kop -i)(l!(X-s,t-'t»] dp dwd't, (6) 
lI>p 

e'«fJN)') a f VN(P) 
b(x,t)=- 2 M a --(.-.-,exp(iw't-ikop) 

n x we, w)p 

x{ xeT S(kop -i)(Ip(x- S,t-T» +w-'[ko's'+(1 +ik,p) 

x'(1- 3s'/p') l ('l!(x - S, t - T» }dP dw dT; 

ko = Qolvs e,'" (00), ei(w) = Qo'/w' - 1, (7) 

where YN(P) is the correlation coefficient for the 

equllibrium concentration fluctuation and p is a vector 
with the components (~, T/, 1;). 

Let us now turn to the system (3). Assuming the dis­
persion (the term a2«(j5)/ax2) to be small, we obtain for 
«(j5(x, t» after a series of computations (see also[12J) an 
integro-differential equation describing the nonstationary 
wave processes in the plasma: 

a(tji) +vs (1_ e(Ip») O(Ip) +~ O'(ip) _ Mus" (~+b)=O.(8) 
Ot xT ax 2Qo' Ox' 2eNoo Ox 

The investigation of Eq. (8) in its general form pre­
sents considerable mathematical difficulty, in virtue of 
the complicated integral operators a(x, t) and b(x, t); 
therefore we shall limit ourselves below to an approxi­
mate analysis. Since the correlation coefficient YN(P) 
has a characteristic scale of the order of the correlation 
radius i, then assuming that the functions (v(x-~, t- T» 
and (cp(x - ~ , t - T» in (6) and (7) vary more smoothly 
in space than "N(P), we can expand them into series 
around the point ~ = O. The dependence of these func­
tions on the variable T can be treated in analogous fash­
ion. Although the function of the variables p and T en­
tering into (6) and (7) cannot be computed completely, its 
characteristic time scale can be estimated, for example, 
by the stationary-phase method. It turns out to be equal 
to To ~ max{p/vs' n~l}. ' 

Thus, the integral operators a(x, t) reduce to differen­
tial operators. If, in the expansion of the functions 
(v(x-c t- T» and (cp(x- L t- T» in terms of ~ and 
T, we limit ourselves to only the second derivatives with 
respect to ~ and T, and assume that the field of the fluc­
tuations is isotropic, then the integrals (6) and (7) can be 
easily evaluated, and Eq. (8) assumes the form3) 
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a (lei (Ip») 0 vi a'(Ip) a'(Ip) -«p>+vs 1+-- -(ip>+----.-+u,-­
at xT dx 2Qo' ax' ax at' 
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-
L=f VN(pjdp. 

• 
(9) L'= f PVN(p)dp, 

o 

The quantities 1/ and L characterize the integral scales 
of the inhomogeneity, while the coefficients a 1,2 charac­
terize the contribution of the random inhomogeneities to 
the dispersion of the ion-sound waves, which, in terms 
of the effective permittivity Eeff(w, k) (see 113J), corre­
sponds to the real part of E ff and T/ corresponds to the 
viscosity of the medium, L€., to the imaginary part of 
Eeff. Notice that in the present paper we have virtually 
computed Eeff for ion-sound waves, which is of interest 
in itself. 

The solutions of Eqs. (9) can be investigated for the 
case of weak viscosity, using well-known methods[3,5,6J. 
We shall analyze the Simplest class of solutions, namely, 
stationary waves, when the function (cp(x, t» depends on 
the variable z = x - ut (u is the wave velocity). In this 
case Eq. (9) reduces to a second- order ordinary differ­
ential equation and can be investigated in the phase plane 
«'(p), (q;)'). It is easy to show that for a weak wave 
(e(;;?)/KT ~< 1), when 

L'I rf«6N I N oo )') < 2(Mo -1) 

(Mo = u/v s is the Mach number and r d is the Debye 
radius), the phase plane has the form shown in Fig. 1, 
Le., the solution has the form of a shock wave with os­
cillations behind the wave front. Note that the spatial 
period of the oscillations should be much greater than 
the inhomogeneity scale and that this is fulfilled when 
rd/(Mo-1)1/2 »z. 

For a sufficiently strong viscosity 

«fJN I Noo)')(L I rd)' > 2(Mo - 1) 

a weak shock wave type of solution with a frontal width 

Ilr - (fJN'jN,,')rf/L:> I. 

is possible. 

Thus, ,there appear in a plasma with random inhomo­
geneities new effects that are characterized in particular 
cases by the introduction of viscosity and additional dis­
persion of the ion- sound waves into the Korteweg-
de Vries equation; in the general case dispersion and 
viscosity are interrelated and their separation is not 
possible (see (6)-(8». 

<,) 

FIG. I FIG. 2 

The authors are grateful to A. V. Gaponov and V. I. 
Karpman for a discussion of the paper and useful com­
ments. 

ll\Ve shall for simplicity assume below that the ion temperature is equal 
to zero. 

2)The fluctuations oN(r) are assumed to be stationary. This is possible if 
the characteristic time of the nonlinear process to '\, L/u (L is the spatial 
scale of the wave, u its velocity) is small compared to the exchange time 
for the realization of the random field oN(r). 
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3JSince Eqs. (8) and (9) describe near-stationary processes (functions of 
(x-ut)), the derivatives a/at can be replaced by the derivatives 
-ua/ax (see [3]. 
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