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The nonlinear skin effect of electromagnetic waves in a weakly ionized plasma is con­
sidered under conditions of nonlocal connection between the electron temperature and the 
intensity of a high-frequency electric field in the plasma. It is shown that the dependence 
of the equilibrium electron temperature in the plasma on the intensity of the incident 
electromagnetic wave can be nonunique. In consequence, when the electromagnetic-wave 
intensity attains a certain value, the coefficient of reflection of the waves from the sur­
face of the weakly ionized plasma may decrease abruptly. 

Nonlinear effects connected with electron heating be-· 
come appreciable in plasmas placed in relatively weak 
electric fields. One of such effects is the possibility of 
the existence of a nonunique connection between the elec­
tron temperature and the intensity of a high-frequency 
electric field [lJ 

In the present paper we consider the nonlinear pene­
tration of electromagnetic waves into a plasma under 
conditions of normal skin effect, i.e., under the condi­
tions when the dimension Os of the skin layer substan­
tially exceeds the ele ctron mean free path l. If 0 s als 0 

substantially exceeds the electron mean free path le con­
nected with energy transfer to the heavy particles, then 
the coupling between the electron temperature and the 
wave field is local. It is precisely to such a plasma that 
the results obtained by A. Gurevich [lJ can be applied. 
We, on the other hand, shall consider the case when the 
value of Os being established in the plasma is small 
compared to the electron mean free path le = W- 1 / 2 con­
nected with energy transfer to the heavy par ticlesl) : 

(1 ) 

° « 1 is the average fraction of energy transferred in 
an electron-heavy particle collision. 

We shall show that in the case when the connection 
between the electron temperature and the wave field is 
nonlocal, a situation is possible in which the electron 
temperature being established at the plasma boundary is 
a nonunique function of the field intensity of the incident 
wave, Le., it will be shown that the surface impedance of 
the plasma can be a nonunique function of the amplitude 
of the incident wave and can, in consequence, vary dis­
continuously when the power of the incident wave is 
smoothly varied. There should then occur a sharp in­
crease in the coefficient of absorption of electromagnetic 
waves by the plasma. 

1. Let us consider the penetration of a strong elec­
tromagnetic wave of frequency w into a weakly ionized 
plasma in thermal equilibrium. Under the action of the 
electric field of the wave, the plasma electrons will be 
heated up and will give up their energy upon colliding 
with neutral particles. Since the plasma is weakly ion­
ized, the temperature of the heavy particles can be con­
sidered to be constant and independent of the effective 
field. 

We shall consider the case of a sufficiently high elec­
tromagnetic- wave frequency, when the inequality 

(2) 
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where v is the electron-neutral particle collision rate, 
is fulfilled. We shall also assume the plasma to be 
quasi-neutral, Le., we shall assume that the dimension 
of the skin layer is substantially larger than the Debye 
radius, 

(3) 

Finally, we shall require the fulfillment of the inequality 

(4) 

where Da is the ambipolar diffUSIOn coefficient and T r is 
the electron-ion recombination time. 

. The inequality (4) implies that electron recombination 
can be neglected in the plasma region perturbed by the 
electromagnetic wave. Since, moreover, we are con­
sidering the case when Os «le' Le., when the time of 
diffusion of electrons from the skin layer is substantially 
less than the time of accumulation by an electron of en­
ergy corresponding to the boundary electric field inten­
sity, and the electron temperature being established at 
the plasma boundary is then much smaller than the ion­
ization potential of the neutral particles, we can assume 
that the electromagnetic wave does not affect the ioniza­
tion-recombination balance of the plasma. (This assump­
tion is all the more valid when the plasma is produced by 
some extraneous ionizing radiation.) Allowance for 
changes in the ionization- recombination balance of the 
plasma may be important in the other case of the non­
linear skin effect if ° s »le and the time of electron 
diffusion from the skin layer is substantially greater 
than the establishment time for the electron distribution 
function in the region of energies corresponding to the 
ionization threshold for the neutral particles[3J. 

Then, to describe the stationary, w-averaged, elec­
tron temperature and concentration distributions when 
the conditions (1)-(3) are fulfilled~ we can use the fol­
lowing hydrodynamic equations [4-6 J : 

~,ve'IEI' _2.n,~v(T'_T)+~(n'T,!!.:-) ~o, (5) 
2m«(i)' + \I') 2 ,dx mv dx 

2T • 
n, ~ n,~ (T, + T) . (6) 

We consider only normal incidence of a monochrom­
atic, linearly polarized electromagnetic wave (E <'-> eiwt) 
on a plane plasma boundary. The x-axis is directed 
perpendicular to the boundary; Te(x) and T are the elec­
tron and heavy-particle temperatures, ne oO is the elec­
tron concentration in the unperturbed plasma; k is a 
number equal to unity for a substantial interaction be­
tween the electrons (vee> v), and k = 1- (Te/v)dv/dTe 
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for vee < V[5-7J. It should be noted here that a similar 
treatment is applicable to the weakly ionized two-com­
ponent electron-hole plasma of semiconductors, when 
the hole mass substantially exceeds the electron mass. 

In virtue of the fulfillment of (1), electronic heat con­
ductivity is taken into account in the electron energy 
balance equation (5). The hydrodynamic equilibrium 
equation (6) for the plasma takes into account the fact 
that under steady-state conditions the charged-particle 
fluxes in the perturbed region of the plasma are equal to 
zero. 

11 -~n.(T.)v(T.)(T.-T)=~[~ dT.] 
2 dx mv(T,) dx . 

(12) 

The solution of Eq. (12) with the boundary condition 
(7) at infinity can be represented in the form 

T 

dT. , v(T.) {s· } 'I, -d =-(3m6)1,--- n.,(T.)T.(T.-T)dT, .. 
x n.(T,)T, T 

(13) 

USing this expression, we write down the heat flux car­
ried away by the electrons from the skin layer: 

(
36 )'1, {T,. 'I, 

q= -;:;- S n.'(T,)T.(T.-T)dT.} 
T 

(14) 

To the differential equation (5) must be added boundary On the other hand, this heat flux is equal to the Joule en-
conditions. We choose them in the following form: ergy released in the skin layer: 

(7) 

The first boundary condition corresponds to the fact that 
the plasma in the unperturbed region is isothermal. The 
second boundary condition corresponds to the vanishing 
of the electron-heat flux at the plasma boundary. (We 
are considering the case of specular reflection of the 
electrons from the plasma boundary.) 

The spatial dependence of the electric field in the 
plasma is determined from the wave equation 

d'E 4nn,e' w(w+iv) 
d;;' = me' 00' + v' E, 

(S) 

in which the displacement currents have been dropped, 
since we are considering the case of strong skin effect, 

'00,,' / (00' + v') ;$> 1. (9) 

The system of equations (5)-(S) is completely closed, 
and its solution allows us to describe in the case under 
consideration here the distinctive features of the pene­
tration of strong electromagnetic waves into a plasma. 

2. To find the dependence Te(x) being established in 
the plasma, we solve the system of equations (5)-(S) in 
the following manner. In virtue of the fulfillment of the 
inequality (1), we can conclude that for x « lo -1/2 the 
nature of the penetration of an electromagnetic wave 
into the plasma is determined by the electron tempera­
ture Teo being established at the plasma boundary. Then 
wave equation (S) has a solution valid at x « lo -172 in the 
form 

E(x) = Ebexp (-iax-x!iI.), 

where 
a = 00 .. (T •• ) {w[w' + v'(T,o) 1'" - 00' }'I' , 

1'2e 00'+ ,,'(T,o) 

iI.-' = w.,:!,.) ( 00[00' + v'(T,o) J'" + 00' }'" 

1'2e w'+,,'(T,o) 

(10) 

and Eb == E(x = 0) is the boundary value of the electric 
field, which can be related through the Fresnel formulas 
to the amplitude of the wave Eoexp(iwt - iwx/c) incident 
on the plasma: 

IE 1'=4 w(oo'+"'(T,.»'I'E' (11) 
b w,.'(T •• )" 

The condition (9) was used in writing down this expres­
sion. 

We can find the value of the electron temperature 
being established at the boundary from Eq. (5), assum­
ing, in virtue of the fulfillment of the condition 
Os « 10 -1/2, that the source of energy release in this 
equation is a surface source. Then the spatial dependence 
of the electron temperature is determined by the follow­
ing equation: 
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q = W ... n.(T,.:,,(T •• )6,(T,.)e'IE,I' (15) 
4m[w' + ,,'(T,.) 1 

Therefore, the final expression determining the depen­
dence of the boundary value of the electron temperature 
on the amplitude of the wave incident on the plasma can 
be written with the aid of (15), (14) (11), and (10) in the 
following form: 

1 ( m )'1. , 
2n 66 eE. 

w,,(T .. ) [ ( ,,'(T .. ) )'1'] 'I. [TS" ] 'I, 
=~ 1+ 1+--00-,- n.'(T,)T.(T.-T)dT •. 

T 

(16) 
Let us transform this equality by expreSSing ne(Te) 

with the aid (6), assuming that the degree of ionization 
of the plasma is such that the interaction between the 
charged particles can be neglected. Then, assuming 
v(T eo) = v o(T e/T) Y and introducing the dimensionless 
variable ® = Te/T, we can represent Eq. (16) as follows: 

23 (Y-l)/. me"oEo' _ 'I, 
4n (6n6)'1. eT':'n'l. - cp (El)· 

,~ 

== [ 1 + (1 + "0'00-28"")'1, r e (8 -1) -]'/' 
8 2Y (1 + el' Y t (1 + e)'-"" d8 . 

(17) 

To investigate the function Teo(Eo) defined by the ex­
pression (17), we write down the asymptotic form of 
cp(®) for values of ® close to unity: 

cp(8) =8' for,8=1+e (8<1) 

and for ® »1: 
cp(8) = 8 V for oo;$> "0, 

cp(8) = 8'V for w < 'II •• 

(lSa) 

(lSb) 

It can be seen from (lS) that the function cp(®) can be 
two-valued in nature. It is shown in the figure for the 
case when y < 0, i.e., when dv/dTe < O. Such behavior 
of the electron- atom collision rate is characteristic of, 
for example, those gases in which the Ramsauer effect 
is obvserved, if the plasma temperature in this case is 
substantially lower than the temperature (~ 1 eV) corre- . 
sponding to the Ramsauer minimum. Notice that a sim­
ilar situation can arise in a semiconductor two- compon­
ent plasma when the electrons and holes are scattered, 
for example, by charged impurities, or by piezoacoustic 
oscillations, since then dv/dTe < 0 also. 

The numerical computation of cp(®), which we carried 
out for a number of cases, showed that, for example, in 
xenon, for which y ~ -7'2, the function cp(®) for w < Vo 

attains its maximum value at ®o = 11. 

Thus, from the derived expression (17) we can draw 
the conclusion that if dv/dT e < 0, then when the intensity 
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,~. 
1 ~ I 

of the wave incident on the weakly ionized plasma satis­
fies the inequality 

E.' < E~ .. = 2'(1-»/'. 41l(61l6)'I·en:~T'I,.p'I·(EI.)/mc\'.. (19) 

there exist two steady-state values of the electron tem­
perature being established in the skin layer. To these 
two values of Teo naturally correspond the two different 
values for the plasma surface impedance that follow 
from the expression (10). 

It is easy to see, however, that one of the steady-state 
solutions found is unstable, since all the values of Teo 
corresponding to the incident branch of rp( ®) satisfy the 
inequality 

d 
-[W(T .. )- q(T •• ) ]>0. 
dT •• 

The steady- state value of the electron temperature satis­
fying this inequality is unstable because as the electron 
temperature increases through fluctuation, the Joule en­
ergy release in the skin layer will increase more rapidly 
than the heat flux from the skin layer, which should lead 
to still further heating up of the electrons, and, thus, to 
the development in the skin layer of an instability due to 
overheating. 

Therefore, the sole steady state which can be realized 
in the case of the nonlinear skin effect being considered 
here corresponds to the growth of the plasma electron 
temperature as the intenSity of the wave incident on the 
plasma increases. In this case electrons and ions are 
expelled from the skin layer, and this leads, as can be 
seen from the expreSSion (11), to the growth of the co­
efficient K = IEbI2/E~ of penetration of electromagnetic 
waves into the plasma. Consequently, as the intensity of 
the incident electromagnetic wave is increased right up 
to the value Eo = Emax' the coefficient of absorption by 
the plasma of electromagnetic waves gradually increases. 

If, on the other hand, the amplitude of the electro­
magnetic wave incident on the plasma exceeds the value 
Emax' then a steady- state solution for the nonlinear skin 
layer in which the above-considered conditions are 
realized does not exist. This implies that when the in­
tensity of the electromagnetic wave incident on the 
plasma is sufficiently high, the plasma electrons are 
heated up to such a temperature that the dimension of the 
skin layer exceeds the electron mean free path connected 
with the transfer of energy to the neutral particles. 
Therefore, when the amplitude of the incident wave ex­
ceeds the value Emax, the electron temperature in the 
skin layer should change abruptly from the value Tel 
= T®o (the numerical value of ®o should, as is evident 
from the asymptotic form (18), be of the order of unity) 
to the value T e2' whose magnitude can be estimated from 
the following equation: 

(20) 

There occurs in this case a sharp, stepWise increase 
in the coefficient of absorption of electromagnetic waves 
by the plasma. It is natural that for this effect to ap­
pear, the inequality Te2 »Tel must be satisfied, Le., 
the skin-layer dimension should, right up to the values 
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Teo = Tel' be small compared to the characteristic size 
of the electronic thermal conductivity. Using (10) and 
(20), we can write this condition in the following form: 

( el ) 'I, (n (0) ", 
- ~ ::>1 for oo<vo, 

c IImv. . (21) 
( el )' n.. f - --::> 1 or 00::> v •. 

c 6m 

It should be noted here that for a definite function 
v(T e) the situation can be realized in the framework of 
the above- considered approximations when the curve 
rp(®) shown in the figure will have an N-shaped form. 
For example, in a gaS-discharge plasma this can occur 
when the value of T e2 exceeds the temperature corre­
sponding to the Ramsauer minimum. In this case the 
second stable state of the plasma is also determined 
from the expression (17). (A similar nonunique depen­
dence of the electron temperature in a homogeneous 
plasma on the electric field has been obtained by 
A. Gurevich [8J .) 

3. Thus, we have shown that under certain conditions 
in a weakly ionized plasma the coefficient of reflection 
of electromagnetic waves may decrease discontinuously 
as the wave intensity increases. The frequency of the 
electromagnetic waves should then be sufficiently high 
for the characteristic length of the electronic thermal 
conductivity to exceed the skin-layer dimension consid­
erably. 

Notice, moreover, that the results obtained can easily 
be generalized to the case of the penetration of electro­
magnetic waves into a weakly ionized nonisothermal 
plasma. All that changes in the above-presented expres­
sions in this generalization is that the quantity T is re­
placed by the electron temperature TeO() > T in the un­
perturbed region of the plasma. 

The region of the plasma parameters and the electro­
magnetic- wave frequencies, where we should expect the 
above- considered effect, can be determined from the 
inequalities (1), (4), (9), and (21). Numerical estimates 
show that, for example, in a gas- discharge plasma with 
the easily attainable parameters no = 1015_10 16 cm-3 , 

ne = 109_1011 cm-3 , all the conditions of applicability of 
the above- considered theory can be satisfied at an elec­
tromagnetic-wave frequency w = 10 9_1010 sec-l. An esti­
mate with the aid of (19) of the threshold electromag­
netic-wave power then yields ~ 10-1_10-2 W/cm2. 

In conclusion, the authors express their sincere 
gratitude to A. V. Gurevich for a critical and useful dis­
cussion of the results obtained in the paper. 

l)Such a skin effect in the nonlinear propagation of electromagnetic waves 
in the one-component plasma of semiconductors has been considered by 
Bass and Yu. Gurevich [2]. 
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