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The photoionization cross section of the H2 molecule is calculated for knocked-out elec­
trons with relativistic energies up to 1 MeV. The cross section is summed over all 
vibrational states of the Hz ion. A relativistic plane wave was employed as the ejected 
electron wave function. The ground state wave function for the H2 molecule is set up in 
an approximation which is a relativistic extension of the Heitler- London method. The 
photo ionization differential cross section of a molecule fixed in space, calculated with­
out taking into account nuclear oscillations, is oscillatory for all knock-out electron 
angles. Allowance for the vibrational motion of the molecule nuclei with increasing 
photon energy conceals the oscillations, which remain detectable only in a restricted 
angular range in which (k - q, R~ ~ 0, where k and q are the photon and photoelectron 
wave vectors and Ro is the internuclear distance. At ~h > 1000 eV, the effect of the 
nuclear vibrations on the total photo effect cross section is negligible. It is found that 
almost throughout the whole range considered the probability for Hi ion formation in the 
first excited state is five times smaller than that for the ground state. The nonadditivity 
in the total photoeffect cross section is estimated and it is shown that with increasing 
photon energy the molecular cross section does not tend to the sum of the atomic cross 
sections. The accuracy of the plane-wave approximation is verified for the H atom. 

1. FORMULATION OF PROBLEMS 

Much experimental material has been accumulated by 
now on the photoionization of molecules in the gas 
phase[1,2]. The available material on photoionization of 
valence electrons of molecules, however, pertains to the 
threshold photon-energy region and to the region adjacent 
to it. There is undisputed interest in research on the 
behavior of the photoionization cross section with in­
creasing quantum energy, up to the x-ray and y-ray 
bands. Whereas the molecular bond can be disregarded 
in the case of photo ionization from the inner shells of the 
atoms making up the molecule, this can no longer be 
done in the case of valence electrons. The coupling of 
the valence electrons in the atoms is of the same order 
as the magnitude of the intermolecular interactions. The 
distribution of the electron denSity of the valence elec­
trons in the molecule differs Significantly from the dis­
tribution in isolated atoms. The latter should affect the 
cross section of the photoeffect regardless of the energy 
of the incident quantum. 

We have previously[3] considered the nonrelativistic 
photoeffect on the H2 molecule. It turned out that the de­
pendence of the cross section on the photoelectron emis­
sion angle relative to the molecular axis has a strongly 
pronounced oscillatory character due to interference 
phenomena. An oscillatory term is contained also in the 
total cross section, and the number of oscillations in­
creases with increasing photoelectron energy. An inves­
tigation of the behavior of the cross section of the photo­
effect with further increase of the photon energy called 
for a transition to the relativistic region, 

In the present paper we consider the photoionization 
at relativistic energies of the knocked-out electron. We 
choose as the model system the H2 molecule. Insofar as 
we know, no one has performed theoretical calculations 
of the relativistic photoeffect on molecules. 

In the first approximation in the interaction with the 
radiation, the relativistic cross section for photoioniza­
tion into an element of solid angle d {2 can be represented 
in the form 1) 
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do eqaV 1: - 2 -=-- 1<'l'finIFI'l'init>l. 
dQ 211;00 

fin 
state 

F= 1:1.= 1: (a.e)exp(ikr.), , , 

(1) 

(2) 

'ltinit and 'ltfin are the wave functions describing the ini­
tial and final states of the system. The cross section is 
summed over all the possible final states, The summa­
tion over i is over all the electrons of the system; w, k 
and e are the frequency, wave vector, and polarization 
vector of the photon; q and E are the momentum and total 
energy of the knocked-out electrons; a is the fine-struc­
ture constant; ai is the Dirac matrix of the i-th electron; 
V is the volume of the system. 

The Hamiltonian of the molecule can be represented 
in the c.m.s. in the form of a sum of two terms 

R- t+ Ro. (3) 

where of is the operator of the kinetic energy of the 
nuclei and Ho includes the kinetic energy of the electrons 
and the energy of the interaction between all particles. 

The motion of the nuclei can always be regarded as 
nonrelativistic, while the motion of the electrons will be 
considered to be relativistic. The calculation will be 
carried out with accuracy to 1/c2, which corresponds to 
an accuracy 11c, i.e., to the first power of a, for the 
function. In this approximation, the Hamiltonian Ho for 
the H2 molecule can be represented, in analogy with the 
Breit Hamiltonian for two particles, in the form 

11, =H.(r,) + H,(r2) + V, (4) 

where Ha(r) is the Dirac H~miltonian for an electron in 
the field of nucleus a, and V is the operator of the inter­
action between the two hydrogen atoms. Since the wave 
functions are constructed in zero order in the interac­
tion V, the concrete form of the operator V is immater­
ial, and all that matters is that it be symmetrical with 
respect to permutation of the nuclei (since the nuclei are 
identical). 

On going from atoms to molecules, we face the need 
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for taking into account the vibrational motion of the 
nuclei. It is interesting to note that allowance for the 
vibrations is important not only near the threshold of the 
photoeffect, as has been customarily assumed to date, 
but also in the shorter-wavelength region. The influence 
of the vibrational motion of the nuclei becomes most 
acutely pronounced in the differential cross section, 
which is not averaged over the rotation of the molecules. 
The pOint is that the cross section of the molecular 
photoeffect contains an oscillating factor that depends 
on the ratio R/Ae, where R is the interatomic distance 
and Ae is the de Broglie wavelength of the knocked-out 
electron. With increasing photon energy, the wavelength 
of the knocked-out electron becomes of the same order 
of or less than the amplitude of the nuclear vibrations. 
Therefore the deviation of the internuclear distance from 
equilibrium, as a result of the nuclear vibrations, affects 
the character of the oscillations substantially. 

We construct the wave function of the initial states in 
an approximation that is the relativistic generalization 
of the Heitler- London method. The need for constructing 
a relativistic wave function for the initial state that is 
not relativistic is brought about by the relativism of the 
final state. If we were to assume that the wave function 
of the initial state is nonrelativistic, we would lose 
terms that are important in the nonrelativistic energy 
region (cf. the analogous situation in the case of the rela­
tivistic photoeffect on the H atom[4J). The final-state 
wave functions were taken in the form of the product of 
a relativistic plane wave by a molecular orbital of the 
ground or excited state of the Hi ion. The molecular 
orbital of Hi, like the ground-state function of H2, is 
made up of relativistic Is-orbitals. The accuracy with 
which the plane wave is approximated in our energy band 
can be estimated with the H atom as an example. In the 
Appendix we present such estimates for a large energy 
interval. 

2. CONSTRUCTION OF THE WAVE FUNCTIONS 

In the construction of the wave functions of the H2 
molecule and of the Hi ion, we start from the Born­
Oppenheimer approximation according to which the wave 
function of the molecule can be represented in the form 
of an electronic wave function <l>(r, R) that depends on 
the nuclear coordinates as parameters multiplied by the 
wave functions X (R) that describe the motion of the 
nuclei. Calculations by Kolos et al. (see [5J ) have shown 
that the Born-Oppenheimer approximation holds quite 
well even for so light a molecule as H2. The deviation of 
the H2 dissociation energy calculated in the Born-Oppen­
heimer approximation from the experimental value 
does not exceed the experimental error (~1O-3%). 

We assume that the H2 molecule is initially in the 
electronic ground state and in a nuclear-motion state 
characterized by the set of quantum numbers: 

'Vinit ~ <Do (r, R) x"' (R). 

The electron wave function satisfies the equation 

I/o (r, R) <Do (r, R) ~ Eo (R) <Do (r, R), 

(5) 

(6) 

where the Hamiltonian is given by expression (4). The 
wave function XOJ\. (R) describes the motion of the nuclei 
and satisfies the Schrodinger equation with potential 
energy Eo(R) 

(7) 

The motion of the nuclei breaks up into oscillations rela-
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tive to the equilibrium position and rotations of the mole­
cule as a whole. The wave function of the motion of the 
nuclei takes in this case the form of a product of the 
vibrational wave function AOv(Q) by the rotational wave 
function 

B:K (\}) ~[(21 + 1)/8n.'J'" D.;'" (,1) , 

where D~K(,J) are generalized spherical functions, 

see [6J , 

(8) 

where v numbers the vibrational levels, Q is the normal 
coordinate and coincides in this case with the deviation 
of the internuclear distance from the equilibrium value, 
M is the projection of the angular momentum J on the 
z axis in the lab, K is the projection of the angular mo­
mentum J on the' molecule axis, and ". is the aggregate 
of the three Euler angles. 

We construct the electronic wave function of the 
ground state of the H2 molecule in the zeroth apprOXima­
tion in the interaction of the H atoms. In the nonrela­
tivistic case, this approximation corresponds to the 
well-known Heitler-London mechanism. The electronic 
ground state function can be easily obtained in the 
Heitler- London method from the requirement that it 
describe a state with total electron spin S = O. In the 
relativistic case the spin is not conserved, but to con­
struct the correct zeroth-approximation function we 
can use the symmetry of the Hamiltonian (4) with respect 
to spatial transformations. 

We start from the products of the Slater relativistic 
Is functions for the atoms a and b: 

(9) 

The functions 1/JaJJ differ from the solutions of the Dirac 
equation for the H atom in that the argument of the ex­
ponential contains tile effective charge 1]. The value of 1] 
is determined by optimizing the energy of the ground 
state of H2 in the nonrelativistic approximation, and is 
assumed in the present calculation to equal 1.2. Since 
00) « 1, the functions 1/Ja J1. can be represented in the 
form (cf. [7J): 

(10) 

where <fa = (1]3/ rr )1/2 exp (-1]ra), and uJ1. are bispinors 
given by 

(11) 

Since the electronic wave function should be anti­
symmetrical with respect to permutations of the elec­
trons, the products (9) must be antisymmetrized. They 
can be used to construct four determinants. To make up 
correct zeroth-approximation linear combinations we 
take into account the fact that the Hamiltonian Ho is in­
variant against the operations of the point group Dooh' 
Since the functions are constructed from Is-orbitals, 
it suffices to symmetrize them with respect to inversion. 
This leads to three non-normalized functions with sym­
metry Lu: 

det l.p".p" I, dct 1 "ljJo,.p,.,I, det l,pol.p",1 - det 1.p",po,l, (12) 

and one function with symmetry Lg: 

det I,pM.p" 1 + det I 11""ljJo' I· (13) 

The electronic ground state of the H2 molecule is des­
cribed by the function (13). It is easy to show that the 
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normalized function (13) can be represented in the form 

<1>0 = No[ 1- '/,ia(a,V ,)][ 1- '/,ia,V ,) 1 
X[q>,(1)q>b(2) + 'Po (2) !fb (1) 1 [u,(1)u,(2) - u,(2)u,(1)], (14) 

No = (1 + s~b)1I2 , where sab is the overlap integral of 
the orbitals If!aM and If!bM' It is clear from (14) that in 
the nonrelativisticlimit 4>0 goes over into a Heitler­
London function that describes a state with a total elec­
tron spin S = O. 

The electronic states of the ion Hi, just as the elec­
tronic states of Ho, will be made up of the relativistic 
Is-functions (10). Altogether we can make up two types 
of independent relativistic molecular orbitals: 

(15) 

The orbitals corresponding to the upper sign describe 
the electronic ground state of H~, while those corre­
sponding to the lower sign describe the excited repulsion 
state. 

We describe the knocked-out electron by a relativis­
tic plane wave that can be represented in a form similar 
to (10): 

;,,= (1- i-u-(uV»)v.(r)uy, 
1 +a'E 

v.(r) = [(1 + a'e)/2u'eVl'" exp (iqr). 

(16) 

(17) 

The products of the single-electron functions (15) and 
(16) can be used to construct four normalized2) and anti­
symmetrical electronic functions of the final state of the 
system H2 + e: 

1 
<1>n'v =-=.detITnvS.,I, v,y= 1,2. (18) 

1'2 
The complete wave functions of the final state are ob­
tained by multiplying the electronic wave function (18) 
by the function XnK(R) that describes the nuclear motion 
in the ion H2 : 

'I' fin = <1>~' (r, R)x»x(R). (19) 

3. CALCULATION OF THE CROSS SECTION 

The calculation for the differential cross section (1) 
of the photoeffect contains a sum over the final states of 
the system. The final state is described by a set of quan­
tum numbers characterizing the electronic, rotational­
vibrational, and polarization state of the system. We 
shall consider henceforth the partial cross section of the 
photoeffect with formation of an Hi ion in a fixed elec­
tronic state. The rotational-vibrational state is not fixed, 
and we assume that the photoeffect can cause the ion to 
be in any rotational-vibrational state compatible with 
the conservation laws. Owing to the large energy of the 
electron knocked out from the molecule, this energy can 
be regarded as independent of the energy of the 
rotational-vibrational sublevels, so that it is possible 
to obtain readily the sum over all the final rotational­
vibrational sublevels. 

Substituting in (1) the expressions (5) and (19) for the 
wave functions of the initial and final states, and using 
the completeness of the system of functions describing 
the nuclear motion, we obtain 

dano' = aeqV" 1<'1' _ IFI'I'· >1' 
dQ 2nw ,t..... !In mIt 

fin 
state 
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where 

aeqV ' ~ =--" "1<<1>n'V(r,Rlxnx(R) IFI<1>o(r,R}x,,(r,R»I' 
2nw ,t.... l....J 

"",,=1 x 

'I','Y=I 

.;/{~'o (R) = <<1>~' (r, R) IFI<1>o(r, R» 

(20) 

(21) 

is the electronic matrix element and depends on the 
nuclear coordinates as parameters, while ,\ describes 
the aggregate of the quantum numbers v, J, M, and K. 

We substitute in (20) an expression for the wave func­
tions XO,\ (see (8)). Putting 

dan~~{t) = u;:: < i\,,(Q) I t l.;/{no"(Q, {t) l'IAov(Q) ), (22) 
'I',v=t 

we obtain 

da::I>IK = 21+1 (DMKJ({t) I d<1n ,({t) IDMXJ({t». (23) 
dQ 8n' dQ 

Expression (22) is the partial cross section for the photo­
ionization of a molecule from the electron-vibrational 
level Ov, not averaged over the rotations of the mole­
cule. The subscript n deSignates the electronic state of 
the m ion. 

The measured quantity, however, is the cross section 
averaged over all the initial rotational-vibrational states 
of the system. We denote by w(vJ"MK) the probability of 
populating the rotational-vibrational levels. In the adia­
batic approximation, the rotational and vibrational mo­
tions can be regarded with good accuracy as independent, 
and we can represent w(vJ"MK) in the form 

w(vJMK) = w(v)w(IMK), (24) 

where w(J"MK) = (2J + If\v(JK) owing to the degeneracy 
with respect to M. The probabilities are normalized by 
the natural conditions 

~w(v)=1, ~w(IMK)= ~w(IK)=1. (25) 

We shall assume the temperature to be not too high, 
so as to excite only the lower vibrational states. Then 
the vibrations can be regarded as harmonic and 

w(v)=exp {- :; v}(1-exp {- :;O}), (26) 

where Wo is the frequency of the zero-point oscillations 
of H2 • 

We average the cross section (23) over the rotational 
and vibrational initial states: 

In the derivation of (27) we used the orthOgonalit~ rela­
tion of the generalized spherical functions (see [6 ): 

(28) 

It follows from (27) that for averaging the cross sec­
tion over the rotational states it suffices to integrate the 
non-averaged cross section, divided by 81f , over the 
Euler angles. Although this result was obtained here for 
molecules of the symmetrical-top type, it is valid for 
molecules of arbitrary type (cf. [8J ). 
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Our next task is to calculate in succession the quanti­
ties (21), (22), and (27). For convenience in the calcula­
tions, we express the electronic function of the initial 
state (14) in the form 

• 
rJ)o = No ~ (-1)"+1 {1JJ •• (1)lJJ",-.(2) - lJJa.(Z)lJJ",-.(1)}. (29) 

We substitute in (21) the expressions (18) and (29) for 
the wave functions: 

. , 
.Kn,'·= -Y2N, ~ (-1)' {<.SqylfllJJa.> (,; .. llJJb,,-.> 

J.I=l 

+ (£qy I fllJl,.> (,; .. llJJa,,-.> - (';n.1 fI "'a.> (S., 11JJ.,3-.> 

- ('1:"111",,.> (S.,llJJa,,-.>}. 

(30) 

We assume that the plane wave I;qy is orthogonal to 
the atomic orbitals. This is equivalent to discarding the 
last two terms in (30). This approximation, as shown by 
our calculations, is justified, since the contribution of the 
discarded terms to the total photoionization cross sec­
tion does not exceed 3% at the photon energy 100 eVand 
decreases rapidly with increasing energy of the latter. 

The wave function I; y and the operator f are speci­
fied in a coordinate sys~em connected with the mass 
center of the molecule, while the functions I/Ja and 1f!b 
are centered at the nuclei a and b, respectivJy. To Jl 
calculate the integrals, it is convenient to refer all the 
functions to a single center: 

(s.,ltllJJ",,> = (sqyllllJJ.> exp {irk - q, Ra)}, 

<s.,I}lw,.> = <s., Ill'll.> exp {i(k - q, R,)}, 
(31) 

where Ra and RtJ are vectors drawn from the mass cen­
ter to the nuclei. 

The initial matrix element (30) used in the calcula­
tions takes the form 

(32) 

where 

Gn = (1 ± Sa,)"'N,[exp {i(k - q, R,)} ± exp {i(k - q, R.)} J. (33) 

The plus Sign in (33) describes ionization with formation 
of an H2 ion in the ground state, while the minus des­
cribes ionization with formation of Hi in a repulsion 
electronic state. 

We substitute (10) and (16) in (32) and recognize that 
products of the type u;(a' al) .•. (a. an)uw where ai is 
an arbitrary vector that vanishes if the number of a ma­
trices is odd. We obtain 

2'n". Y; ( 1 + a'e )'" .Kn,'· =(_1).+IGn ., --_. 
YV(I')'+lk-ql')' 2e 

xu,+ [-~(ae) (a,k_q)+ __ 1_(aq) (ae)] u,_ •. 
2 1 + a'e 

(34) 

We substitute further in (34) the explicit form of the 
bispinors uy (11). Talting the matrices a in the standard 
representation: 

a==C~), 
where a are Pauli matrices, we obtain ultimately 

.KYv=( 2' /t1')' )'" (-1)·+lG n {(e)6 
no Ve(1+a'e) (1')'+lk-ql')' q Y,H 

1+a'8 ( 1-a'e)} 
---4- w,+(oe) o,k+ 1+a'e q W3-' . 

(35) 
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We sum the square of the modulus of the matrix element 
(35) over the final polarization states of the electrons. 
Mter rather cumbersome manipulations, we obtain 

t l.Kno" I' = 2'(1 ± sa,)/tI')'(1 ± cos(k - q, R.,» 
Y,'_' Ve(1 +s •• ') (1')'+lk-ql')' 

x [(e )'+ 1+a'e (k+ 1-a'8 )'1 
(36) 

q 8 1 + a'e q . 

It is convenient to use in the summation the following 
relations: 

, , 
~ w,w, + = 1, (oA) (oB) = (AB) + i(o[A x B]). ~ w,+ (oA) w, = 0, 
'1'=1 ,-, 

(37) 

where A and B are arbitrary vector operators that com­
mute with the matrices a. 

A differential cross section, not averaged over the 
rotations, is obtained for the photo ionization of the H2 
molecule by integrating (22) over the vibrational coor­
dinates. We confine ourselves to consideration of photo­
ionization from the lower vibrational levels, and there­
fore choose as the wave functions AOv the harmonic­
oscillator wave functions 

( /% )',. {1 } A,.= -_-- exp --a'Q' H.(aQ) , 
Y/tvlZ' 2 

(38) 

where ffy(x) is a Hermite polynomial, a = (Mwo/2)1/2, 
M is the proton mass, and Wo = 1.98 X 10-2 is the fre­
quency of the zero-point vibrations of the H2 nuclei; 
Q = Hal> - Ro is the normal coordinate describing the 
deviation of the nuclei from the equilibrium distance Ro. 

We substitute (36) and (38) in (22). After a number of 
transformations we arrive at a differential cross sec­
tion, not averaged over the molecule orientations, for 
the photoionization from the electron-vibrational level 
Ov: 

dOno' 2'I')'a(1±8a,)q { 
~ = (1 +8a,')",(I')' +Ik _ ql')' 1 ±cos(k - q,Ro) 

Xex [_ (k-q,R')']L [ (k-q,R.),]} 
p 4a'R.-' • 2a'Ro' 

(39) 

X[ (e' )'+ 1+a'e (k+ 1-a'e )'] 
q 8 1 + a'e q , 

where Ly(x) is a Laguerre polynomial. 

The cross section averaged over the initial rotational 
and vibrational states is obtained when (39) is substituted 
in (27), and is equal to 

dOn. 2'I')'a(l±Sab)q (., 1+a'8 ( 1-a'8 )') 
dQ (1+sao')"'(I')'+lk-ql')' (eq) +--8- k+ 1+a'8 q 

l'2a X _ (40) 
X ~W(v) (1 ±~ f dxcos(l'2aR,x)e-""L.(x') ). 

The quantity X = Ik - ql/v'2a, the upper limit of the in­
tegral in (40), increases with increasing energy of the 
incident photon. At ~h = 4 x 103 eV we have X > 10 and 
since the integrand contains an exponential function, the 
upper limit of the integral can be replaced by 00 with 
good accuracy. The cross section (40) is then trans­
formed into 

Z'I')'a(1±s.b)q (eq)'+ 1+
8

a'8 (k+ 11-+aa:: q)') 
(1+s.o')"'(lj'+lk-ql')' ,~ 

'\1 (41) 
X L..Jw(v) (1 ±[2' v!/k-qIJ-1l'naexp(-a'R,')H.'(aRo». 
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4. DISCUSSION OF RESULTS 

A calculation of the nonrelativistic differential photo­
ionization cross section of the H2 molecule [3J has shown 
that the photoelectron angular distribution not averaged 
over the molecule rotations has sharply pronounced 
maxima and minima, the number of which increases 
with increasing photoelectron energy. The calculation 
presented in this paper has made it possible to investi­
gate this effect with further increase of the photon energy 
and with allowance for the vibrations of the nuclei. 

Figure 1 shows the differential photo ionization cross 
sections of the H2 molecule at two values of the photon 
energy, calculated with allowance for the nuclear vibra­
tions (formula (39)) and without allowance for the vibra­
tions (the expression for the cross section is obtained in 
this case from (39) by replacing the exponential and the 
Laguerre polynomial by unity). The cross sections were 
calculated as functions of the angle e between the photon 
wave vector k and the photoelectron vector q. It was 
assumed in the calculation that the vector q lies in the 
plane of the vectors k (z axis) and e (x axis), while the 
molecule axis is directed along the vector k. 

An analYSis of the curves show that at relatively low 
photon energies (up to 1000 eV) the vibrations of the 
nuclei influence little the angular dependences of the 
differential cross section (cf. the curves in Figs. 1a and 
1b). The reason is that the product of the exponential by 
the Laguerre polynomial in (39) differs little from unity 
at these energies in the entire range of photoelectron 
emission angles. With increasing photon energy, allow­
ance for the nuclear vibrations alters significantly the 
oscillatory picture (see the curves in Figs. 1c and 1d). 
The point is that at large photon energies the product of 
the exponential by the Laguerre polynomial turns out to 
be close to unity not in the entire range of variation of 
the angle e, but only in a limited range of angles in which 
I(k - q, Ro)1 «1. For the case considered by us (the 
molecule axis is directed along k) this is equivalent to 
the equality cos e ~ k/q. Since q = (k2 + 2k/Q)112 at 
large k, it follows that 

cos A - (1 + 2/uk) -'t.. (42) 

With increasing photon energy Eph' the angle interval in 
which the oscillations are observed contracts and, as 
follows from (42), shifts towards smaller angles, as is 
clearly seen from Fig. 2. The maximum of the cross 
section also shifts with increasing Eph toward smaller 
angles, i.e., in the direction of the vector k. This shift 

1001O~a2 d!l • 0 l ,.-mo., 
:~dt 
D 4!J 90 135 90 180 

FIG. I. Differential cross section of the photoeffect of the molecule 
H2 • not averaged over the rotational states: a and c are the cross sections 
calculated without allowance for the nuclear vibrations, b and d~with 
allowance for the nuclear vibrations. 
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IJl 100 0" 

FIG. 2. Differential cross section of the molecule H2 , not averaged 
over the rotational states: I ~the H2 molecule is in the vibrational 
ground state (v = 0), 2~in the first-excited vibrational state (v = I). 

is well known from the theory of the relativistic photo­
effect on atoms. Averaging of the molecule cross section 
over the rotations leads to a vanishing of the oscillations. 
The relativistic shift of the maximum, of course, still 
remains (see Fig. 3). 

The total cross section of the photo effect is obtained 
by integrating (40) over all the photoelectric emission 
angles. We have calculated the following cases: (a) the 
Hii ion isyroduced in the electronic ground state (cross 
section a 00); (b) the H2' ion is produced in the_first exci­
ted state, which is repulsive (cross section a 10). The 
total cross sections were calculated under the assump­
tion that the molecular-gas temperature does not exceed 
10000 K. This limitation has made it possible to retain 
only the term with v = 0 in the sum over v in (40), and 
the relative error in the cross section did not exceed 
10-3 • 

The obtained cross sections are listed in the table. 
As seen from the table, the probability of production of 

. the H2 ion in a repulsion state is almost one-fifth as 
I large as in the ground state over the entire energy 
range. 

To assess the influence of the vibrations of the nuclei 
on the total cross section of the photo effect, we have 
also calculated the photo effect cross sections without 
allowance for the vibrational motion of the nuclei. The 
result of the calculations, in the form of the ratio of the 
cross sections as a function of the photon energy, is 
shown in Fig. 4. We see that at photon energies exceed­
ing 1000 eV the vibrations of the nuclei exert practically 
no influence on the behavior of the cross sections; at 
photon energies less than 1000 eV, failure to take the 
vibrations of the nuclei into account leads to cross-sec­
tion errors that reach 30%. 

It is of interest to compare our values of the photo­
ionization cross sections of the H2 molecule with the 
values obtained under the assumption that the molecular 
cross sections are additive (see the fifth column of the 
table). The atomic photoionization cross sections aH 
were calculated by us by formula (43) for photon ener­
gies Eph < 104 eV and by formula (44) for Eph > 104 eV 

lOI"~a' .' sa • II 

l'-~I EDJ 

:~:-w" . 
o ~5 90 135 6" 180 

FIG. 3. Differential cross section of the photoeffect of the molecule 
H2 , averaged over the rotational states: I ~the H; ion is produced in the 
ground electronic state (n = 0), 2~in the first excited state (n = I). 
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Eph. 

I 
'00' 

I 
°10. ~ 

I 
2°H. 

I 
'. 

I 
;-00+;10 

eV 
a.u. a.u. 

'" a.u. 2°H 20iI 

1·10' O. (2)30 O. (2)!0 0.13 O. (2) 19 1.57 ~.Il 
2·10' O. Cl)32 O. (3)10 0.31 O. (3)23 1.4:) 1.83 
3·10' O. (4)97 O. (4)22 0.23 O. (4)62 1.51 1.92 
4·10' O. (4)39 O. (4)74 0.19 O. (4)24 1.62 1.93 
5·10' O. (4) 18 O. (5)34 0.19 o. (4) 11 149 1.94 
6·10' O. (5)91 O. (5) 19 0.21 O. (5)61 1.49 1.64 
7·10' O. (5)52 O. (5) 12 0.23 O. (5)36 1.45 1.77 
8·\0' o (5)32 O. (6)73 0.23 O. (5)23 1.43 1.71 
9· \0' O. (5)22 O. (6)48 0.22 O. (5) 15 1.46 1. 79 
1·10' O. (5)15 O. (6)33 0.22 O. (5) 11 1.35 1.66 
5·10' O. (8)58 O. (8) 12 0.20 O. (8)40 1,45 1. 75 
1·10' O. (9)51 O. (9) 10 0.20 O. (9)36 1.42 1.69 
5· 10' O. (11)20 O. (12)40 0.20 O. (11)14 143 1. 71 
1· 10' O. (12)20 O. (13)40 0.20 0.(12)14 1.43 1. 71 
5·10' O. (14) 16 O. (15)31 0.20 O. (14) 10 1,45 1.73 
1·10' O. (15)29 O. (16)59 0.20 O. (15)21 1.38 I 66 

NOTE: 0.4(97) means 0.000097 

19[ph 

FIG. 4. Ratio p of the cross section of the photoeffect of the H2 mole­
cule, calculated without allowance for the vibrations of the nuclei, to the 
corresponding cross section calculated with allowance for the vibrations 
of the nuclei, as a function of the photon energy Eph (in eV); the H; ion 
is produced in the ground state. 

(see the Appendix). The sixth column of the table gives 
the ratio of the cross section for H2-molecule photo­
ionization with production of m in the ground electronic 
state to double the cross section of the H atom. As seen 
from the presented data, there is no additivity in the 
entire considered range of energies. This deviation 
from additivity is due to the change in the shape of the 
electron cloud of the atoms as a result of the chemical 
bond, and should become manifest in the case of photo­
effects on valence shells and other molecules. 

The total cross section of the molecular photoeffect 
is a sum of partial cross sections a 0' each of which 
corresponds to production of an Hi ign in one of the ex­
cited electronic states. Allowance for the contribution of 
these partial cross sections leads to an increase of the 
non-additivity (see the last column of the table). 

In conclusion, the authors thank L. P. Pitaevskil', 
V. G. Plotnikov, and M. A. Kozhushner for useful dis­
cussions of a number of problems touched upon in the 
present paper. 

APPENDIX 

Estimate of the plane-wave approximation for the 
knocked-out electron in the case of photionization 
of the hydrogen atom 

The only quantum-mechanical systems for which ex­
act expressions are available for the photo ionization 
cross sections is the hydrogen atom. It is therefore a 
natural object for testing the plane-wave approximation. 

In the nonrelativistic region, the cross section for 
the photoionization of the H atom is described by the 
Stobbe formula, and in the relativistic region by the 
Sauter formula, see [4J. In the nonrelativistic limit, the 
Sauter formula does not go over into the Stobbe formula, 
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o 1 2 J 4 5 6 tg [ 

FIG. 5. Estimate of the plane-wave approximation in the case of the 
photoeffect on the H atom; E is in eV (explanation in the text). 

since Sauter has neglected in his derivation the ioniza­
tion potential of the atom in comparison with the photon 
energy, and has also assumed that the photoelectron 
velocity v ~ l/a. It is therefore necessary to use both 
formulas in the calculation of the photoionization cross 
section in the energy range from threshold to relativis­
tic. 

It is easy to show that in the plane-wave approxima­
tion the following expressions hold for the photoioniza­
tion cross sections of the H atom: 

a nonrel = 2'nu(2E)'/'/(E + '/2)" 
pI. wave 

a =2nu' _+ __ _ rei (v' -1)'/' (4 V(V -1) ) 
pl.wave (v-i)';) v+1 ' 

(43) 

(44) 

where E is the kinetic energy of the knocked-out elec­
tron, and y = [1 - (av)T1 /2. At (]!V « 1, formula (44) 
goes over into (43) if one neglects in the latter the ion 
ization potential 1= 1/2 in comparison with E. 

We have calculated the photoionization cross sections 
by means of formulas (43) and (44) and by using the 
formulas of Stobbe and Sauter. Fi~re 5 shows the ratios 
a~l.n~i~/aStobbe (curve 1) and a~r:wave/asauter 
(curve 2). As expected, the influence of the Coulomb 
field of the nucleus is most significant near the threshold 
and decreases with increasing energy of the knocked-out 
electron. With further increase of the energy, however, 
the influence of the Coulomb field, in spite of the widely 
held opinion, again becomes appreciable. The error of 
the plane-wave approximation reaches ~50% at E = 6.6 
X 105• The error then decreases again, and a transition 
to the limit in the case y » 1 shows that formula (43) 
coincides with Sauter's formula, i.e., the plane-wave 
approximation is practically exact. 

Thus, our estimates show that the plane-wave ap­
proximation holds satisfactorily at knocked-out electron 
energies from 5 to 100 kV, where the error does not ex­
ceed 5(1Jb, and is exact in the ultrarelativistic region. 

OWe use atomic units in this article. 
2)The functions (18) are normalized accurate to terms - 1 IV. 
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