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Corrections to atomic levels of the order of the reciprocal of the nuclear mass are con­
sidered for high nuclear charges (Za ~ 1). An explicit expression is found for the addi­
tional interaction and the self-interaction of electrons due to the slow motion of the 
nucleus. A simple closed expression is derived for corrections of the above order to the 
atomic levels in the lowest order in a. 

1. INTRODUCTION 

It is well known that, in the limit as the mass of the 
charged nucleus tends to infinity, its interaction with 
light particles (electrons) can be accurately and com­
pletely described by introducing the appropriate external 
potential into the usual quantum electrodynamics. In 
particular, when radiation corrections for a single elec­
tron are ignored, this leads to the Dirac equation with a 
given external potential. When the finite mass of the 
nucleus is taken into account, this leads to corrections 
which, in the lowest approximation, are of the order of 
11M, where M is the nuclear mass. These corrections 
were first calculated by Salpeter ,1] for the hydrogen 
atom. The calculation was based on the fact that the 
electromagnetic field of the proton was small (Za « 1), 
so that the analysis could be confined to the Simplest 
Feynman diagrams for the expansion in terms of Za. 

It would be interesting to consider the same correc­
tions (of order 11M) for a strong nuclear field Za ~ 1. 
This case involves the summation of an infinite sequence 
of Feynman diagrams describing the interaction of the 
electrons with the nucleus. The evaluation of these cor­
rections for the ordinary heavy atoms is not at present 
a particularly urgent problem because the corrections 
are, in fact, small. However, they may turn out to be 
substantial for more exotic objects such as, for exam­
ple, mesic atoms. 

In this paper we derive a closed expression for all 
corrections of order 11M for a system consisting of a 
nucleus and a number of light particles (electrons) inter­
acting with the quantized electromagnetic field. These 
corrections can be associated with the Hamiltonian for 
a nonrelativistic nucleus interacting with the electromag­
netic field 

(p+ZeA)2 Ze 
;¥&= +-uH 

2M 2M 
(1) 

(A is the vector potential and H the magnetic field) and, 
accordingly, divide into four groups. The recoil correc­
tions correspond to the term p2/2M, and for a nonrela­
tivistic system of two particles they reduce to the intro­
duction of an effective mass. Corrections for the nuclear 
magnetic moment correspond to the last term in Eq. (1). 
The remaining corrections correspond to the interaction 
of a spinless charged particle with the electromagnetic 
field, and split into a part which is linear in the field and 
another part which is quadratic in the field. Explicit ex­
pressions for these corrections are given by Eqs. (18), 
(24), (27), and (32), respectively. 
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2. THE LIMIT AS M--+-oo 

In this section, which is of an auxiliary nature, we 
shall discuss the method of calculation, and will illus­
trate it by finding the limiting expressions for Green's 
functions when the nuclear mass tends to infinity. As a 
result, we shall find that the nucleus can be described by 
introducing an external field. As already pointed out, 
this is hardly a new or phYSically obvious result, but 
since our subsequent calculations will use the same 
methodology, there is some point in conSidering a simple 
example first. 

We shall start by splitting the heavy-particle (nuclear) 
propagator into principle and correction terms when 
M - 00. Let 

1 S 1 S(x)=-- d'p __ rip" 
(2n)' M-p-iO 

(2) 

To within terms of the order of 1/M, we can then show 
that 

• 
S(x)= }2s,(x); 

So = 1/2 (1 + 'Yo) u(+), 

5, = -P'YUI+) 12M, 
S, = ip'xoS,! 2M, 

In this expression 

St = -ip2xoSo ! 2M; 
S, = 1/2 (1 - 'Yo) uH , 

S, = -pvul-l ! 2M, 

u(±) (x) = i&(±xo)e",iM"'I)'(x) 

(3) 

(4) 

and p = - iV', where ." and Yo are the Dirac matrices. 
When S(x) is substituted into the Feynman graph, transi­
tion from particles to antiparticles, i. e., a change in sign 
in the argument of exp(- iMXo), leads to an additional re­
duction in 11M because of the integration with respect to 
Xo. Therefore, if we associate exp(- iMXo) with the 
nucleus, then in terms containing exp(iMxo) we can 
neglect terms ~ 11M. Consequently, S4 and S5 need not 
be taken into account. 

We shall be interested in the contribution to an arbi­
trary Feynman graph for Green's function describing our 
system (nucleus plus electrons) which is due to the 
nuclear line. The initial and final states of the nucleus 
will be assumed to be given and will be respectively 
described by the bispinors 1/!1(X) and 1jj2(X), which satisfy 
the free Dirac equation (p - M) l/J! = 0, and similarly for 
<jJ2' Expanding in terms of 11M, we obtain 

(5) 
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In these expressions qJ1(X) and qJ2(X) are nonrelativistic 
wave functions (three-dimensional spinors). In the sec­
ond line in Eq. (5) it is assumed that the operator pacts 
in the left direction. 

Let us now consider the case M - 00 and include in 
the Feynman graphs only those terms which do not con­
tain 11M at all. We shall take an arbitrary Feynman 
graph for our system and consider only that part of it 
which is connected with the nuclear line (Fig. 1). The 
pOints at which the photon lines are attached to the 
nuclear line will be indicated by Xl, ... , xn in the direc­
tion of motion of the nucleus. The other ends of the pho­
ton lines, which are indicated by Yb ... , Yn' are attached 
to electron lines. The m~mber of electron lines, and the 
presence and mutual disposition of other lines which are 
not directly joined to the nuclear line, are of no signifi­
cance for our purpose and can be quite arbitrary. Be­
cause of the projectors %(1 + yo), and the absence of the 
lower components in the principal terms for the initial 
and final states in Eq. (5), only the scalar component of 
the electromagnetic field can be attached to the nuclear 
line. 

Consider the Coulomb gauge for all the electromag­
netic propagators connected with the nucleus. The ex­
preSSion 

A = S d'x'P,"(x)V(x-y.)V(x-y._I) ... V(x-YI) 

X'PI (x) 8 (Y.o - y.-t.o) 8 (Yn-t.o - Yn-2,o) . .. 8 (y" - YIO). (6) 

can then be associated with the part of the graph shown 
in Fig. 1, where V(x) = Ze/47Tlxl is the Coulomb potential 
of the nucleus. 

Let us now consider further graphs which differ from 
Eq. (1) only by the distribution of the x pOints along the 
nuclear line. The y points and the remainder of the dia­
gram are fixed (Fig. 2). The matrix element for Fig. 2 
will differ from Eq. (6) only by the e functions and the 
first factor will be common. Let us take the sum of all 
the graphs of this type. The result is a product of the e 
functions and is equal to unity. In fact, the e functions 
restrict the region of the integration of the variables Yo, 
arranging them in a definite order corresponding to the 
order of the x points along the nuclear line. However, 
when all the possible sequences of the x points have been 
taken into account, it is clear that all the Yo will run over 
the entire range between - 00 and + 00, Le., there will be 
no e functions left. 

FIG. I 

FIG. 2 
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Thus, after summation over all the possible sequences 
of the x points along the nuclear line, the part of the 
Green function connected with it is found to be 

At = f d'x'P" (x) Vex - Yn) .•• vex - Yt) 'PI (x). (7) 

If we now take qJ2(X) = qJ1(X) and IqJ1(x)12 = 03(X), which 
corresponds to the nucleus at the origin, we obtain 

At = V(Yn) ... V(YI). (8) 

Hence, it is clear that, in our approximation (M - 00), 
the inclusion of the interaction with the nucleus is 
equivalent to the introduction of an external Coulomb 
field V into the quantum electrodynamics of the electron. 
This can be verified by direct comparison of the contri­
butions due to the corresponding Feynman diagram. 

3. EFFECT OF tHE RECOIL 

We shall now consider the corrections for the finite 
mass of the nucleus which are of the order of 11M. It is 
clear at the outset that we need not take into account any 
graphs in which the ends of the photon lines lie on the 
nuclear line. All these are of order not less than the 
order of 11M2. Therefore, all the remaining graphs are 
topologically the same as Figs. 1 and 2, but instead of 
one of the nuclear lines we substitute 8i (x), i = 1, 2, 3 
[see Eq. (3)] or, instead of the outer ends, we substitute 
terms ~ 11M from Eq. (5). 

Recoils correspond to terms containing the operator 
Xop2/2M, which describes the kinetic energy of the slow 
nucleus, Le., the propagator 81 and the second terms 
~ 11M in Eq. (5). 

The presence of the propagator xoP2/2M again ensures 
that all the photons interacting with the nucleus are 
Coulomb photons. Assuming that in the graph of Fig. 1 
the propagator 81 is introduced between xk and xk+ l' we 
obtain the following expression for the corresponding 
contribution: 

B.= fd'x<p,"(x)V(X-Yn)",V(X-Yh+I) (-i :;f )V(x-Y.) ... 

... V (x - Yt) "I (x) (Y'+t,O - v,,) 0 (Yno - Yn-I.o) . .. e (y" - YiO). (9) 

In compact notation 

B. = (21 V n •• • V' lt (-ip' / 2M) V •... Vd 1> 

X(Yk+I,O-YhO)O(y.O- Un-t.o) ... O(Y"-YIO), (10) 

where (21 ... 10 represents the matrix element between 
the nuclear nonrelativistic wave functions, and Vk 
== V(x- Yk). 

We shall start by considering the sum of the contribu­
tions of graphs of the kind shown in Fig. 1 with fixed x 
and y, which differ only by the point at which the propa­
gator 81 is introduced along the nuclear line. In other 
words, we shall consider the sum of the Bk over k be­
tween k = 1 and k = n - 1. Collecting together terms with 
the same factors Yko in this sum, we have 

n-l . 

B' = L:Bh = - 2:11 8(y.o - Yn-I,o) ... D(y" - YiO) (21 V.P'Vn_, ... V,Yno 
R=I 

- Vn ••• V,p'Vly.,+ ~y"V •... Vk+'[V" p']V._ I ... V,Il>. (11) 

It is now readily shown that when the recoil correc­
tions at the outer ends (Le., terms containing ± iXop2/2M 
in Eq. (5)) are taken into account, this reduces the first 
two terms in the matrix element in Eq. (11) to the same 
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structure as is present under the summation sign be­
tween k = 2 and k = n - 1. The final expression for the 
recoil correction for a graph of the type shown in Fig. 1 
is 

(12) 
. 

X.E y,,<21V •... V'+l[V.,p'lV.- t ... V,Ii>. 

This expression is not yet in the most convenient 
form for our purposes because the operator [Vk , p2] does 
not commute with Vz and, therefore, summation of graphs 
such as those shown in Figs. 1 and 2 cannot be carried 
out. We must therefore transform the matrix element. 
We shall write 

[V., p'l =p[V., pj + [V., Ji]p 

and transfer the operator p in the first term to the left, 
and in the second to the right. It then turns out that 

n 

= .E (2iVn ••• [V"pj ... [v.,pj ... V,Ii>sign(l-k) 
l=t , ... 

(13) +<21 v n ••• [V., pJ. .. v tplt>+<2IpV •... [V., p]. .. V,Ii>. 

If 'Pt = 'Pl> which we shall assume to be valid, the last 
two terms in Eq. (13) add up to zero. In fact, substituting 
X = Vn ... [Vk' PJ ... Vl, we have 

f d'xrp,'(x)pXrpt(x)=-i fd'xcp,(x)V(Xrp,(x)) (14) 

=i fd'xXrpt(x)Vrp,(x)=- f d'xrpz' (x) xprp, (x). 

Using Eq. (13), we can write the sum over kin Eq. (12) 
in the form of the following double sum: 

n k-i 

.E.E (YIO - y.,) <21 Vn ••• [V" pl .. . [V. ,pj ... V,Ii}. (15) 

Since YZo - Yko for Z < kin Eq. (12), we can rewrite 
Eq. (15) in the form 

-~ .E lylO - y.,1 <21 V •... [V" p]. .. [V.,pj ... v,It>. (16) 
.,., 

This expression does not now depend on the sign of 
the difference between the time components of the varia­
bles y (or the equal time components of x) and, there­
fore, this expreSSion is general for all diagrams of the 
type shown in Figs. 1 and 2. We can therefore consider 
the sum of all such graphs. As in the case of the zero­
order in 11M, the sum of all the products of the (J func­
tions in the end turns out to be equal to unity. If we fix 
the nucleus at the origin, we obtain the following final 
expression for the contribution of the nuclear line in 
Figs. 1 and 2, which take into account the recoil: 

4~ .E Iy.o - ylOl V(y.) ... [V(Y.), p]. . . [V(1,), p]. .. V(y,). (17) 
.... ' 

This corresponds to the app~d.rance in the diagrams of a 
new vector boson line connecting the electron lines. If 
the corresponding propagator is denoted by Bai3(Yl> Yo), 
then we find from Eq. (17) that the only nonzero compon­
ent is Boo, where 

t 
Boo(Y"y,)= 2M IYto-y"I[V(y,),p][V(y,),pj. (18) 

The formula given by Eq. (18) is the final expression 
for calculating the recoil corrections. The recoil cor­
rections to the Green function are obtained by taking into 
account all the possible Feynman diagrams containing 

213 SOY. Phys.-JETP, Vol. 37, No.2, August 1973 

,..---
/ .... , \ iIIX 

2 J 

5 

FIG. 3 

one line with the propagator B, which can be attached to 
the same or different electron lines, and any number of 
other lines. Of course, the contribution due to the inter­
action with the nucleus in the zero order in 11M can then 
be taken into account by introducing the external Coulomb 
potential, so that the electron propagators must be taken 
in the external Coulomb field (Furry representation). A 
series of simplest diagrams representing recoil is 
shown in Fig. 3. The new line with the propagator (18) 
is shown by the dashed lines. Diagrams 1 and 2 in Fig. 
3 allow for recoil in the lowest order in a but arbitrary 
order in Za. It will be shown below that the contribution 
of these diagrams can be represented in another way, 
and it will then be immediately clear that in the non­
relativistic limit for a single particle these corrections 
reduce to the introduction of an effective mass. Dia­
grams 3,4, and 5 represent the superposition of correc­
tions for recoil and for electron interaction one on 
another. Diagrams 6 and 7 show the superposition of 
radiative corrections onto the recoil corrections. 

4. CORRECTIONS DUE TO TERMS IN THE 
INTERACTION BETWEEN THE NUCLEUS 
AND THE ELECTROMAGNETIC FIELD WHICH 
ARE LINEAR IN THE FIELD 

We shall now use the same method as in the last 
section to consider, in general, the corrections which 
are due to the introduction of a single propagator S2 into 
the nuclear line, and those due to terms with p' ,., at the 
outer ends. Let us return to Fig. 1 and suppose now that 
the propagator S2 is introduced between the points xk 
and xk + l' while the remaining nuclear propagators are 
taken in the form of So. A transverse photon should then 
be emitted in one of the vertices, xk or xk + l' The com­
bined contribution of two such graphs is 

C. = -~fd'xrp,·(x)V(x- y.) ... V(x -y.+,) 
2M 

X{D(x - z)y'pyV(x - y.)9(Yk+'.O - xo)9(xo - YkO) 9 (YkO - Y.-"o) 

+ V(x - y,+,)pyy'D (x - z)9(y.+"o - Y.+"O) 9 (Yk+',O - xo)9(xo - Y.-I.o)) 

XV(X-Yk_') ... V(x-y,)cp,(x) II 9(y,+"o-Y,,). (19) 

where D(x- z) is the electromagnetic field propagator 
corresponding to the transverse photon, and s = 1, 2, 3 
is the vector index of the photon. Since the vertex on the 
electron line, which is connected with the transverse 
photon, is of a special character, we have denoted its 
coordinate by z. 

Let us first sum the graphs in Fig. 1 with different 
pOSitions of S2 along the nuclear line, i.e., let us sum 
Eq. (19) between k = 1 and n - 1. In the resulting expres­
sion we shall combine in pairs terms in which the 
transverse photons are emitted from the same vertex. 
This will isolate two terms corresponding to emission 
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from the extreme vertices. These are then combined 
with contributions due to the correction terms originat­
ing from the initial and final states and containing p. ')' 
[see Eq. (5)]. In the final expression for C all the ver­
tices have equal weights: 

Ze • 
C = - 2M L, S dx.<21 Vn ... v.+! (pvV'D(x.) + D(x.)v·pv) VH ••• V,I1> 

R=i 

xe (YO" - Yn-'.')' .. e (y.+!.. - x.) e (x, - Y'-l.O) .. . e (y" - y,.). (20) 

where D(Xo) == D(x - z). Let us now substitute 

yy' = '/2 {v, v'} + '/,['1', y') 

and accordingly split C into two terms, C1 and C2. We 
shall begin with C1 which will include the matrix element 
between the nuclear wave functions 

<2 IV" ... VW {p', D(x,)} VH ... Vd 1>. (21) 

We shall transform it by analogy with the transforma­
tion of the matrix element containing (V, p2) in the last 
section [see Eq. (13)] , in which case 

C,= - 2~ rJ dx,sign(y,,-x.)<2IVn ... D(x.) ... [V"p'). .. VIIi> 

'# 

X e(Yno - Yn-I..)' .. e(y.+!.. - x.) e (x. - Y'_I..)' .. e (Y20 - YIO). (22) 

We shall now select one of the terms in the double sum 
over k and l, and fix the corresponding vertices xk and 
Xl in the graph of Fig. 1. We next consider all other 
graphs with transposed vertices of the type shown in 
Fig. 2, but subject to the condition that xk and Xl are 
fixed. Then after summing over all such graphs, the sum 
of the products of the 8 functions will be a 8 function 
which restricts the region of integration for the variables 
Xo and Ylo corresponding to fixed vertices. If 1 > k, we 
have 8(Ylo - xo)' and if 1 < k we have 8(xo- Ylo)' Combin­
ing these two groups of terms and placing the nucleus at 
the origin, we obtain the following final expression for 
the contribution C1t due to the graphs in Figs. 1 and 2: 

Cit = - :; 1: S dx. sign (YIO - x.)D(z, z. - x.)[V(y,) , p') IT V(y,). 

,.... , ..... ' (23) 

This corresponds to the appearance on the graphs of a 
line joining the electron lines. Its propagator Ca {3(Y1, Y2) 
has nonzero components Cos and C so (s = 1, 2, 3), where 

~ S . C •• (YI, y,) = - 2M dx. sign(y" - x.)D (YI, YIO - x.) [V (Y2), p'), (24) 

C,,(y., y,) =C"(Y2, YI). 

Let us now consider the second part of the contribu­
tion C2, which is due to the commutator of the matrices 
y. It includes the matrix element 

-i<2!Vn ... Vk+,[[oP), D(x.»)VA-\ ... V./1>. (25) 

The commutator is an ordinary function in configuration 
space, and commutes with all the potentials Vk' If we 
now sum C2 over all the graphs in Figs. 1 and 2, we find 
that the 8 functions in Eq. (20) will disappear. The re­
maining expression for the nucleus at the origin is 

'Z n ;; 1:S dx.[(op]'D(z,x.)]IT V(y,). (26) 
11=1 i*k 

This contribution corresponds to an additional external 
vector field generated by the nucleus independently of 
time, which is equal to 

Ze S 2M dx.[oVD(z,xo»). 

This obviously describes the interaction with the mag­
netic moment of the nucleus. 
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5. CORRECTIONS DUE TO TERMS IN THE 
INTERACTION BETWEEN THE NUCLEUS 
AND THE ELECTROMAGNETIC FIELD 
WHICH ARE QUADRATIC IN THE FIELD 

In this section we consider terms due to the propa­
gator S3. Suppose that in Fig. 1 the operator is intro­
duced between xk and xk+ l' Transverse photons should 
therefore be emitted by these points. The corresponding 
vertices on the electron lines will be denoted by Zl and 
Z2. The contribution of such a graph is 

F. = - (Ze)' S dx.+, .• dx .. <21 (6., + ie.I,O",) V n ••• Vh+.D2 (Xh+I .• ) D, (x .. ) . 

. V._ I ... VI It> exp {2iM (x.+ I .• - x .. )}e (Yno - Yn-'.')' .. e (Y.+, .• - Xh+I.') . 

. e (x .. - x.+! .• ) a (x .. - Y'-l.O) . .. e (y" - YIO)' (27) 

where, for example, D2(xk+1,0) == D(xk+1- Z2)' Let us 
consider separately the integral with respect to the time 
variables "k + 1,0 and xko' Substituting Xo = %("k + 1,0 + xko) 
and ~ = xk - xk ' we find that the integral with o + 1,0 0 

respect to ~ 0 is 
t-

1= S ds.a (- 6.) e"Mlof (so), (28) 

where f( ~ 0) is a function which decreases as ~ 0 - 00. 

When M - 00 we have, to within terms of the order of 
11M, 

1= 1(0) /2iM. (29) 

Therefore, to the same accuracy we can rewrite Eq. (27) 
in the form 

(Ze)' S . 
F, = - 2iM dx.<21 (6" + le'I'O",) V •... V,+,D,(x.)D, (x.) V'_I .. . V,lt> 

xa (Yno - Yn-' .• ) .. . a (Y'+2 .• - x.)a(xo - y,-, .• ) . .. a (y" - YIO)' (30) 

Let us now again sum over all graphs of the type 
given in Figs. 1 and 2 with different disposition of the 
x points on the nuclear line, having fixed xk and "k +1' 

As in all the preceding cases, the sum of the 8 functions 
will be equal to unity. If we further add graphs with 
interchanged xk + 1 and xk' this will reduce to the inter­
change of vector indices s ~ i. Finally, we have the 
contribution 

. (Ze)' J IT F .. = I ~ /l" dx,D (z" x. - ZIO) D (z" x. - z,,) V (Yi) . (31) 
t+Il,1i+t 

This is associated with the additional line joined to the 
electron lines which correspond to the vector particle 
with propagator F <l{3 having nonzero components F sl' 
s, 1 = 1, 2,3. We then have 

. (Ze)' S (32) 
F"(Z,, z,) = I---;v--/l" dX,D(Z" x. - zlO)D (z" x. - z,,). 

6. RECOIL CORRECTION IN THE LOWEST ORDER 
ORDER IN Cl 

In this section we shall consider corrections in the 
lowes t order in QI, i. e., without taking into account the 
interaction between electrons or the radiation correc­
tions. This corresponds to graphs 1 and 2 in Fig. 3. We 
shall see that these corrections can be written in the 
form of an expression which corresponds to the Hamil­
tonian (1) for the nucleus interacting with the electro­
magnetic field. In particular, the recoil correction in the 
nonrelativistic limit for a single particle reduces to the 
well-known effective-mass correction. To be specific, 
we shall consider corrections to the energy levels of 
bound electrons. In our approximation we shall neglect 
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the interaction between the electrons and, therefore, the 
level shift will be obtained directly from the graphs in 
Fig. 3 by replacing the outer electron propagators by the 
corresponding electron wave functions (Dirac functions). 

For graph 1 in Fig. 3, the level shift in the n- th elec­
tron state is 

!'.En = -~ Sd'x, d'x, doo~n(x,)y.S(oo,Xt, X,)y~ljJn(x,)P"' (en - 00, x" x2 ). 21t 
(33) 

where <f!n and 1in are the electron wave functions satisfy­
ing the Dirac equation in the external Coulomb field of 
the nucleus for energy En' S(w, Xl, X2) is the electron 
Green function in this external field for energy w, and 
pO'i3 is the propagator which describes the recoil cor­
rection which in configuration space is given by Eqs. 
(18), (24), and (32). 

For graph 2 in Fig. 3, the contribution to the level 
shift is 

!'J.En,n, = -ie2 S d'x, d'x, {(ilin, (x,) y.ljJn, (x,» (~",(x,)y~ljJn,(x,) )p·~(O, x" x,) 

- (~n, (x,) Y.ljJn, (x,» (ilin, (x,) y,ljJn, (x,) ) p.' (en, - en" x" x,)}. (34) 

We begin with the recoil corrections. For given en­
ergy, the propagator B is given by 

ill ) 
B"(oo,x,,x,)=- 2M [V(x,),p][V(x,),p] (oo+iO)' + (w-iO)' (35) 

Substituting this in Eq. (33), we find the corresponding 
energy shift after integrating with respect to w: 

e' 
AE~8) = - _ (nl [V, p] (.16 - en)-t A (.16 - en) -'[ V, p]ln). (36) 

2M 

where .16 is the Hamiltonian for the Dirac equation in the 
Coulomb field of the nucleus, and the averaging is car­
ried out over the state of the electron with wave function 
<f!n. The operator A = sign .16 is equal to + 1 for states 
with positive energy and -1 for states with negative en­
ergy. 

Since 
-elY, p] =[.16-8., p], (37) 

the recoil correction for graph 1 in Fig. 3 has the fol­
lowing final form: 

!'J.En(8) = '/,M-' (nlpApln). 

For one electron in the field of the nucleus this expres­
sion exhausts all the corrections for the recoil. As can 
be seen, it is not simply reduced to a term of the form 
p2/2M describing the kinetic energy of a nonrelativistic 
nucleus in the center of mass system and involving the 
effective mass correction. In fact, we have the sign 
operator A, which is due to the transition from electrons 
with negative energy to positrons with positive energy in 
the Feynman theory. The difference between A and unity 
can be readily taken into account in the case of a weak 
field (ZQI « 1), and this then leads to the correction 
calculated by Salpeter. [lJ 

The recoil corrections due to graph 2 in Fig. 3 can 
be found from Eq. (34). The first term in this is equal 
to zero because the matrix element (nllV, p]ln) = O. 
There remains the second (volume) term which, when 
Eq. (37) is taken into account, turns out to be 

(38) 
The remaining corrections can be found in a similar 

way. The propagator eso for given energy is given by 

where P represents the principal value. If we substitute 
this expression in Eqs. (33) and (34), we obtain, respec­
tively, the level shifts for graphs 1 and 2 in Fig. 3: 

(C) Ze' 
!'J.En =2M (nlaAp + pAa +[b,p]ln), 

(C) Ze' 
A E = -- (n n la(t)p(') + p(t)a(') Inn) 
Ll nln2 2M 1 2 2 I • 

(40) 

(41) 

We have introduced the Hermitian operators a and b for 
each electron with matrix elements 

I I -( I . cos(en-em)IXII ) 
(n a m) - n a I 1 m , 

4n; x 

( I sin (en - 8m) Ixl I ) 
(nlblm)=i n a 41tIXI m, 

(42) 

(43) 

where a represents the Dirac matrices. The operator a 
obviously has the significance of the operator represent­
ing the electromagnetic field due to an electron at the 
origin. In Eq. (40) the last term describes the imaginary 
correction to the mass, which corresponds to the insta­
bility of the excited levels in the field of the nucleus 
when retarded effects are taken into account. 

Finally, the propagator F sl for given energy is 

_ (Ze)' coswlx,lcoswlx,1 
F"(w,x,,x,)=!--6., 'I II I' (44) M 16n x, x, 

Substituting this in Eqs. (33) and (34), we obtain the ex­
pressions for the corresponding energy shifts. These 
are given below without including the imaginary part 
which we have not succeeded in writing in a compact 
form: 

If we compare all these expressions for the correc­
tions, we find that in a many-electron system the total 
level shift in the first order in lIM and the lowest order 
in 0', due to graphs 1 and 2 in Fig. 3, can be written in 
the compact form 

Rc!'J.E = '/2M-'( (P + Ze'A)A(P + Ze'A». (47) 

where P = ~ . p(~) is the total momentum of all the elec­
trons, A = ~ • a (1) is the resultant operator corresponding 
to Eq. (42) for all the electrons, and A =IIA(il. The 

i 
angle brackets represent averaging over the given state 
of the many-electron system in the approximation in 
which the interaction between the electrons is not taken 
into account. Partial allowance for this interaction, i.e., 
allowance for graphs 3, 4, and 5 in Fig. 3, can be 
achieved by averaging over the state in Eq. (47), using 
the Hartree- Fock approximation. There is a clear com­
plete correspondence between Eq. (47) and the first 
terms in the Hamiltonian given by Eq. (1). The operator 
eA is the resultant vector potential produced by the elec­
trons at the point at which the nucleus is located. The 
appearance of the sign operator A is not at all trivial. 
As already noted, this operator represents the specific 
features of the description of negative levels of the Dirac 
equation in the Feynman picture. 

1 E. E. Salpeter, Phys. Rev. 87,328 (1952). 

iZe cos w I x,j 2P 
C"(w,x,,x,)= - 2M 41tlx,j w [V(x,),p'], 

(39) Translated by S. Chomet 
44 

215 SOy. Phys.-JETP, Vol. 37, No_ 2, August 1973 M. A. Braun 215 


