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An expansion in powers of E = 2 - d (d is the number of space dimensions), to order E" 
is obtained in the static model of the nucleon[4] for the exponent 1] of the nucleon Green's 
function. The expansion is in full agreement with the true value of 1], which can be ob­
tained in this model from the exact solution. 

1. INTRODUCTION 

Modern theory of phase transitions is based on the 
hypothesis of scale invariance (scaling) of the correla­
tion functions over distances much larger than the in­
t(;lraction radius, but much smaller than the correlation 
radius. A direct consequence of this hypothesis is the 
power-law behavior of the two-point correlation func­
tions 

(<p(x)<p(O» 00 x-", 

where I) is the so-called "anomalous dimensionality" of 
the field cp, and is not determined by scaling. Knowledge 
of the anomalous dimensionalities of various fields yields 
interesting information on the system near the critical 
point. In principle, anomalous dimensionalities can be 
determined from an infinite system of infinite equations 
of the unitarity condition [1]. This is impossible at pres­
ent for systems that are more or less realistic. 

Wilson[2] has proposed recently a practical method 
for calculating anomalous dimensionalities (critical ex­
ponents). He considered the Acp4 model, which describes 
the critical behavior of a Heisenberg ferromagnet and 
of the Baxter model [3]. Wilson's method makes use 
essentially of the fact that at a dimensionality of space 
d = 4 there is realized a zero-charge solution. The 
critical exponents are then determined in the form of 
expansions in powers of the deviation E from the dimen­
sions of 4-space. 

. In this paper we apply Wilson's procedure[2] to the 
static model of the nucleon [4] • In this model, at a cer­
tain ratio of the interaction constants (see the next sec­
tion) there is scaling if the dimensionality of the space 
is d = 1, and a zero-charge solution is realized at d = 2. 
Calculation by Wilson's method leads to the following ex­
pression for the exponent 1] the nucleon Green's function 
G(w) a: w -1 + 1] (w has the meaning of energy) and for the 
renormalized interaction constant AR: 

'I] = 'I"e' + O(e'), 

I'R = _I/,e + O(e'), 

(1) 

(2) 

where E = 2 - d. The expansion (1) agrees fully with the 
exact value of the exponent 1] in the static model: 

'I] exact = e'/32. 

2. STATIC MODEL OF THE NUCLEON IN A 
SPACE OF DIMENSIONALITY d = 2 - f 

(3) 

The Hamiltonian of the static model of the nucleon in 
the case of interest to us is 

H = J V<p+(r) V<p(r)dr 

+}. S",+(r)",(r) {<p+(r)<p(r)+<p+(r)<p+(r~+<p(r)<p(r) }dr, 
(4) 
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where l/J is the field of the static nucleons and cp is the 
meson field. 

As shown by Gribov et al. [4J, the nucleon Green's 
function in the representation of the imaginary time ~ is 
expre ssed in terms of a certain function y 1 (w, ~) 1) : 

G(6)=a(~)exp{: fdr S:[y,(cu,n-11}. (5) 
o 

The function y l(W, ~) satisfies the equation 

(cu )- 1 +,}.' S aro,' dcu,' D(cu,') D(cu,') 
1', ,s - (2lti)' 1+W(cu,') 1+}.D(cu,') 

x exp{ (cu,' + cu,') sly, (cu,', s) 
(cu + cu,') (cu,' + cu,') , 

(6) 

where D(w) is a meson propagator with dimensionality d: 

1 ddk 
D(61)= J cu+k' (21t) , , (7) 

2 d/' 
d'(k) =_It __ k,-, dk. (8) 

f(dI2) 

The dimensionality of space d is assumed to equal 2 - E 

throughout. This yields for the meson Green's function 
(E 1= 0) 

(9) 

(we have omitted a coefficient, which we assume to be 
incorporated in the interaction constant A). We note that 
the bare Green's function of the nucleon, as seen from 
(5), does not depend on the dimensionality of the space, 
and has the following form in the w-representation 

~ 1 
Go(cu)"" SGo(6)e-01dS=-. (10) 

o cu 

The integral equation (6) with the propagator (9) was 
solved by the method used by Gribov et al. [4] to solve 

,,:.his equation in the case of one-dimensional space, i.e., 
<;.t E = 1. The solution is 

\', (ill, s) = 1 - e' I 16cu!;. (11) 

Using (5), we obtain an expression for the nucleon 
Green's function in the w-representation: 

(12) 

i.e., expression (3) for 1]. 

3. CALCULATION OF THE EXPONENT 11 BY 
WILSON'S METHOD 

In this section we obtain the exponent 1] to the first 
nonvanishing order in E. The calculations in higher 
orders are given in the Appendix. 

We consider the vertex r2(W1, "'2, w) for the decay 
of a nucleon into two mesons and a nucleon in first­
order perturbation theory: 
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or, in analytic form 
d' D(ro') 

f,(ro"ro"ro)=1.+1.'S ro 
2n;i (i)-Wt-W' 

+ 1.' S dvl' D(ro') 
2ni ffi- W2-m' t 

(13) 

where D(w) is the meson propagator at small deviations 
from two-dimensional space: 

1 d'-'k 
D(ro) = S ro + k' (2n)'-' . 

e e' 
... -In ro + Tin' ro - 24 In' ro + ... (14) 

(the cutoff parameter is set equal to unity; the general 
coefficient has been omitted since it can be incorporated 
in A (see below». 

According to Wilson [2J, the bare constant A must be 
chosen equal to the renormalized value (physical 
charge), which, naturally, depends on the dimensionality 
of space. Sinze zero-charge obtains at d = 2, the expan­
sion A(E) begins with the linear term: 

1.(e) = 1...e+O(e'). (15) 

Retaining the zeroth-order terms in the meson propaga­
tors, we obtain the vertex to order E2: 

r,(roh ro" ro) = 1. - 1.'ln (ro - ro,) - 1.'ln (ro - ro,). (16) 

We shall henceforth be interested in the ratio r 2 /1\, 
where J\ == r2(Wl> W2, w), while wJw = Wl/W and W2/W 

= W2/W, We have for this ratio 
f, ro 

-=-= 1- 21.ln-. 
f, w 

(17) 

We now find Wilson's expansion for the nucleon 
Green's function. In first order of perturbation theory, 
G(w) is given by the diagrams 

+ ..!... 
2 

w' 

§ 
tu - w'-t.J" 

and by the corresponding analytic expression 

(18) 

1 " d 'd" I 'I " -+-"-S ro ro nro nro +O(e') (18') 
ro 2ro' (2ni)' ro - ro' - ro" . 

Confining ourselves to the prinCipal asymptotic term 
(w - 0), we obtain for G(w) 

(19) 

On the other hand, we have from the scale invariance 
for the Green's function and the vertex 

(20) 

or 
(21) 

The exponent 11 in (20) and (31) is a function of the 
dimensionality of space: 

Tj = Tj. + Tj,e + Tj,E' + 0 (e'). (22) 
Taking this circumstance into account, we rewrite (20) 
in the form 
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1 
G(ro) = -[ 1 + Tj. In ro + Tj,dn ro + Tj,e'ln ro 

ro 
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+ '/,Tj.' In ro + TjoTj,eln ro + 'I,Tj,e' In' ro + O(e') J. (23) 

Comparing the expansions (19) and (23), we conclude that 

(24) 

Le., the expansion for 1) begins with the E2 terms. Taking 
this into account, we obtain from (21) for the ratio r 2 /I\ 

f, e • ro , 
-_-. = 1+-ln-+O(e). 
f, 2 w 

(25) 

Expanding the constant A in (17) in powers of E and com­
paring the series with the expansion (25), we get 

1.=-e/4+0(e'). 

By virtue of (24) we have for 11: 

Tj = e' 1 32 + 0(e3 ). (26) 

As shown in the Appendix, the new two terms in the ex­
pansions of A and 11 are equal to zero. We thus obtain 
ultimately (1) and (2). 

In conclusion, we are sincerely grateful to A. M. 
Polyakov for stimulating discussions and valuable re­
marks. 

APPENDIX 

We present here Wilson's expansion for the constant 
A and the exponent 11 to orders E3 and E4, respectively. 

For the vertex r 2(Wl, W2, w), the perturbation-theory 
series, accurate to fourth-order terms, contains 44 dia­
grams. Without loss of rigor, however, we can consider 
the vertex r 2 at zero frequencies Wl and "-'2. Diagrams 
with interchanged external ends then make equal contri­
butions' so that one doubled diagrams can be considered. 
Equal contributions are made also by symmetrical dia-

gram,. for ~ -J-
(A.1) 

Taking these remarks into account, we obtain the follow­
ing expansion: 

Simultaneously with the perturbation-theory expansion, 
we have expanded, with the required accuracy, the meson 
propa,;ators in powers of £: wavy lines without crosses 
correspond to -lnw, those with one cross correspond to 
(1/4)E ln2 w, and those with two crosses to (-1/24)E2 In3 w 
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(see (14)). After separating the principal asymptotic 
terms from the Feynman integrals, we obtain for the 
ratio r 2 /i\ (w = 1) 

~, = 1- 2t.lnoo-~t.'lnoo+ (~+3t.' ) In' 00 
r, 2 4 

+t.'ln'oo- (~+~t.'e+~t.')ln'oo 
12 3 3 

(A.3) 

d ' I { ')1" -{t.'l: + 41.') S 00. n 00.,.-00 ,n 00 
2m 00-00 

For the Green's function we have the following expansion 
to order E4: 

G(",)= ______ + i 

+ 1 ~ + ~ + ~ +2 ,q:;;c, 
2 

(A.4) 

+1 A A+L~ +1 ~ 
• 4 4~ 

Again separating the entire logarithmic asymptotic ex­
pression, we obtain for the regularized Green's function 
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(A.5) 
~' 5 ~ 

+ (_I: +-1.'1:+ 21.') (In'oo- 31n2 OO+61nOO)+-ln'OO]. 
12 6 8 

Expanding the parameter A in (A.3) and (A.5) in powers 
of E and comparing these series with the expansions of 
(21) and (22), we arrive at (29) and (30). 

- - -

1l0ur expression for Gcn contains the factor 1/2 in the argument of the 
exponential; omission of this factor led to an incorrect expression for 
7) in [4). 
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