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The Vaks- Larkin-Pikin (VLP) diagram technique is extended to the case of an Heisenberg 
ferrodielectric with single-ion crystallographic magnetic anisotropy. The temperature 
and field dependences of fluctuation decay of spin waves with small quasimomenta are 
investigated at temperatures close to the Curie temperature in a first approximation of 
the self-consistent field method. 

1. INTRODUCTION 

As is well known, the static and dynamic properties 
of magnetically-ordered crystals are determined sub­
stantially by the crystallographic magnetic anisotropy, 
one of the main sources of which is single-ion aniso­
tropy. Assuming that the intracrystalline electric field 
has axial island symmetry, we can express the Hamil­
tonian of the generalized Heisenberg model of a ferro­
dielectric, follOwing Tyablikov [IJ , in the form 

~=-I-tH.ES,'-+- .E V(r,-r,)S"S,,- ~.E (S,')' (1.1) 
r f l+r2 

where V(rl - r2) is the potential of the exchange interac­
tion between the spins S situated at sites rl and r2 of the 
lattice; D > 0 is the anisotropy constant; H is the ex­
ternal magnetic field and is directed along the easiest­
magnetization axis. 

The magnetic properties of crystals having a Hamil­
tonian (1.1) were investigated at low temperatures by 
different workers, and the calculation results are sum­
marized in [2J. The use of self-consistent-field methods 
and two-time temperature Green's functions[5,6J has 
made it possible to explain some properties of the sys­
tems (1.1) at arbitrary temperatures. Pikin[3J regarded 
Single-ion anisotropy as a perturbation, while Ginzburg[4J 
took exact account of this perturbation in the zeroth ap­
proximation of the self-consistent-field method, and 
Potapkov [5J and Noskova [6J made it possible to take 
exact account of the Single-ion anisotropy by using kine­
matic relations for the spin operators. 

Our task is to generalize the Yaks, Larkin, and Pikin 
(VLP) diagram technique to permit exact allowance of 
the single-ion anisotropy in any approximation of the 
self-consistent-field method. It is then natural to repre­
sent the Hamiltonian (1.1) in the form 

(1.2) 

where the zeroth-approximation Hamiltonian 

~o=- ~ ~S,'- ~ ~ (S,')' (1.3) 

describes the behavior of the spin in a molecular field 

y = ~I-tH + 13 .E VIr, - r,)<S,:> (1.4) 

" 
with allowance for the Single-ion anisotropy, and 

~,.,=-+ .E V(r,-r,){(S.,'- <S'» (S,:- <S'»+2S,,-S,,+} (1.5) 
r)=Ff2 

describes the pure spin interactions. Here (3 = T-1 and 
the angle brackets denote averaging over the canonical 
ensemble with Hamiltonian~. 
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Such a breakdown of the Hamiltonian is expedient be­
cause the multinode spin correlators that appear when 
the perturbation-theory series with the Hamiltonian .rcint 
(1.5) are constructed are expressed in term of sin~le­
cell blocks, just as in the VLP diagram technique 7,6J. 
These blocks represent statistical mean values with 
Hamiltonian.rco of the T-ordered spin operators pertain­
ing to one node. 

2. GENERALIZATION OF THE VLP DIAGRAM 
TECHNIQUE 

The connectivity theorem, according to which only 
connected diagrams need be taken into account in the 
calculation of the temperature correlation functions, re­
mains valid in the developed diagram technique. Any 
connected diagram can be represented as an aggregate 
of connected single-cell blocks jointed by interaction 
lines. 

We define, following[7], the Fourier component of an 
unconnected block with n emerging interaction lines, by 
the expression 

where 

S"(t) = exp (.rcot)S" exp (- .rcot)., (2.2) 

T is the chronological-ordering operator, the symbol 
< ... )0 corresponds to averaging with the Hamiltonian .rco, 
iWm = 21TimT are the imaginary frequencies of the tem­
perature diagram technique, t is the imaginary tem­
perature time, and O! takes on the values +, - , and z. 

The expressions for the connected blocks are obtained 
by subtracting from (2.1) the sum of the products of all 
the possible blocks of lower rank. 

To calculate the unconnected blocks (2.1) it is neces­
sary to know the explicit form of the dependence of the 
spin operators on the "time." From (2.2) we obtain with 
the aid of the commutation relations [SZ, S-] = -S-, 
[SZ, S+] = S., and [S., S-] = SZ 

S+(t) =exp [-(Y-'I'+2'1'S')fl-'t]S+, 

S- (t) = exp [ (y + 'I' + 21'S') ~-'t]S-, 

S'(t) 51 S', 'I' = IhflD. 
(2.3) 

Since the z-component of the spin is independent of 
the "time," the Simplest blocks are of the type 
r~ ... z (WI ... Wn). To calculate them, we obtain the 
partition function 

s ~ 

~ v' d" Z = k.l exp(ym + Vm') = ~ - -Zo(y) 
m __ S 'f:::: n! dy2n 
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1 ~ :r 
=-= J exp (--)Z,(y +x)dx-Z(y,y), 

l'4l'ty __ 4y (2.4) 

where 

We regard the partition function Z as the generating 
function of the correlators 

1 dn ( ) «S,)n),= __ Z. 2.5 
Z dyn 

We then obtain for the blocks r~ ... z from (2.1), (2.4) 
and (2.5) 

r : ... , (w, ... w,.) 

Lmn exp (m2y) ch my, n::" 21, 
m>' 

Lmnexp(m'y)shmy, n=21-1, (2.6) 
m>' 

where o. == /) is the Kronecker symbol and 1 can take 
1 Wi 

on the values 1,2, .... 

Inclusion of the anisotropy in the zero-order Hamil­
tonian leads to the appearance in (2.3) of an operator 
"temporal" factor exp(2ySZj3-1). Therefore the analog of 
Wick's theorem for the spin operators[7] is missing 
from this model, and to calculate blocks containing 
transverse spin components it is necessary to use the 
definition of the T-ordered product of operators: 

where the summation is over all possible permutations 
of the "times" t.; () (t. - t.) are Heaviside unit step func-
• J 1 J bons. 

The Appendix gives the Fourier components of the 
simplest connected blocks only for the spin S = 1, since 
the corresponding formulas for arbitrary spin are too 
cumbersome. 

Our renormalization of the blocks does not change the 
graphic structure of the diagrams [8] if the block r n is 
represented as before by a point with n outgoing interac­
tion lines. We shall henceforth not show the known dia­
grams, and present only the analytic expressions corre­
sponding to them. 

3. CURRIE TEMPERATURE OF ANISOTROPIC 
FERROMAGNET. MOLECULAR FIELD NEAR 
Tc 

We shall show that single-ion magnetic anisotropy 
leads to a shift of the Curie temperature T c and changes 
the magnitude of the molecular field y. We introduce the 
notation 

(S'), = b(y, y) ... b. (3.1) 

We then obtain from the general formula (2.5) at n = 1 

b = ; L mexp(m'y)sh my. (3.2) 
m>, 

Assuming a fie ld H = 0 and (SZ) ~ b, we obtain from 
the se If- consistency condition 

(S,) = (y - P",H) (PV,)-', (3.3) 
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a transcendental equation for the phase-transition tem­
perature: 

T. 2 ~ 
-Y=Z-(O ) .l..J m'exp(m2y,). 

o ,Vc 
m>' 

In the limiting case y c = D/2T c = 0 we have 

T,' = IlaS(S + 1) v" 

(3.4) 

(3.5) 
corresponding to the molecular-field approximation for 
an isotropic ferromagnet. 

In the limiting case of a strongly anisotropic uniaxial 
crystal y c » 1 we obtain 

(3.6) 

In the opposite case 0 < y c < 1, in the apprOximation 
linear in y c' 

T, "" T,' + '/IOD(4T.' / V, - 1), (3.7) 
i.e., the relative shift of the Curie temperature is 

!J.=T,-T.' =~(4S(S+1)-3). (3.7') 
T, 15 

At a spin S = 1/2, there is no contribution of the single­
ion anisotropy. If S = 1, formulas (3.1)-(3.7) coincide 
with the corresponding results in [4,5J . 

It is easily shown that the quantities «(Sz)fl)o can be 
expressed in terms of the function b(y, y) (3.1) and its 
derivatives with respect to y with the aid of relations 
(A.8) of[7J 

< (S') '), = b' + b' , 

«S') '), = b" + 3bb' + b', (3.8) 

On the other hand, in the particular case S = 1 we obtain 
from (2.5) 

2e' ch y 
«S,)'n), = «S')2), = 1 + 2e'chy , 

2e'sh y < (s,)'n+l), = (S'), = -:-:-::--7--
1 + 2e'ch y 

Substituting in (3.3) the expansion 

<S,) "'" b "'" b'(O,y)y+ !! b"'(O,y)y', 

(3.9) 

(3.10) 

where we have for S = 1, according to (3.4), (3.8), and 
(3.9), 

b'" (0, y) = b' (0, y)[ 1- 3b' (0, y)], 
(3.11) 

we obtain an equation for the molecular field near Tc: 

y'+3aTY - 3ah =0. (3.12) 

Here 
2T,' 

a= 2T,- T.' ' (3.13) 

The solutions of (3.12) take the following form in limiting 
cases: 

a) case of weak fields h2a-1ITI-s « 1 

{ (SaITI)'" + hlUd, T < 0, 
Y"'" hlITI, 1:>0; 

b) case of strong fields h4a-1lTrs » 1 
Y"'" (3ah),''[1- (a/9h')"'T]. 

(3.14) 

(3.15) 

Since h « 1 in the usually realized experimental condi­
tions, it follows from (3.14) and (3.15) that y »h in the 
considered temperature region. 
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4. SPECTRUM OF COLLECTIVE EXCITATIONS 

We determine the Fourier component of the tempera­
ture correlation function of the transverse spin compon­
ents by the relation 

1J~ ~ ~. K-+(k,iw n)= 2~ exp(iwnt)dt· ..::.,.exp {ik(r,-r,)}<TS.,-(t.)S.,+(t.». 
-~', (4.1) 

Introducing the concept of the irreducible part 
L-+(k, iwn) as an assembly of diagrams that cannot be 
cut along one interaction line Vk, we obtain 

~-+(k, iw.) (4.2) 

In the case of a large relative exchange-interaction 
radius ro, the irreducible part is represented in the 
form of an expansion in its reciprocal powers: 

~='~+'~+'~+ ... , (4.3) 

where the indices 0, 1, ... indicate the number of closed 
loops of the effective interaction lines 

V·~(k, iw.) =V.+~V.'K·~(k, iWn), (a~) -+ (+-), (zz). (4.4) 

The spin-wave spectrum is determined by the poles 
of the analytic continuation of the correlation function 
K-+(k, iwn). The question of the spectrum of the system 
(1.1) is discussed in a number of papers (see, e.g.,[2]). 
In the molecular-field approximation 

~-+ ='~-' = r,-+ (4.5) 

the spectrum was investigated by Ginzburg [4] , who was 
the first to show that in the general case the spectrum 
consists of 28 spin-wave branches. For 8 = 1, in particu­
lar, 

where 

W,. ,(q) =!J.H + bV. - 1/2bV. =F 

=F [(1/2bV.)'+ (T'l')'+T'l'V.P],1., 
(4.6) 

P 2(1-eV chy) 2 -«S')'),. (4.7) 
1 + 2e' ch y 1 + 2e' ch y 

A result similar to that of[4] was obtained independently 
in [5,6]. 

At a temperature T = 0 we obtain from (4.6) 

w.(k)=!J.H+V,-V.+1/2D, w'=!J.H+V.-1/.D. (4.8) 

It is obvious from (4.8) that the optical branch of the 
spectrum W2 does not depend on the quasimomentum and 
corresponds to loeal excitations of the spin at the 
node [9,6] • An analysis of the expressions (4.6) shows 
that the mode W2 remains much less collectivized than 
the low-frequency mode Wl to temperatures close to T~. 

To determine the low-temperature corrections Llo.Wl,2 
to the spectrum Wl,2 we take into account the contribution 
made to the irreducible part by diagrams with one loop 
of the effective interaction lines [sJ; we then have for the 
first branch 

~ [ D(V. + V.) ] 
.1.w.(k)=-..::.,.n •• V.+V._D+V,+V,-,-v,-v" (4.9) 

• 
where 

n •• = (exp[~w.(q)]-1)-', 

and for the optical branch the correction Llo.W2 turns out 
to be exponentially small. 

Therefore in the approximation of quadratic isotropic 
dispersion we obtain for the acoustic branch 

w,(k)=w.(k)+ ~ [1-2(2:;, f'r.! Z'/,(~!J.H+'l')], (4.11) 

where ws(k) is the dispersion law for the spin waves of 
an isotropic ferromagnet at low temperatures [sJ , and .. 

Z.(x)= ~n-·e-",. (4.12) 

The second term in (4.11), which is due to single-ion 
anisotropy, can be represented a~ a tIDearized expansion 
of <8Z )2 in terms of the quantity n = l1n1q; then 

q 

w. (k) = 00, (k) + I/'D(S')'. (4.13) 

An analysis of the expressions (4.6) for the collective­
excitation frequencies at arbitrary temperatures was 
carried out earlier [5] for the particular case H = 0 and 
q = O. It is curious to note that if the molecular field is 
y = y then, according to (4.6), the frequency of the 
acoustic mode vanishes, and 

W,(k)=1/2D(2-V./V.). (4.14) 

If H = 0 and D « V 0, then the condition y = y is satisfied 
at T "" T~. For fields j.LHT-1 = h > y there exists no 
temperature at which one of the frequencies vanishes. 

We shall assume henceforth that in the high-tem­
perature region of interest to us the magnetizing field is 
strong enough (h > y) to be able to assume the sample 
to be Single-domain, and at the same time weak enough 
for the molecular-field equation (3.12) to have the solu­
tions (3.14) and (3.15). We assume thus that 

'l'<h<t:y<t:1. (4.15) 

In this case we get from (4.6) 
00,. ""!J.H + T, V.-'y(V, - V.), 

(4.16) 
w"""!J.ll+T,y(1+~'l'(V,- v.». 

We see from this, in particular, that in a temperature 
region not too close to the Curie temperature T c' the de­
pendence of the optical branch of the spectrum on the 
quasimomentum is weak. 

5. FLUCTUATION DAMPING OF SPIN WAVES 

The damping r(w, k) of the collective excitations in a 
system with Hamiltonian (1.1) is governed by two mech­
anisms, scattering of the spin waves by the <8Z ) fluctua­
tions, and spin-wave processes with participation of four 
and more magnons. In the first-order approximation of 
the self-consistent-field method, there is only the fluc­
tuation damping r f(w, k). 

Using for the irreducible part L-+ the single-loop 
diagrams shown in Fig. 1 of rS] and the analytic expres­
sions for connected blocks at 8 = 1 (see the Appendix), 
we write out the terms of lL with nonzero imaginary 
parts: 

I'(k, iQ)= E (1- ~b'V.)-'(1- ~v._.r,+-(Q, Q»-' 

x,ib'V.'[q>.Go.' + <p,Go,' - ~v.-.""<P,GD,GO,(Go, - Go,)'] + r,+- (Q, Q) V._. 
x [<p,Go,' + ""Go,' - 2!jJ,Go,Go, - ~V.(!jJ,b' - !jJ.') (Go, - Go,)'] 

-21'. V._ q (!jJ,GD,' + <p,G D,') (''f,Go , + !jJ,Go,)}. (5.1) 

In the particular case of weak anisotropy, D «Vq> Vk Following the analytic continuation in - w, we obtain for 
~ Vo, we have the damping of the first mode 

.1.00, (k) "" 1: n .. [V, + V._. - V. - V. + D]. (4.10) 
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V.G,,-'G,,-' Im~' (k, Wlk) 
r,(W,.) = r/l = ---------'-

M. P. Kashchenko et al. 

(5.2) 

203 



G,,-' = (y +v - W'k~), G,,-' = (y - v - w,.~). 

A general expression for the fluctuation damping of the 
second mode is obtained by making the substitutions 
w1k - w2k in (5.2). 

In the absence of single-ion anisotropy we have Gll 

= G12 = (y - i{:lw r\ and then, using formulas (A.1) of the 
Appendix, we obtain from (5.2) the known resuU[BJ for 
the fluctuation damping of the spin waves of an isotropic 
ferromagnet. 

To calculate the main contribution made to the damp­
ing by magnons with small quasimomenta, we can confine 
ourselves to a replacement of the Fourier components of 
the exchange interaction in (5.2) by Yo. In this approxi­
mation, 

nv'V,'(A - ~V,B) ~ R( ) 
r/t~ z, ~u Ciht-(tl14 , 

(w,,-W,.) (1-~b V,) • (5.3) 

where 
A = qJ, qJ, G u + qJ,<p,G '" 

B =qJ,<p,GuG" + (qJ,Gu + (f,G,,) (qJ,b.' _ qJ.'). 
(5.4) 

Allowance for the fluctuation damping is of greatest in­
terest at temperatures close to the Curie point. Noting 
that when condition (4.15) is satisfied we have 

and changing over to integration over the quasi momenta, 
we obtain from (4.16), (5.3), and (5.5) 

313 ( T ) , ( ~ ) , r lt ,.. 2nr,' T;Y- I·t!-'V,k. (5.6) 

Here ks is the dimenSionless quasimomentum (see [BJ), 
and t:;,. is the relative shift of the Curie temperature (3.7') 
for S = 1. Similarly, 

~ 13 (T) 'ITI-'V. r,,--- - ---k 2nr,', T, ~y . (5.7) 

Substituting in (5.6) and (5.7) the molecular field y 
defined by expressions (3.14) and (3.15), we obtain for the 
fluctuation damping of the acoustic and optical branches 
of the spectrum: 

a) weak fields h2a-l lTloS « 1 

(5.8) 

b) strong fields h2a-l jTr3 » 1 

r ll - L1'h-"'ITI-'k, r/, - L1-'h-'I~lll-'k. (5.9) 

Comparison of the results (5.8) and (5.9) for r f1 with 
the corresponding formulas for an isotropic ferromag­
net[B] shows that the fluctuation damping in an aniso­
tropic crystal is essentially determined by the aniso­
tropy constant and depends linearly on the quasimomen­
tum. Since the spin-wave spectrum has a gap, the rela­
tive damping r i1 = r f1 wi~ of the long-wave magnons is 
weak. For example, in the region of weak fields and 
T < 0 they exist for k « hr~ -272 • The fluctuation damp­
ing r f2 of the optical magnons is also linear in k, but 
near Tc the region of quasimomenta in which they exist 
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is narrower. At T < 0 in the region of weak fields r f2 is 
small at k «r~r. A comparison of the relative damp­
ing of the two modes at a fixed value of k shows r f1 is 
weaker than r £2 that near T c by a factor t:;,. ~ -1 both in 
weak and in strong fields. 

Since the scattering by magnetic inhomogeneities with 
transformation of acoustic inagnons into optical ones are 
forbidden by the conservation laws in the absence of a 
dipole-dipole interaction, one should expect the fluctua­
tion damping of all spin-wave branches to be linear in k 
near Tc for arbitrary values of the spin S. 

In conclUSion, the authors thank F. A. Kassan Ogly and 
S. A. Pikin for a useful discussion of the work. 

APPENDIX 

The Fourier components of the Simplest connected 
blocks are given in the case S = 1 by the analytic ex­
pressions 

r,"(12) = b'Il;Il" r,+-(12) = {qJ,G" + qJ,G,,} 6,_" 
r,+-'(123) = - {qJ,G"G21 + qJ,G"G,,}6'_'H 

- {qJ.G" + qJ,G,,} Il,-,Il" 
r,+-"(f234) = {qJ,G"G2I (G,+", + G'H,.) 

+ <p,G"G .. (GH ••• +" G'H,') }6'-'+lH 
+ {'ll.GuG" + <jJ,G"G,,} (6,-2+.6, + 6,_2+,6.) 

+ {qJ.G" + <p.G12} 6,_.6.6" 
r,++--(1234) = {qJ,(G'H, '+1- 2GH ., 1+,) (G" + Gil) (G" + G,,) 

+ <p,(GH " '+I - 2GtH• '+1) (G" + G .. ) (G" + Gu )}6,+>-.-, 
+ {qJ.G"G" + <p,G"G" - <p. (GuG" + G"G,,)} . 

.. (6,-060-. + 6,_,1l,_.); 
G,;= (ai-iwl~)-" a,=y+v, a,=y-v; 

qJ, = Z-'(e'H -f), 'll' = Z-' (f- eV-') , 

Z=1+2e'chy, 
qJ. = 2Z-' + <p,(f- <Pi), <p, = 2Z-t - qJ.(1 + qJ.), 

qJ. = qJ,qJ. + Z-', qJ. = <p, - <P" <p, = <p. - <P" 
<p.=<p,(f-2b+b'-b') + (f-2b)Z-', 
<p. = qJ.(f + 2b + b' - b') - (f + 2b)Z-'. 

From these formulas we get the relations 
<P' + qJ. = (S'). - b = 2Z-'e' sh y, 

(A.1) 
<p.+qJ,=-(<p.+<p,-2qJ.) =-b', qJ.+qJ.=b". 
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